
Monograf́ıas de la Real Academia de Ciencias de Zaragoza. 29: 37–47, (2006).

Special Holonomy Manifolds in Physics

Luis J. Boya
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Abstract

This is a pedagogical exposition of holonomy groups intended for physicists.

After some pertinent definitions, we focus on special holonomy manifolds, two per

division algebras, and comment upon several cases of interest in physics, associated

with compactification from F -, M - and string theory, on manifolds of 8, 7 and 6

dimensions respectively.

1 Connections and Holonomy groups

Let (E,∇) be a vector bundle with a connection ∇ : P (M,G) is the principal bundle,

and F supports a representation of G, so E(M,F ) is the associated bundle:

∇ : F ◦→ E →M (1)

∇ allows covariant differentiation of sections, e.g. for the tangent bundle E =

TM,∇XY = Z means: covariant derivation of vector field Y along (the flow of) X is

the vector field Z. In the general case ∇Xψ = ψ′, where ψ, ψ′ are sections. ψ : M → E.

Connections allow also parallel transport along paths. E.g., a frame e at a point P
∈ M becomes e′ = g · e also at P , after a loop (closed path) γ from P , where g ∈ G.

Consider all the loops from P and write Hol(∇) := {g}; it is a (sub)group of G, called

the holonomy group of the connection; it was invented by E. Cartan in 1925. For arcwise

connected spaces, which is the case of manifolds, the holonomy group does not depend

(up to equivalence) on the starting point P .

Dedicado a José Cariñena en su 60 aniversario. Querido Peṕın, parece incréıble el largo camino

recorrido por los dos en los últimos cuarenta años. Barcelona, Valladolid, Salamanca, Zaragoza... El

jovencito en busca de un padrino de Tesis ha dado paso al respetable catedrático con un brillante historial.

De nada me siento tan orgulloso como de que tú y otros disćıpulos hayais superado tan bien al maestro.

Que sigas aśı, Peṕın, pues aun esperamos muchos mucho de t́ı.
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Let Hol0(∇) be the restriction to contractible loops. Clearly there is an onto map

π1(M)→ Hol(∇)/Hol0(∇) (2)

The restricted holonomy group Hol0(∇) is naturally connected, whereas Hol(∇) needs

not to be. For generic vector bundles the holonomy group is expected to be as large as

the structure group GL(F ). Two important theorems follow; first define

The curvature of a (vector bundle) connection ∇ is the operator on sections (e.g.

vector fields)

R(X, Y ) := [∇X ,∇Y ]−∇[X,Y ] (3)

The curvature is a local property, the holonomy a global one. But both are related be

the Ambrose-Singer theorem (1953):

”The Lie algebra of the holonomy group is generated by the curvature”.

The other grand result is called the reduction theorem:

” The structure group can be reduced to the holonomy group”.

That is, the total space of the bundle can be restricted by the holonomy loops.

If the curvature is zero, the connection is said flat; the restricted holonomy group

Hol0(∇) is then {e}. Parallellelizable spaces ( = trivial tangent bundle; they include S7

and Lie groups) admit flat connections; just define the connection transport as transla-

tions in the (trivializable) tangent bundle.

We shall consider mainly connections in the tangent bundle of a manifold; then there

is another tensor, the torsion, defined as

T (X, Y ) := ∇XY −∇YX − [X,Y ] (4)

Of course, the same space might have several inequivalent connections (e.g. S3 has the

riemannian Levi-Civita connection, torsionless but curved, and the Lie-group connection

(S3 ≈ SU(2)), flat but torsionful!).

We shall consider mainly riemannian manifolds (V , g); they enjoy the standard Levi-

Civita connection ∇ = ∇g in the tangent bundle, which is symmetric and isometric:
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(symmetric :)Torsion(∇) = 0 = ∇ · g(: isometric) (5)

Let Isom (V , g) be the isometry group of the manifold: ∗ ∈ Isom, means g∗ = g. A

generic riemanifold has no isometries, but the generic holonomy is the structure group,

O(n = dimV) or SO(n). Spaces with maximal isometries have constant curvature; for

example Isom (Sn) = O(n+ 1), with constant curvature K > 0.

In physics both groups, isometry and holonomy, are important; for example, in the

Kaluza-Klein (de)construction, the gauge groups in the mundane space V4 come from

the isometry group U(1) of the compactification space S1: that is why electromagnetism

unfies with gravitation with a circle as fifth dimension, so in this case V5 = S1 × V4: the

original Kaluza construction, 1919.

However, in the supersymmetric situation, it is the holonomy group of the compactifi-

ation space which fixes the number of supersymmetries; for example, Calabi-Yau 3-folds

(CY3, real dimension 6) are favoured for the dim 10 → 4 compactation of the Heterotic

Exceptional string, because the holonomy group, SU(3), allows just N = 1 Susy in our

mundane, 4D space, as we want.

Isometries measure, of course, symmetries, whereas holonomy measures distance (ob-

struction) from flatness; no apparent relation exists, except opposite genericity (as stated

above).

Simple examples in D = 2

The sphere S2 has isometry O(3), the torus T 2 has U(1)2; other genus g > 1 surfaces

have no isometries. In the nonorientable cases, RP 2 and Klein bottle are the only ones

with isometries.

As for holonomy, the 2-Torus T 2 is the only CY1 among surfaces, because is a group

manifold, hence there is a connection with Hol = {e} and SU(1) ≡ {e}. The other sur-

faces with genus 6= 0 have Hol = U(1) = SO(2) (if orientable) and O(2) (if not).

Simple examples in D = 4

The ”round” sphere S4 has O(5) as isometry, and a connection with SO(4) holonomy.

The 4-Torus T 4 is flat, with isometry U(1)4. Intermediate is the topologically unique K3

(complex) surface (see later), which is a Calabi-Yau2 space, with dimR = 4, with SU(2)
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holonomy but no isometries. As for CP 2, it has U(3) as isometry group, and U(2) for

holonomy; in fact, CP 2 ≈ SU(3)/U(2).

As introductory material, the first book on modern differential geometry is still the

best [1].

Besides the original invention by E. Cartan (who did it in order to construct all sym-

metric spaces ca. 1925/26), and a short revival in the fifties (Berger, Lichnerowicz), the

study of holonomy languished until resuscitation in the mid-eighties, in part by imposi-

tion of physics (as in so many other mathematical questions!). Then Bryant, Salamon

and mainly Dominic Joyce (see book [2]) revitalized greatly the subject.

Finally, let us note that the holonomy groups come to the world with a particular ac-

tion (representation) in the tangent space, so one should properly speak of the holonomy

representation.

2 Special and Exceptional Holonomy Manifolds

What groups can appear as holonomy groups Hol(g) ⊂ O(n) of riemanifolds (Vn, g)?

The issue was set and solved by M. Berger in 1955. To state precisely the problem, sup-

pose Hol(·) acts irreducibly in the tangent space, and symmetric spaces G/H are excluded

(because all are known (Cartan) and for them the subgroup H is the holonomy group).

Berger found all possible candidate groups with these prescriptions by a hard case-by-case

method.

Berger´s solution is best understood (Simons, 1962) as the search for transitive groups

over spheres: with two exceptions, these are the special holonomy groups.

The generic case is the orthogonal group acting trans on the sphere, O(n)◦ → Sn−1,

with isotopy O(n − 1), that is Sn−1 = O(n)/O(n − 1). The cases of trans action on

spheres coincident with special holonomy manifolds are (Berger´s list):

R O(n) or SO(n) acting on Sn−1

C U(n) or SU(n) acting on S2n−1

H Sp(n) · Sp(1) or Sp(n) acting on S4n−1

O Spin(7) on S7 or G2 on S6

(6)
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We exhibit the association with the four division algebras R, C, H, y O, which is

obvious and remarkable. Recall also that the homology of compact simple Lie groups is

given by that of the product of odd-dimensional spheres, see e.g. [3]. Then the real and

complex cases are clear, for example SU(3) ≈ S3×S5, as homology sphere product, so we

have S5 = SU(3)/SU(2). Sp(n) for us is the compact form of the Cn Cartan Lie algebra.

Also there is a ”nonunimodular” form

Sp(n) · Sp(1) := Sp(n)×/2 Sp(1) (7)

As for the octonion cases, recall dim Spin(7) = 8, type (+1, real); in some sense which

we do not elaborate, it could be said that Spin(7) ”is” Oct(1), and G2, defined as Aut(O),

is the ”unimodular” form, G2 ≈ SOct(1).

There are two more cases of trans actions on spheres

Sp(n) · U(1) := Sp(n)×/2 U(1) acting in S4n−1 (8)

and

Spin(9) acting in S15 (9)

which, however, do not give rise to new holonomy groups. Spin(9) acts trans in S15

as Spin(9) ≈ S3 × S7 × S11 × S15. In fact, S15 = Spin(9)/Spin(7), equivalent, in some

sense, to S15 ≈ ”Oct(2)”/”Oct(1)”. Spin(9) was really in Berger´s list, but the only space

found was OP 2 (Moufang or octonionic plane), which is a symmetric space.

The sphere S7 of unit octonions is singularized because there are four groups with

trans actions, O(8), U(4), Sp(2) and Spin(7) = ”Oct(1)”; similar for S15, but no more.

Notice the next Spin case, Spin(10): the action is not trans in the higher sphere, to

wit, dim Spin(10) = 16, complex, so Spin(10) acts on S31, but the sphere homology

product expansion for O(10) is S3 × S7 × S11 × S15.

We expand now on the extant cases:

Over the reals we have the groups O(n), generic holonomy, and SO(n): clearly the

second obtains when the space is orientable and the connection oriented: there is an

obstructoin, the first Stiefel-Whitney class:
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V orientable manifold↔ w1 = 0, w1 ∈ H1(V , Z2) (10)

Alternatively, the manifold V should have a global volume element (reductionGL(n,R)

← SL(n,R)). In Berger´s classification, he took the manifolds as simply connected, which

are then automatically orientable ( if π1(V) = 0, all first order (co)homology vanishes,

including w1). Hence, O(n) did not appear in his list.

Over the complex we have complex manifolds, with structure group U(n); but a

generic hermitian metric h = g + iω will allow in general a connection with holonomy

SO(2n), as ∇g = 0 only, unless the complex structure J is also preserved: this is the case

of Kähler manifolds, with ∇ω(= dω) = 0, where ω = g(J) is the symplectic form.

The ”unimodular” restriction SU(n) obtains when the associated bundle with group

U(1) = U(n)/SU(n) is trivial, which is measured by the first Chern class:

SU(n) holonomy ↔ 0 = c1 ∈ H2(V , Z) (11)

The natural name for these spaces would be ”Special Kähler manifolds”, but had

become known instead as ”Calabi-Yau spaces”, after the conjecture of E. Calabi proven by

S.T. Yau. As a bonus, these spaces have trivial Ricci tensor (Ric = Tr Riem, contraction

of the Riemann tensor): define the Ricci 2-form ρ := Ric(J); by the same token as above

J parallel (=covariant constant) implies ρ closed, and it turns out that [ρ] = 2πc1(V).

Therefore

SU(n) holonomy implies Ricci flat manifolds, Ric = 0. (12)

In other words, Calabi-Yau spaces are candidates to Einstein spaces, solution of vac-

uum Einstein equations (without cosmological term). Also CY spaces have an holomor-

phic volume element.

Over the quaternions we have quaternionic manifolds, like HP n, with ”nonunimodu-

lar” holonomy Sp(1) ·Sp(n), and hyperkähler manifolds, with holonomy Sp(n). As clearly

Sp(n) ⊂ SU(2n), the later are also Ricci flat. In fact, the space HP n = Sp(n+1)/Sp(1) ·
Sp(n), which a quaternionic space, is not valid as special holonomy manifold, because it

is a symmetric space. By contrast, quaternionic manifolds have not to be even Kähler, as

the example of S4 = HP 1 shows; quaternionic and hyperkähler manifolds are not easy to

come by.

Manifolds with octonionic holonomy : the two groups: Spin(7) ⊂ SO(8), acting as

holonomy groups on 8-dim manifolds, and G2 ⊂ SO(7), in 7-dim. manifolds, are groups
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associated to the octonions. Spin(7) ≈ ”Oct(1)” and G2 = Aut(O) ≈ ”SOct(1)”; mani-

folds with these holonomy groups are called exceptional holonomy manifolds. We expect

them to play some role in physcs, as for example the iternal spaces in F− and M−theories

have dimensions 8 and 7 bzw.

It is remarkable that, while O, U and Sp are isometry groups of symmetric regular

positive bilinear forms (O), sesquilinear regular positive forms (U) and antisymmetric

regular forms (Sp), the octonionic cases obtain from invariance of certain 3−forms (G2)

and selfdual 4-forms (Spin(7)). This cannot go beyond dimension 8, because for example

the dimension of 3-forms in 9-dimensions is
(

9
3

)
= 84, whereas dim GL(9, R) = 81.

In fact, the algebraic definition of Spin(7) is the isotopy group of certain class of self-

dual 4-forms inR4: it preserves also orientation and euclidean metric, so Spin(7) ⊂ SO(8).

Notice the selfdual form is not generic, as 82−
(

8
4

)
/2 = 29 > dim Spin(7) = 21; the special

selfdual four-form is called the Cayley form in the math literature. In any case Spin(7)

covers S7 with isotopy G2 : 21− 7 = 14.

The algebraic definition of G2 is this: the stability group of the generic 3-form in R7

as vector space: dim GL(7, R) − dim ∧3 R7 = dim G2 : 49 − 35 = 14. Of course, the

original characterization of G2 as Aut(O) by Cartan is related to this: a 3-form becomes

a T 1
2 tensor through a metric, and this is indicative of an algebra, i.e. a bilinear map

R7 ×R7 → R7, given by the octonionic product (and restriction to the imaginary part).

There is also a sense in which for each division algebra there is a normal form and am

unimodular form:

Reals O(n) ≈ S0 × S3 × S7... SO(n) ≈ S3 × S7...

R Generic Orientable, w1 = 0

Complex U(n) ≈ S1 × S3 × S5... SU(n) ≈ S3 × S5...

C Kähler Calabi− Y au, c1 = 0

Quaternions Sp(n) · Sp(1) ≈ S3 × S3 × S7... Sp(n) ≈ S3 × S7...

H Quaternionic Hyperkähler

Octonions Spin(7) ≈ S3 × S7 × S11 G2 ≈ S3 × S11

O dim 8 dim 7

(13)

NOTES 1). Today there are compact examples of all cases of special holonomy mani-
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folds: big advances were made recently by Joyce [2], Salamon and others.

2). In dim 4, a remarkable case is the K3 manifold or Kummer surface (the name is

due to A. Weil, 1953, for Kummer, Kähler and Kodaira). It is the only CY manifold in

dimension four; it can be easily constructed (R4 → T 4 → orbifold → blow up; [4] ).

For a long time was the paradigmatic example of SU(n = 2) special holonomy.

3). Notice a generic complex n-manifold would have SO(2n) holonomy inspite the

structure group being U(n)!

4). The Calabi conjecture, proved by Yau, indicates the relation of the Ricci form

with the Kähler structure.

5). In the 80s a big industry, led by Phil Candelas in Austin ( [5]), was to find CY3

manifolds for string compactifications. Mirror symmetry was discovered in this context;

see later.

6). Except G2, all special holonomy spaces are even dimensional.

7). One can show that G2 and Spin(7) holonomies are Ricci flat.

8). Although special holonomy representations are irreducible in the vector case, there

might be p-forms which split under the holonomy subgroup. For example, for G2, 3-forms

split as 35 = 1+7+27; the 7 irrep is justly the octonion product, and the 1 the invariant

3-form. As for Spin(7), a self-4-form splits as 35 = 1 + 7 + 27: it includes the invariant

4-form.

3 Cases in Physics: dimensions 6, 7 and 8

In 1983, just after the first studies in eleven dimensional supergravity (11-dim SuGra),

Duff and Pope realized that it is the holonomy of the compactified space which deter-

mines the number of surviving Susy symmetries down to 4 dimensions. For spinor fields,

as S7 = Spin(7)/G2, 7-manifolds with exceptional G2 holonomy would have a surviving

spinor, hence N = 1 Susy down to 4-D. But after the String Revolution, 1984/85, the

descent 10→ 4 took over, and the favourite spaces were CY 3-folds: the heterotic string

has N = 1 supersymmetry in 10−dim., which means N = 4 down to earth; but it will

be 1/4 of these after CY3 compactation: the generic SO(6) holonomy of any (orientable)

dim-6 manifold would become SU(4) = Spin(6) after imposing a (necessary) spin struc-
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ture, and then if we want one spinor to survive the group descends to SU(3). The 6-dim

manifold has to be orientable, spin, complex, Kähler and Calabi-Yau.

With the advent of M -Theory (1995), P. Townsend resurrected the idea of 7-dim

manifolds with G2 holonomy. One can go even further to Spin(7), the largest exceptional

holonomy group, by considering for example compactifications to 3-dim spaces (which

seems natural; for example, the series of noncompact symmetries of supergravity includes

E7 in 4 dimensions, which is claiming for E8 in three, which is of course the case). An-

other reason is F -Theory, which works in 12 dimensions with (2, 10) signature, and where

Spin(7) (perhaps in a nonpositive form) fits well.

Are such beasts as CY3 spaces in abundance? Yes, you can produce them in assembly

line, to the point of studying their Hodge numbers statistically! [5]. Another interesting

phenomenological constraint in the “old-fashion” 10→ 4 descent, was the Euler number

χ : it is related, via zeroes of the Dirac operator, to the number of generations, which is

| χ |/2.

As for the extension to F -Theory, we refer the reader to [7]. Besides some attempt to

state the particle content, the theory is rather stagnant at this point (as is M -Theory in

general). For a modern study of special holonomies with Lorentzian metrics, see [8].

4 Relation with Mirror Symmetry

Complex manifolds have a refinement on Betti numbers, as they separate in holo- or

antiholomorphic. The full expression of them is called the the Hodge diamond. For the

previous K3 manifold it is

h0,0 = 1

h1,0 = 0 h0,1 = 0

h2,0 = 1 h1,1 = 20 h0,2 = 1

h2,1 = 0 h1,2 = 0

h2,2 = 1

(14)

with bettis = 1, 0, 22, 0, 1. For Calabi-Yau 3-folds the diamond is bigger, but still

symmetric. A mirror pair X, Y of CY3 are two such spaces with

h1,1[X] and h2,1[X] equal h1,2[Y ] and h1,1[Y ] (15)
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There is no clear reason for this duality, but just another more example of a physics

discovery on pure mathematics. These two numbers measure very different invariants, so

mirror symmetry came up as a big surprise to mathematicians, when many conjectures

by physicists seemed to be true.

Indeed, several of these conjectures were true. It is also true that string theory ”glosses

over” orbifold singularities (i.e. quotienting manifolds by fix-point-action discrete groups),

and the associated (quantum) conformal field theories make perfect sense.

We shall only comment on the interpretation of this mirror symmetry by M. Kont-

sevich [6]. For him, the crux of the matter is a trade between complex and symplectic

geometry. In fact, complex structures preserve an imaginary unit, J ∈ End V , J2 = −1,

whereas a symplectic manifold enjoys a 2-form ω, whose matrix form is very similar to

J !. In both cases, there is an extra condition:

In the complex case, N(J) = 0, where N stands for the Nihenhuis (obstruction); that

makes up a complex, not only almost-complex, manifold (the Newlander-Nirenberg theo-

rem). In the symplectic case, the 2-form is closed, or, alternatively, the (inverse) Poisson

bracket satisfies Jacobi´s identity. Their isotropy groups, GL(n,C) and Sp(n,R) respec-

tively, are of the same homotopy type, namely the homotopy of the intersection, U(n).

In any case, the relation hidden in Mirror Symmetry is an intrincate one. In the words

of Dijkgraaf: ”Mirror symmetry is the claim that the generating function for certian in-

variants of the symplectic structures on the 2-Torus S1 × S1 is a ”nice” function in the

moduli space of complex structures in the same”: the 2-Torus is a self-dual manifold for

Mirror Symmetry (MS).

The general case of MS is best understood in terms of toric varieties, which generalize

projective spaces.

The main lesson of MS for physics seems to be this: certain topology changes (some-

times called “flops”) are compatible with the underlined string theory. That probably

means that the complex-geometric description of strings is too fine... Perhaps it hints

towards a new type of duality.
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