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1 Introduction

The aim of this paper is to analyze the proper relation existing between two types of

dynamical systems: affine control systems and Lie systems, which arise in similar contexts

and are receiving quite a lot of attention in the last years.

Lie systems are a special type of time dependent ordinary differential equations which

enjoy very interesting properties . In particular, their solutions admit a nonlinear su-

perposition principle, which makes them particularly interesting in many different areas

[1, 2, 3, 4, 5, 7, 10, 11, 12].

On the other hand, control systems are used in almost any possible dynamical system

whose dynamics can be externally driven, from spacecrafts to chemical plants. They

have been studied extensively since the fifties and in particular the geometrical structures

related to them have been object of deep research in the last twenty years. Our goal in

this paper is to relate the time dependent systems of differential equations corresponding

to Lie systems and control systems.

In the process, we will also study how is it possible to formulate the typical notion

of feedback transformations from Control Theory in a context which allows a simple

translation into the language of Lie systems. This allows us to generalize the concept

of feedback linearizable systems and feedback nilpotentiable systems and introduce the

notion of feedback transformations into system of Lie type.

2 Relation between control systems and Lie systems

The aim of this section is to prove the relationship between some control dynamical

systems and Lie systems as introduced in [5, 7, 8, 10, 9, 13]. To begin with, let us

characterize both systems independently, and proceed to link both concepts step by step.
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2.1 Lie systems

Lie systems are, roughly speaking, systems of time dependent differential equations

which are generated by vector fields which generate a finite dimensional Lie algebra. One

of the main properties of such systems of equations is that the solutions admit a non-linear

superposition principle, i.e. given two solutions, a certain function of them (in general a

non-linear function) will define a new solution of the system.

In a more precise way, we can consider the following result:

Theorem 2.1 Given a non-autonomous system of n first order differential equations, a

necessary and sufficient condition for the existence of a function Φ : Rn(m+1) → Rn such

that the general solution is x = Φ(x(1), . . . , x(m); k1, . . . , kn), with {x(a) | a = 1, . . . ,m}
being a set of particular solutions of the system and k1, . . . , kn, n arbitrary constants,is

that the system can be written as

dxi

dt
= b1(t)ξ

1i(x) + · · ·+ br(t)ξ
ri(x) , i = 1, . . . , n , (1)

where b1, . . . , br, are r functions depending only on t, and ξαi, α = 1, . . . , r, are func-

tions of x = (x1, . . . , xn), such that the r vector fields in Rn given by

Y (α) ≡
n∑
i=1

ξαi(x1, . . . , xn)
∂

∂
xi , α = 1, . . . , r, (2)

close on a real finite–dimensional Lie algebra, i.e. {Y (α)} are linearly independent and

there are r3 real numbers, fαβ γ, such that

[Y (α), Y (β)] =
r∑

γ=1

fαβ γY
(γ) .

The number r satisfies r ≤ mn.

Proof. For a geometric proof of this Theorem, see e.e. [5]. �

In this paper we shall focus mostly on the explicit time dependence of the dynamical

system, and postpone for later the analysis of the Lie algebra condition.

2.2 Control systems

On the other hand, control systems are dynamical systems which depend on a set of

external parameters, which can be modified at will, aiming to force the system to behave

in some desired way [21, 18]. In mathematical terms, we can consider the following

definition:
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Definition 2.1 Consider a differentiable manifold M and a system defined on it. Roughly

speaking, a control systems is a dynamical system which depends on a set of arbitrary con-

trol functions, ui, which allow us to modify the behavior of the system. From a geometric

point of view, we can describe the set of controls as a bundle B (usually a trivial vector

bundle) on the state space manifold M , with a projection πB : B → M . The control dy-

namical system corresponds then to the integral curves of a vector field along the projection

πB,

The system provides us with some information which is defined as a mapping between

the manifold M and some manifold Y which contains the outputs of the system.

From a geometric point of view, control systems correspond to vector fields along the

projection of a vector bundle

B
X //

π

��

TM

τM||yy
yy

yy
yy

M
h

// Y

which in local coordinates reads:

ẋ = X(x, u) , x ∈M , u ∈ Bx y = h(x) (3)

A special class of these systems are the control systems affine in the controls. Consider

a basis of sections of the bundle B, {ei}i=1,··· ,q and a corresponding set of coordinates {ui}
for the fiber of the bundle. We will assume, for simplicity, that the bundle is trivial, i.e.

we can write B = M × U where U is a vector space. Assuming these coordinates for the

control functions, we can write a general affine control system in the form:

ẋ(t) = Xd(x(t)) +
r∑
i=1

ui(t)Xi(x(t)) (4)

The control problem consists in finding a curve (x(t), u(t)) in the bundle B whose

projection on M (πB(x(t), u(t) = x(t)) is an integral curve of (4). The usual procedure

consists in finding a suitable section σB : M → B in order to fulfill some requirement (to

make a certain point x∗ to be a stable fixed point, to force the system to follow a certain

curve as its trajectory, etc).

Very interesting structural properties of the system are encoded in:

• The distribution C spanned by {Xf , X
1
g , · · ·X

p
b }. It represent the set of directions

of motion which can be imposed on the system.

• The codistribution O spanned by the set of one forms {dLX1
g
· · ·LXp

g
h1, · · · }. Loosely

speaking, it represents the set points in M which can be distinguished by looking

at the output manifold.
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There are two different regimes in a control system in what regards the functional

dependence of the control functions:

• Open loop: in this case, the control functions are supposed to be a function of the

time, only, without explicit dependence on the point of M . This will be the case we

study first.

• A second possibility consists in assuming a dependence of the control function in

both the time and the point in M . Such a situation, usually called feedback

regime will be analyzed later.

2.3 Comparing the time dependence structure of Lie systems and open-loop control sys-

tems

The open loop case exhibits of a control system exhibits a clear similarity with the

structure of a Lie system. The explicit time dependence of the Lie case is defined through

the control functions in the control one. In more detailed terms, let us recall the geometric

definition we did of both structures:

TM

π

��
M × R τM

//

Y
::ttttttttt
M

TM

π

��
B πB

//

X
<<zzzzzzzz
M

Consider a trivial generalization of the control system in such a way that solutions are

easily considered as suitable sections:

TM

π

��
B × R
τB

��

τ1
// B πB

//

X
==zzzzzzzz
M

R

Solutions of a control systems will be defined by trivial sections of τB defined as

γB(t) = (x(t), u(t), t)

which render commutative the diagram above.

Comparing this diagram with the diagram expression of a Lie system (without the

Lie algebra condition), it seems natural to consider the following extensions, by trivially

considering a time extension in the bundle structure of the control bundle ΠB = πB× Id :

B × R →M × R:
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R

B × R

τB

;;wwwwwwwww ΠB //

π1

��

M × R
τM

ccGGGGGGGGG

π2

�� Y

��

B
πB //

X //

M

TM

ν

eeJJJJJJJJJJ

Please realize that we have just juxtaposed the three diagrams we had in the beginning,

the one defining the control system, the same one extended to ΠB and finally the diagram

defining the Lie system. From a mere inspection, it is simple to conclude that there is a

natural relation between control vector fields and Lie systems:

Definition 2.2 Consider a control system X defined on a manifold M as above. Then,

we say that a Lie system Y is related to X if the following diagram commutes

B × R ΠB //

π1

��

M × R
π2

�� Y

��

B
πB //

X //

M

TM

ν

eeJJJJJJJJJJ

This implies that:

X ◦ π1 = Y ◦ ΠB (5)

Proposition 2.1 Given a control system X and a section σB : M → B, there exists a

Lie system related to the control system and defined as:

Y = X ◦ σB ◦ π2. (6)

Proof. Trivial. �

It is important to realize that this is the usual way of solving a control system in open

loop: we are replacing the control functions in the control system by some functions of

time {ui(t)}i=1···.

But then the problem of unicity arises naturally: consider we take two different sections

of the control bundle σ1
B and σ2

B. The construction above defines two different vector fields

Y1 = X ◦ σ1
B ◦ π2 Y2 = X ◦ σ2

B ◦ π2 . The choice of the section implies a change in the

Lie system the control is associated to. We shall see in the next section how this issue

can be explained within the feedback transformation concept for certain cases.
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Solutions to the control system are sections of the bundle τB which make the “left”

part of the diagram commutative, while solutions to the Lie system are sections of the

bundle τM which make the “right” part of the diagram commutative.

Assume now that the section σB is know, and we can then determine the suitable

control function for any point x ∈ M . In such a case, the following result is trivial to

prove:

Theorem 2.2 Consider a control and a Lie system related as above. Then, any solution

γB(t) of the control system X determines a solution γM(t) = ΠB(γB(t)) of the Lie system

Y .

3 The Lie algebra condition

The following step is to consider the second condition of a Lie system: the existence

of a set of vector fields which allow to write the differential equation as (1) and that

generate a finite dimensional Lie algebra. Our task now is to translate this condition to

the language of control systems.

As we saw above, given a control system X any choice of a section σB : M → B

determines a differential equation which has the same time dependence structure as a Lie

system. We are going to study now the conditions to be satisfied by X and the section σB

for the resulting vector field Y to be a true Lie system. For simplicity, let us consider the

case of affine control systems whose geometric structure has been described in the previous

section. As we know that the set of vector fields {Y α} of the Lie system associated to

the affine control system X corresponds to {Xf , X1, · · · , Xr}, the Lie algebra condition

of the Lie system is translated into:

Proposition 3.1 Consider an affine control system X, an arbitrary section σB of the

bundle πB and the associated field Y = X ◦ σB ◦ π2 . Then, Y is a Lie system if the

algebra C corresponding to X is a real finite dimensional Lie algebra.

Using the framework presented above, we are going to introduce now the concept

which links Lie and control systems:

Definition 3.1 Let X be a control system defined as above and σB : M → B a section of

the control bundle. We say that (X, σB) is a control Lie system or a control system

of Lie type if the associated time dependent vector field Y = X ◦σB ◦π2 is a Lie system.
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4 Transforming systems: feedback transformations

4.1 Geometric definition of feedback

Feedback transformations have been used in many different contexts in Control Theory

[21]. Roughly speaking, a feedback transformation maps a given system into a new one

for which the control functions are obtained from the old ones via a linear transformation

(in the controls), which depends on the state space coordinates. In principle, the control

functions {ui} are supposed to depend on time (in the control theory terminology the

system is then operating in open loop). It may happen, though, that in order to change

the behaviour of the system it is necessary to make the controller depend on the state

space coordinates, via a feedback transformation: u(t, x) = β(x)v(t). This is the case of

the phenomenon called static feedback. We can also consider a transformation which

depends of a new dynamical system, this will be the case of the dynamic feedback. In

both cases, we are actually defining a new control system, with control functions {v} and

whose behaviour can be completely different from the original one.

4.1.1 Static feedback

The geometrical interpretation of this phenomenon is simple. Consider again the descrip-

tion of an affine control system that we saw above. Consider the control bundle B →M

and a bundle isomorphism β̂ : B → B.

The effect that this transformation has on the control system (4) can be written as

follows. The new system reads, in local coordinates:

ẋ = Xd(x) +
r∑
i=1

βi(x, u)Xi(x) (7)

Assuming that we are considering affine control systems, we ask the mapping β to be

affine in the fiber, i.e.:

βi(x, u) = β1(x) + β2(x)u ≡ v ∈ Bx (8)

v is again an element of the fiber of the control bundle and is assumed to be the control

function for the transformed system.

A very simple case for this transformation would be the following. A change on the

basis of sections {ei} which corresponds to the set of coordinates {ui} leads to a transfor-

mation at the level of coordinates of the fiber in the form u(t, x) = β(x)v(t) β(x) ∈ G
where G is the structural group of the bundle B. Hence, we can interpret the feedback

transformation as a change of the basis of sections of B, if the transformation β belongs

to the structural group of the bundle. If the bundle structure of B is not determined by

external considerations, this condition can always be fulfilled.
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We may also think in a slightly more general situation where the bundle isomorphism

on the control bundle B is not defined on the identity mapping on the base, but on a

general diffeomorphism, i.e.:

B
β //

πB

��

B

πB

��
M

ψ
// M

(9)

In local coordinates, this implies that the original system:ẋ(t) = Xd(x(t)) +
∑

i ui(t)Xi(x(t))

x(0) = x0

is transformed into:ż(t) = ψ∗(Xd)(z(t)) +
∑

i β(x(t), u(t))ψ∗(Xi)(z(t))

z(0) = ψ(x(0))
(10)

This is the framework presented in [19].

From a geometric point of view, the pair of mappings (β,Ψ) does modify the vector

field X, which becomes a new one denoted as Xβ = X ◦β. It corresponds to the following

diagram:

B
β //

π

��

B
X //

π

��

TM
τM

||yy
yy

yy
yy

M
Ψ

// M

TM

τM

hhQQQQQQQQQQQQQQQ

TΨ

OO

Hence, the resulting system is a vector field Xβ = Tψ−1(X ◦ β) along the projection

πΨ = Ψ ◦ πB.

We may even consider a more drastic transformation, mapping the original state-space

manifold onto a new one:

Ψ : M →M ′

In such a case, the vector field is transformed in the usual way.

In any of these situations, the distribution C generated by the control vector fields of

the system does change in the transformation. We will denote as βC the corresponding

transformation, i.e.

C → βCC

where we denote as Cβ the resulting distribution.
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4.1.2 Dynamic feedback

For completeness, we can consider also in this framework the case of dynamic feedback.

This case is slightly more involved than the previous one but still simple to describe.

Consider then the control bundle B →M as before and a transformation defined as

TM

τM ""EE
EE

EE
EE

B
X

oo

π

��

B × C
βd

oo Π //

pr2

$$IIIIIIIII TC

τC
��

M C

We add then a new manifold and a new dynamical system (defined by Π, which is a

vector field along the natural projection pr2 : B × C → C) whose solutions determine

(dynamically, hence the name) the feedback transformation of our original system.

We can combine both objects in the expression

B × C

π×id
��

(X◦βd)×Π // T (M × C)

τM×Iduukkkkkkkkkkkkkk

M × C

The transformation of the controllability and observability distributions is similar to

the static case. We will denote as βdC the corresponding transformation, i.e.

C → βdCC

where we denote as Cβd the resulting distribution.

4.1.3 The effect in our case

The aim of feedback transformations is to suitably modify the structure of the original

control system in order to force it to fulfill some given requirement (to have a fixed point

with suitable stability properties, for instance).

But it is also a fair question to study whether, given a control system which is not of

Lie type, it is possible to transform it into a Lie system via a feedback transformation.

How does this look like on the complete setting? Let us restrict ourselves to the case

of static feedback for simplicity, the dynamic case being very similar in nature. The

complete picture is as depicted in the following commutative diagram:
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R

R×B
β̂=Id×β //

Π2

##HHHHHHHHH

Π1

66lllllllllllllll

ΠB=Id×πB

��

R×B′

Π1

iiRRRRRRRRRRRRRRRR

Π2zzuuuuuuuuu

ΠB′=Id×πB′

��

B
β //

πB

��

X

ww

B′

πB′

��

X′

''
TM

π // M
Ψ // M ′ TM ′π′

oo

R×M
Ψ̂=Id×Ψ //

Π2

;;vvvvvvvvv

Π1

((RRRRRRRRRRRRRRR

Y

ddJJJJJJJJJ

R×M ′

Π1

uullllllllllllllll

Π2

ddIIIIIIIII
Y ′

99ttttttttt

R

The diagram above reflects the construction we have presented above in full generality.

Of course, to consider the effect of feedback transformations on the corresponding Lie

systems it is necessary to consider sections σB : M → B (and σB′ : M ′ → B′ via the

feedback).

As we know the geometrical structure that the system must exhibit to be of Lie

type, it seems reasonably simple to derive, formally, the conditions to be asked to the

transformations. Please notice that this property is different from usual situations, where

the aim is to obtain a linearized system, but it is similar to the concept introduced by

Hermes and coworkers about feedback nilpotentiation [15]. In this last case, the aim is to

obtain a Lie system corresponding to a nilpotent group:

4.2 A precedent: Hermes’ nilpotentiable systems

In [15] the concept of feedback nilpotentiable systems is introduced in the following

way:

Definition 4.1 Given an affine control system:

ẋ =
∑
k

uk(t)Xk (11)

we say that it is nilpotentiable by feedback if we can find a feedback transformation: u(t) =

βij(t)v(t) such that (11), once transformed, becomes a nilpotent system, i.e. a control

systems whose control vector fields (completed, if needed, with some others obtained by

commutation of these) span a nilpotent Lie algebra.

In [15] the study of necessary properties for systems as (11) (and also with a drift

term) defined on real analytic manifolds to be feedback equivalent to a nilpotent system

is carried out. The main issue of that study is the possibility of defining the so called
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nilpotent basis for the given control system, what in our language simply means to

find out which is the action of the nilpotent group which defines the vector fields {Xk}
as fundamental. In that case, we know that we can transfer the study to the group, or

following [15], to the algebra. The conclusions obtained are not many, since the approach

is very general; hence, the only practical result contained in the paper is the following:

Theorem 4.1 Let D(x) = span(Y1(x), Y2(x)) be a two dimensional distribution on R3

and suppose that Y1(0), Y2(0) and [Y1, Y2](0) are independent. Then D admits a nilpotent

basis which generates a three dimensional nilpotent algebra.

The interest of this type of results in our study is evident, since it is well known

the Wei-Norman method [22, 23] allows us to integrate by quadratures the nilpotent Lie

systems. We conclude thus:

Corollary 4.1 Let D(x) = span(Y1(x), Y2(x)) be a two dimensional distribution on R3

and suppose that Y1(0), Y2(0) and [Y1, Y2](0) are independent. Then the corresponding

control system is integrable by quadratures in a neighbourhood of x = 0.

4.3 The general case: systems which are feedback equivalent to general Lie systems

Building on the previous example, it seems natural to define the analogous concept for

general Lie systems: is it possible to consider a special type of feedback transformations

which transforms a general affine control Lie system into a general Lie control system?

From the discussion above, it seems quite simple to obtain a formal condition for this:

Definition 4.2 Let X be an affine control system defined as above and a section σB :

M → B. Then, the system is said to be Lie feedback equivalent if there exists a

feedback transformation β : B → B such that the transformed distribution Cβ at every

point x ∈ M spans a finite dimensional Lie algebra with the natural restriction of the

vector field commutator.

The theorem presented above for nilpotentiable systems is clearly a particular case of

the definition above for the case of a nilpotent group.

The best idea seems to be to look for a geometric object which would serve as a test of

the finite dimensionality of the Lie algebra structure associated to the control distribution.

Is there anything which tells us that the object generated is finite dimensional as a Lie

algebra? From an algebraic point of view there is indeed: the lower central series, which

should be stable for the Lie algebra to be finite dimensional.

Let us consider then the set

{β1jX
j, · · · , βkjXj}
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as a family of generators. The lower central series associated to this set will read as:

{β1jX
j, · · · , βkjXj, [β1jX

j, β2jX
j], [β1jX

j, β3jX
j], · · · , · · · }

where every element can be considered to be a certain differential operator acting on the

tensor β (although β is a tensor defined on the bundle B, when we consider the image

under the control vector field X , it becomes a tensor on M).

The condition of stability of the series implies that there is a certain step at which the

terms obtained are a linear combination of the elements of the family. Hence, a certain

PDE arises for β, depending on the initial family of vector fields and the particular final

Lie algebra.

Let us consider a particular example to clarify the concept.

Example 4.1 Consider for instance a control system defined as follows:

the following feedback transformation:

Ψ(x1, x2, x3) = (x1, x2, x3) β(b1, b2) = (
1

cos2 x3

, cosx3) (12)

Of course, this change is only valid for cosx3 6= 0. We consider then the chart for S1

defined as x3 ∈ (−π/2, π/2) or x3 ∈ (π/2, 3π/2).

If we denote as (b1, b2) the original coordinates in the control bundle B and as (c1, c2)

the transformed ones, we can write the transformation as:

c1 =
b1

cos2 x3

c2 = b2 cosx3 (13)

Then, we have Ψ = Id what simplifies the corresponding expressions. The new distri-

bution CβX is spanned by the control vector fields:

Xβ
1 = cos2 x3

∂

∂x3

Xβ
2 = tanx3

∂

∂x1

+
∂

∂x2

The new system becomes thus:

ẋ1 = c2(t) tanx3 ẋ2 = c2(t) ẋ3 = c1(t) cos2 x3

Let us compute the distribution CβX . Computing the commutator [Xβ
1 , X

β
2 ] we obtain:

[Xβ
1 , X

β
2 ] = ∂

∂x1
≡ Xβ

3 We obtain then: [Xβ
1 , X

β
2 ] = Xβ

3 [Xβ
1 , X

β
3 ] = 0 = [Xβ

2 , X
β
3 ] Hence,

the distribution CβX is isomorphic to the Heisenberg algebra h(3), what implies that the

transformed system is also of Lie type, but now the group is the Heisenberg group H(3).
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