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Departamento de F́ısica Teórica, Facultad de F́ısica and IFIC

(Centro Mixto Universidad de Valencia–CSIC),

E–46100 Burjassot (Valencia), Spain

e-mail: j.a.de.azcarraga@ific.uv.es
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Abstract

After reviewing the procedures that allow us to obtain new Lie algebras or su-

peralgebras from given ones (contractions, deformations and extensions), we briefly

describe a recently introduced one, the expansion method. Then we consider cer-

tain D = 11 enlarged supersymmetry algebras, and show how these may be used to

give a gauge structure to D = 11 supergravity. The relation of these algebras to an

expansion of the osp(1|32) algebra is then exhibited.

1. Lie algebras and superalgebras from given ones

There are three well known ways of obtaining new Lie algebras and superalgebras from

given ones (we consider here only finite dimensional algebras):

(a) Contractions

This is a subject to which our honoured friend Peṕın has himself contributed [1].

In their simplest İnönü-Wigner (IW) form [2] (see also [3] for early references on the

subject), the contraction of G with respect to a subalgebra L0 ⊂ G is performed by

rescaling the generators of the coset G/L0, and then by taking a singular limit for the

rescaling parameter. This procedure may be extended to generalized IW contractions in

the sense of Weimar-Woods (W-W) [4]. These are defined when G can be split in a sum

of n+ 1 subspaces

G = V0 ⊕ V1 ⊕ . . .⊕ Vn =
n⊕

s=0

Vs , (1)

such that the following conditions are satisfied:

cks
ipjq

= 0 if s > p+ q i.e. [Vp, Vq] ⊂
⊕

s

Vs, s ≤ p+ q , (2)
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where ip = 1, · · · , dimVp labels the generators of G in Vp, and ckij (i, j = 1 . . . dimG)

are the structure constants of G. The contracted algebra Gc is obtained after the group

parameters are rescaled, gip 7→ λpgip (p = 0, . . . , n), and a singular limit for λ is taken.

Gc has the same dimension as G; the case n = 1 obviously reproduces the simple IW

contraction since V0 = L0 is a subalgebra.

Well known examples of contractions relevant in physics include the Galilei algebra as

an IW contraction of the Poincaré algebra, the Poincaré algebra as a contraction of the de

Sitter algebras, or the characterization of the M-theory superalgebra [5] as a contraction

(if one ignores the Lorentz part) of osp(1|32).

(b) Deformations

From a physical point of view, Lie algebra deformations [6] can be regarded as a

process inverse to contractions1 (see also [4]). Mathematically, a deformation Gd of a Lie

algebra G is a Lie algebra ‘close’, but not isomorphic, to G. As in the case of Gc above,

Gd has the same dimension as G.

Deformations are performed by modifying the r.h.s. of the original commutators by

adding new terms that depend on a parameter t in the form

[X, Y ]t = [X, Y ]0 +
∞∑
i=1

ωi(X, Y )ti , X, Y ∈ G , ωi(X, Y ) ∈ G . (3)

Checking the Jacobi identities up to O(t2), it is seen that the expression satisfied by

ω1 characterizes it as a two-cocycle. Thus, the second Lie algebra cohomology group

H2(G,G) of G with coefficients in the Lie algebra G itself is the group of infinitesimal

deformations of G and H2(G,G) = 0 is a sufficient condition for rigidity [6]. In this case,

G is rigid or stable under infinitesimal deformations; any attempt to deform it yields an

isomorphic algebra. The problem of finite deformations depends on the integrability of

the infinitesimal deformation; the obstruction is governed by H3(G,G) which needs being

trivial.

As is known, the Poincaré algebra may be seen as a deformation of the Galilei one,

a fact that may be looked at as a group theoretical prediction of relativity; so(4, 1) and

so(3, 2) are stabilizations of the Poincaré algebra; the orthosymplectic algebra osp(1|4)

is a deformation of the N = 1, D = 4 superPoincaré algebra [8]. Nontrivial central

extensions of Lie algebras may also be considered as deformations or partial stabilizations

of trivial (direct sum) extensions.

(c) Extensions (of a Lie algebra or superalgebra by another one)

1We note that, in early literature, a process inverse to the contraction one was occasionally called

‘expansion’ (see [7]). However, this terminology is no longer used and, besides, the term expansion has

found a more suitable and intuitive meaning below.
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In contrast with the procedures (a) and (b) above, the initial data of the extension

problem includes two Lie algebras G and A. A Lie algebra G̃ is an extension of G by A
if A is an ideal of G̃ and G̃/A = G. As a result, dim G̃ = dimG + dimA, so that the

extension process is also ‘dimension preserving’.

To obtain an extension G̃ of G by A it is necessary to specify first an action ρ of G
on A i.e., a Lie algebra homomorphism ρ : G −→ EndA. The possible extensions G̃
for a given set (G,A, ρ) and the possible obstructions to the extension process are, again,

governed by cohomology (see e.g. [9] for full details and references).

Two examples of extensions in physics are the centrally extended Galilei algebra,

which is relevant in non-relativistic quantum mechanics (see [10] in this respect to see

how contractions may generate cohomology) or the M-theory superalgebra that, without

its Lorentz automorphisms part, is the maximal central extension of the abelian D = 11

supertranslations algebra [11, 5, 12, 13].

To the above procedures, we would like to add a new one,

(d) Expansions of Lie algebras and superalgebras

Under a different name, Lie algebra expansions were first used in [14], and then the

method was studied in general in [15, 16]. The idea is to consider the Maurer-Cartan

(MC) equations of the initial Lie algebra G satisfied by the invariant MC forms on the

group manifold, and then to perform a rescaling by a parameter λ of some of the group

coordinates gi, i = 1, . . . , dimG. Then, the MC one-forms ωi(g, λ) are expanded as power

series in λ. Inserting these expansions (polynomials in λ) in the original MC equations

for G, one obtains a set of equations that have to be satisfied, each one corresponding to

a power of λ. The problem is how to cut the series expansions of the different ωi’s in such

a way that the resulting set of MC-like equations be closed under d, so that it defines the

MC equations of a new, expanded Lie algebra. We shall not enumerate all the possibilities

here and refer to [15] instead for details. Let us divide the {ωi} MC forms into n+ 1 sets

{ωip} associated with the subspaces Vp in (1). Under the conditions (2) for generalized

IW contractions, and with the corresponding rescaling, the forms ωip corresponding to

each Vp in (1) have expansions of the form [15]

ωip =
∞∑

s=p

ωip,sλs , i.e. ωip(λ) = λpωip,p + λp+1ωip,p+1 + . . . . (4)

If one demands that the maximum power in the expansion of the forms {ωip} in the p–th

subspace is Np ≥ p, the d-closure condition requires that

Nq+1 = Nq or Nq+1 = Nq + 1 (q = 0, 1, . . . , n− 1) . (5)

The new Lie algebras, generated by the MC forms

{ωi0,0, ωi0,1,N0+1. . . , ωi0,N0 ; ωi1,1, N1. . ., ωi1,N1 ; . . . ; ωin,n,Nn−n+1. . . , ωin,Nn} , (6)
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are labelled G(N0, N1, . . . , Nn) and define expansions of the original Lie algebra G. The

case Np = p , G(0, 1, . . . , n), coincides with the generalized W-W contraction for which

dimG(0, 1, . . . , n) = dimG; thus, the generalized contraction of an algebra satisfying

(2) is a particular expansion. In all other cases the dimension of the expanded algebra

G(N0, N1, . . . , Nn) is larger than G [specifically, dimG(N0, . . . , Nn) =
∑n

p=0(Np − p +

1) dimVp when all forms in (6) are present], so that in general the expansion process is

not dimension preserving (hence its name).

Other interesting cases are those of Lie superalgebras with splittings satisfying the

W-W conditions e.g., of the form G = V0 ⊕ V1 or G = V0 ⊕ V1 ⊕ V2 and such that V0

or V0 ⊕ V2 contain all the bosonic generators and V1 contains the fermionic ones. Then,

the expansions of the one-forms of V1 (V0 and V2) only contain odd (even) powers of λ.

The consistency conditions for the existence of G(N0, N1)-type expanded superalgebras

require that

N0 = N1 − 1 or N0 = N1 + 1 , (7)

and, for the G(N0, N1, N2) case, that one of the three following possibilities be satisfied:

N0 = N1 + 1 = N2 , N0 = N1 − 1 = N2 , N0 = N1 − 1 = N2 − 2 . (8)

2. On the gauge structure of Cremmer-Julia-Scherk D=11 supergravity

We are interested now in a physical problem, the possible underlying gauge symme-

try of D = 11 CJS supergravity as a way of understanding the symmetry structure of

M-theory. The problem of the hidden or underlying geometry of D = 11 supergrav-

ity was raised already in the CJS pioneering paper [17], where the possible relevance

of OSp(1|32) was suggested. It was specially considered by D’Auria and Fré [18], who

looked at the problem as a search for a composite structure of its three-form field A3(x).

Indeed, while two of the supergravity fields (the graviton ea = dxµea
µ(x) and the grav-

itino ψα = dxµψα
µ(x)) are given by one-form spacetime fields and thus can be considered,

together with the spin connection (ωab = dxµωab
µ (x)), as gauge fields for the standard

superPoincaré group, the additional Aµ1µ2µ3(x) abelian gauge field in D = 11 CJS super-

gravity is not associated with any superPoincaré algebra generator or MC one-form since

it rather corresponds to a three-form A3. However, one may ask whether it is possible

to introduce a set of additional fields associated to MC forms such that they, together

with ea and ψα, can be used to express A3 in terms of one-forms. If so, the ‘old’ ea, ψα

and the ‘new’ one-form fields may be considered as gauge fields of a larger supersymmetry

group, with A3 expressed in terms of them. This is what is meant by the underlying gauge

group structure of CJS supergravity: it is hidden when the standard D = 11 supergravity

multiplet is considered, and manifest when A3 becomes a composite of one-form gauge

fields corresponding to the parameters of a larger superspace group, in which case all CJS
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supergravity fields can be treated as one-form gauge fields associated with the coordinates

of this supergroup. It turns out that the solution of this problem is equivalent to triv-

ializing a standard D = 11 supersymmetry algebra E(11|32) cohomology four-cocycle ω4

(structurally equivalent to dA3) on a larger algebra Ẽ corresponding to a larger superspace

group Σ̃.

It may be shown [19] that there is a whole one-parameter family of enlarged super-

space algebras Ẽ(s), s 6= 0, that trivialize the Chevalley-Eilenberg E(11|32)-four-cocycle

determined by the four-form ω4 (dA3). Hence (and adding the D = 11 Lorentz SO(1, 10)

group), this means that the underlying gauge supergroup of D = 11 supergravity can be

described by any representative of a one-parameter family of supergroups, Σ̃(s)×⊃ SO(1, 10)

for s 6= 0. These may be seen as deformations of Σ̃(0)×⊃ SO(1, 10) ⊂ Σ̃(0)×⊃ Sp(32). Thus

our conclusion is that the underlying gauge group structure of D = 11 supergravity is de-

termined by a one-parametric nontrivial deformation of Σ̃(0)×⊃ SO(1, 10) ⊂ Σ̃(0)×⊃ Sp(32)

(two specific cases of the Ẽ(s) family, Ẽ(3/2) and Ẽ(−1), were found in [18]). The sin-

gularity of Ẽ(0) looks reasonable; the corresponding Σ̃(0) enlarged superspace group is

special because the Lorentz SO(1, 10) automorphism group of Σ̃(s) (s 6= 0) is enhanced

to Sp(32) for Σ̃(0). This fact allows us to clarify the mentioned connetion of the un-

derlying gauge supergroups with OSp(1|32). It is seen [19] that Σ̃(0)×⊃ SO(1, 10) is an

expansion OSp(1|32), Σ̃(0)×⊃ SO(1, 10) ≈ OSp(1|32)(2, 3, 2). It may also be shown that

Σ̃(0)×⊃ Sp(32) is the expansion OSp(1|32)(2, 3).

The enlarged supersymmetry algebras Ẽ(s) are central extensions of the M-algebra

(of generators Pa, Qα, Zab, Za1...a5) by an additional fermionic generator Q′
α. Trivializ-

ing the E(11|32) Lie superalgebra cohomology four-cocycle ω4 on the larger supersym-

metry algebra Ẽ(s), so that ω4 = dω̃3, is tantamount to finding a composite struc-

ture for the three-form field A3 of CJS supergravity in terms of one-form gauge fields,

A3 = A3(e
a , ψα ; Ba1a2 , Ba1...a5 , ηα ) associated with the MC forms of Ẽ(11|32). The com-

positeness of A3 is given by the same equation that provides the ω̃3 trivialization ω4 = dω̃3

of the Chevalley-Eilenberg ω4 cocycle on E(11|32) (where now ω̃3 is Σ̃(s)-invariant; this is

why ω4 becomes a trivial cocycle for the enlarged Ẽ(s), s 6= 0; see e.g. [9]). In the com-

posite A3 expression for D = 11 supergravity, the Ẽ(s) MC forms are replaced by ‘soft’

one-forms -spacetime one-form fields- obeying a free differential algebra with curvatures

rather than the MC equations of a superalgebra (which imply zero curvatures).

The presence of the additional one-form gauge fields associated with the new generators

in ˜E(s) might be expected. The field Ba1...a5 , associated to the Za1...a5 M-algebra generator,

is needed [20] for a coupling to BPS preons, the hypothetical basic constituents of M-

theory [21]. In a more conventional perspective, one can notice that the generators Za1a2

and Za1...a5 can be treated as topological charges [12] of the M2 and M5 superbranes. In

the standard CJS supergravity the M2-brane solution carries a charge of the three-form
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gauge field A3 and thus there should have a relation with the charge Za1a2 and its gauge

field Ba1a2 . The analysis of the rôle of the fermionic central charge Q′
α and its gauge field

ηα in this perspective requires more care, although such a fermionic ‘central’ charge is

also present in the Green algebra [22] (see also [23, 24, 13] and references therein).

We would like to conclude with a few comments:

• The supergroup manifolds Σ̃(s) are enlarged superspaces. The fact that all the space-

time fields appearing in the above description of CJS supergravity may be associated with

the various coordinates of Σ̃(s) is suggestive of an enlarged superspace variables/spacetime

fields correspondence principle for D = 11 CJS supergravity.

• This is not the only case where this happens. It may be seen [13] that one may

introduce an enlarged superspace variables/worldvolume fields correspondence principle

for superbranes, by which one associates all worldvolume fields, including the Born-Infeld

(BI) ones [13, 25] in the various D-brane actions, to fields corresponding to forms defined

on suitably enlarged superspaces Σ̃ (the actual worldvolume fields are the pull-backs of

these forms to the worldvolume of the extended supersymmetric object). The worldvol-

ume BI fields, as the spacetime A3 field of CJS supergravity above, become composite

fields. Moreover, the Chevalley-Eilenberg Lie algebra cohomology analysis [26, 13, 27]

of the Wess-Zumino terms of many different superbrane actions determines the possible

ones and how the ordinary supersymmetry algebra has to be extended (see also [25, 28]).

This again suggests an enlarged superspace variables/worldvolume fields correspondence.

• Thus, could there be an enlarged superspace variables/fields correspondence principle

in M-theory?

This report is based on a long standing collaboration with I. Bandos, J.M. Izquierdo and

with M. Picón and O. Varela, which is acknowledged with pleasure.
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