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Abstract

The unperturbed Kepler problem has been investigated in great detail, and

solved in the light of very different formulations and methods. As expected and

well known, the conclusion is drawn that the orbit equation corresponds to a conic

section having a focus at the force centre. In this Note, some of those methods

are confronted with a class of somewhat more general force models, namely, the

so–called quasi–Keplerian systems and some of their possible generalizations.
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1 The Why of This Paper

In the present paper we are specially concerned with the analytical treatment of cer-

tain (perhaps very simple) conservative, central–force fields –or, equivalently, the corre-

sponding potentials– related to mechanical/dynamical systems which are very close to

the standard Keplerian systems: roughly speaking, they quantitatively differ form the

conventional, pure Kepler problem by the effect of perturbations of a small or moderate

amount, in such a way that the geometrical and dynamical Keplerian aesthetics and pic-

ture characterizing the unperturbed, gravitational two–body motion are slightly distorted.

The type of systems of interest has been (and is still) important for the analytical and

qualitative investigation of phenomena whose formulation and description can be modelled

or approximated by means of adequate perturbations superimposed on the inverse–square–

attraction law, specially within the framework of Analytical Mechanics and –in many

particular cases– Celestial Mechanics and Astrodynamics.

The simplest, gravitational two–body problem (in the absence of any perturbation)

has been thoroughly and extensively studied throughout several centuries, and a wealth of
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information can be found in the literature dealing with this subject: a plethora of general

methods of different nature, special tricks and ad hoc techniques has been applied (or

even deliberately devised) to formulate, reduce and solve this problem.

We are interested in studying the performance of some of these methods when con-

fronted with certain perturbed Keplerian systems. In particular, we restrict ourselves to the

consideration of some simple cases of perturbations which are represented by central–force

fields with a special functional dependence: powers of the separation distance between the

moving bodies, since (apart from physical considerations concerning the accuracy and

practical usefulness of these models) special choices for the value of the exponent at issue

will allow us to recognize –from a mathematical point of view– or establish some formal

analogies with the conventional Keplerian reference solution and approach.

For these reasons, we concentrate on central–force laws of the type r−n , more general

than the inverse–square force law and the one giving rise to the so–called quasi–Keplerian

systems (following the terminology of Deprit 1981, §4) and some of their possible variants

and generalizations (Floŕıa 1993).

As far as we know (and we have not found any deep reason for this fact, apart from

some technical intricacies of a mathematical nature), many methods usually considered to

reduce and solve the Kepler problem seem not to have been applied to perturbed Keple-

rian systems. We find it interesting to take this step, at least in order to check and reveal

the possibilities and limitations of these methods when the force model becomes some-

what more general (and involved) than the inverse-square gravitational attraction. This

approach and way of proceeding might be helpful while trying to detect and characterize

cases in which a certain method could reveal some favourable performance.

Perturbations disturb motion, distort the reference solution obtained with the help of

some technique. But they also damage (or, perhaps, even destroy) our ability to describe

and interpret phenomena. Perturbations represent a challenge for our ability to describe

and understand processes, they challenge our methods and techniques, and for this reason

we are forced to modify the available methods, to adapt them to new problems . . . or to

create new strategies to attack and overcome the difficulties raised by the incorporation

of perturbations into our solvable (and solved) model problems.

Many other methods and approaches can be found in the literature. At the present

level, our study is not exhaustive: in this Note we do not aim at the most perfect and final

completeness and generality of our conclusions. We just draw attention to the fact that

the potentiality of the said (and other) methods seems not to have been fully exploited

yet. Other techniques, combined with other force models, might have been included in

the study. We intend to complete these preliminary comments with some future results

of our analysis of different methods and dynamical problems.

Apart from their possible interest in research, these comments might also become
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useful for teaching purposes, as special topics in subjects such as Differential Equations,

Classical Mechanics, Celestial Mechanics and Astrodynamics.

2 On Some Previous Studies on Quasi–Keplerian (and Related) Systems

There exist some previous analytical treatments of quasi–Keplerian systems in the

literature. Some of them are based on the use of reducing canonical transformations

within the framework of Hamiltonian Celestial Mechanics.

Deprit (1981, §4) considered quasi–Delaunay transformations and torsions for the

simplest model of quasi–Keplerian systems. Deprit himself (1981, §7, §9) resorted to

torsion–type transformations to study and solve the generalized quasi–Keplerian Hamil-

tonian represented by his radial intermediary for the Main Problem in Artificial Satellite

Theory.

Floŕıa (1994a) generalized Deprit’s concept of quasi–Delaunay mappings, applied this

kind of transformations to obtain generalized Delaunay–like canonical orbital elements,

and reduced and solved the chain of radial intermediaries defined by Deprit (1981).

Other sets of generalized canonical orbital elements (of the Jacobi and of the Delaunay–

Scheifele or Delaunay–Similar type), and the corresponding canonical solutions to gener-

alized quasi–Keplerian Hamiltonians, were proposed by Floŕıa (1993, 1994b).

Another approach has also been taken: Convert the classical equations of motion (de-

rived from Newton’s laws, or obtained in a more sophisticated Lagrangian or Hamiltonian

formulation of the problem) into harmonic oscillator equations. Unperturbed, spatial Ke-

plerian systems are exactly reduced to uncoupled and unperturbed harmonic oscillators

(the only forcing term –if any– in one of the equations is just a constant term).

In this approach, one can make use of regularization and linearization techniques,

by combining certain transformations introducing redundant dependent variables and

reparametrizations of the motion with the help of an adequate fictitious time defined via

a Sundman–type differential transformation . For instance, the results due to Ferrándiz

& Fernández–Ferreirós (1991) concerning Deprit–type radial intermediaries, in terms of

the so–called Burdet–Ferrándiz focal type variables (Ferrándiz 1988), were also analyzed

in Aparicio & Floŕıa (1996).

Deprit, Elipe & Ferrer (1994, §4) considered canonical and weakly canonical exten-

sions of the point–transformation introducing focal variables, and applied them to the

linearization of Keplerian systems. Aparicio & Floŕıa (1998, 2000) have characterized

types of perturbation potentials allowing exact linearization in terms of focal variables

(whose coordinate segment can be interpreted as a set of homogeneous Cartesian coordi-

nates in a projective space), and have presented the set of four second–order differential

equations governing the resulting coupled and perturbed oscillators. As special instances,
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generalized quasi–Keplerian systems with potentials of Deprit type belong to the class of

linearizable perturbations by means of the focal method.

3 Some Notations and Definitions

• Just to fix terminology and notations, let us consider the expression for the Keplerian

potential, arising from the well–known Newton’s Gravitation-Law, under the form:

Vκ(r) = − K
r
, where K is a positive constant =⇒ Keplerian systems .

Here r stands for the norm of the two–body relative position vector, and K is the Kep-

lerian parameter (or gravitational coupling parameter) of the system.

On such systems, we shall superimpose the perturbing effects due to certain particular

types of potentials.

• Quasi–Keplerian system (Deprit 1981, §4) are one-degree-of-freedom systems governed

by central force laws derived from potentials of the form

V2(r) = Vκ + V2(r) = − K
r

+
D
r2

,

where D might be either an absolute constant (e.g., Manev’s model) or some function of

conserved quantities (e.g., Deprit–type radial intermediaries in Artificial Satellite Theory,

as presented in Deprit 1981, §7 and §9).

This simple version of quasi–Keplerian systems includes the so–called Manev potential

(Maneff, 1930, Bertrand, 1921), a model of gravitational potential that constitutes a

nonrelativistic modification of Newton’s Law of Gravitation; it has been used to accurately

account for the motion of the apse line (i.e., the secular motion of the pericentre) of some

celestial bodies, at least within the Solar System (e.g. the advance of the perihelion of

the inner planets, or the motion of the perigee of the Moon), although Newton himself

resorted to this model in his “Principia” (Deprit 1981, §4 and §9; Valluri, Wilson &

Harper, 1997). Clairaut (see Aoki 1992) also used this correction to Newton’s Universal

Law.

• Generalized quasi-Keplerian systems (Floŕıa 1993, 1994b) are governed by potentials

containing terms proportional to r−j , j = 0, 1, 2:

V = Vκ + V0 + V1 + V2 , Vj = J /rj ,

J being an absolute constant or some function of conserved quantities. Notice the

mnemonic use of symbol J and the corresponding exponent j for the power of the recipro-

cal of the mutual distance. Formulated in adequate variables, the structure and functional

dependence of these potentials is compatible with a Keplerian–like description of motion,
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and solutions can be proposed in terms of circular (say, elementary trigonometric) func-

tions. Other choices for the values of the exponents lead to expressions involving elliptic

integrals and functions (that is, special functions are required in the representation).

• As a general notation, we shall also write

Vn(r) = Vκ + Vn(r) = − K
r

+
N
rn

,

where, as expected, this coefficient N can represent either an absolute (numerical) con-

stant or some function of first integrals of the system.

Remember the mnemonic rule: N ←→ power n .

Notice also that several perturbing terms of the Vn type can be added up all together

and assembled to constitute a ”compound” perturbing potential, which is then superim-

posed on the Keplerian term Vκ. In our subsequent developments, in order to study the

joint effects of these perturbations, we can decompose the result and simply focus on the

individual terms generated by each one of the Vn involved in the perturbation: this way

of proceeding is justified by the linearity of the mathematical operations required at each

step.

Many geometrical and dynamical properties of the standard Kepler problem also hold

in the case of these types of perturbed Keplerian systems.

For future use throughout the rest of the paper, we introduce some additional nota-

tions. We are interested in the problem of motion of a particle in an attractive, central–

force field. The motion is planar, and one may assume that the force centre is located at

the origin (0, 0) of the coordinate system chosen in that plane.

• Let (x, y) denote the Cartesian coordinates of the moving particle,

• r =
√
x2 + y2 stands for the (Euclidean) instantaneous distance from the origin.

For the motion of the particle under an inverse–square central attractive force (that

is, force law for the Kepler problem) we have

Vκ(r) = − K
r
, ∇(x,y)Vκ =

K

r2

(

x

r
,
y

r

)

=
K

r2
r̂ =

K

r3
r ,

where r̂ = r/r denotes the unit vector along the radial direction. Newton’s equations of

motion read

ẍ = − K
r3
x = Φx , ÿ = − K

r3
y = Φ y ,

that is

r̈ = − K
r3

r = Φ r , with Φ = Φ (r) = − K
r3
,

The problem possesses the integral of the angular-momentum-conservation:

d

dt
(x ẏ − y ẋ) = 0 =⇒ x ẏ − y ẋ = A = const.
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With these general notations, we shall review some methods to deal with the Ke-

pler problem, and consider how they behave when applied to some perturbed Keplerian

systems.

4 On an Approach due to Monsky

We sketch the procedure according to which Monsky (2004) solves the Kepler problem.

In the preceding notations, the combination of terms xẏ−yẋ is just the Wronskian W [x, y]

of x and y, two solutions to the second–order equation ϕ̈ = Φ(t)ϕ, where (during the

motion) Φ is the function of time −K/r3. One must distinguish between two cases:

• A = W [x, y] = 0: rectilinear motion through the origin (0, 0).

• A 6= 0: Since

r ṙ = x ẋ + y ẏ , (r ṙ)2 +A2 =
(

x2 + y2
) (

ẋ2 + ẏ2
)

,

ẋ2 + ẏ2 = ṙ2 +
A2

r2
, r r̈ = − K

r
+
A2

r2
,

function r is seen to satisfy the ODE

r̈ = − K

r3

(

r − A
2

K

)

.

Transform r −→ u by means of

u = r − A
2

K
=⇒ ü = r̈ =

K

r3
u .

Then u, like x and y, is a solution of ϕ̈ = Φ ϕ . Given that A = W [x, y] 6= 0, functions

x and y are a basis of the solution space of this equation, whence u = r − (A2/K) is a

linear combination of x and y:

r −
(

A2/K
)

= C1 x + C2 y .

Rotating about the origin, one may assume that C2 = 0 , and r takes the form (for some

constant D)

r = Dx +
(

A2/K
)

.

When D = 0 , this equation corresponds to a circumference.

If D 6= 0 , this is the focus-directrix equation of a (branch of) a conic section with a focus

at (0, 0) and directrix x = −A2/DK .

If we follow this procedure in the general case when

Vn(r) = Vκ + Vn(r) = − K
r

+
N
rn

,

∇(x,y)Vn = − nN
rn+1

(

x

r
,
y

r

)

= − nN
rn+1

r̂ .
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the equations of motion read

ẍ =
[

− K
r3

+
nN
rn+2

]

x = Φn x , ÿ =
[

− K
r3

+
nN
rn+2

]

y = Φn y ;

r̈ =
[

− K
r3

+
nN
rn+2

]

r = Φn r , where Φn = Φn(r) = − K
r3

+
nN
rn+2

;

and then

xẏ − yẋ = A = const. (central field) , r ṙ = x ẋ + y ẏ ,

(r ṙ)2 +A2 =
(

x2 + y2
) (

ẋ2 + ẏ2
)

, ẋ2 + ẏ2 = ṙ2 +
A2

r2
,

r r̈ = r2 Φn +
A2

r2
=⇒ r̈ = rΦn +

A2

r3
.

We can also rewrite

r r̈ =
A2

r2
+ r2

[

− K

r3
+

nN
rn+2

]

=
A2

r2
+
[

− K
r

+
nN
rn

]

=⇒ r̈ =
A2

r3
− K

r2
+

nN
rn+1

.

And, finally,

r̈ = − K
r3

[

r − A
2

K
− nN

K

1

rn−2

]

.

From this result we can analyze and discuss some interesting cases, according to values

of exponent n:

• n = 0: We recover the conventional “Keplerian” description, and the expression in

brackets reduces to r− (A2/K) . This holds true for any potential that differs from Vκ by

an additive constant N = N /r0 , which is not significant when derivatives of the potential

are considered. This fact is consistent with the arbitrariness in the choice of the reference

level for the potential energy.

• n = 1: The expression in brackets becomes r { 1 − (N /K)} − (A2/K); this case would

correspond to a fictitious, auxiliary “Keplerian” system with a modified gravitational

coupling parameter K −N .

• n = 2: The quantity in brackets reads r − [ (A2 + 2D) /K ], which would be related to

a fictitious “Keplerian” motion with a modified angular momentum.

These modifications in the original (unperturbed) Keplerian solution account for the

variations of the orbit under the effect of the perturbing potential.

These conclusions are in full agreement with our results concerning generalized quasi–

Keplerian systems compatible with the geometrical and dynamical “Keplerian–like” pic-

ture of motion, obtained in terms of generalized canonical elements of a Jacobi type (Floŕıa

1993) and of a Delaunay–Similar type (Floŕıa 1994b). Thanks to the use of universal func-

tions, generalized Delaunay–Similar canonical orbital elements, uniformly applicable to
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any kind of (not necessarily bound) orbital motion, were derived on the basis of generalized

quasi–Keplerian Hamiltonians (Floŕıa 1999).

5 A Formulation in Complex Variables

Gauthier (2005) and Weinstock (1992, §IV) have obtained their solutions to the unper-

turbed, gravitational two–body problem after formulating it in terms of complex variables.

We now review the approach proposed by Weinstock.

Consider planar motion in the Oxy plane of coordinates, and opt for a formulation

in complex variables in the z–plane, with the usual choice: x the real axis, and y the

imaginary axis. Then we have the notations and conventions

• Complex position: z ≡ x+ iy = ‖z‖ exp(iφ) ,

• polar angle (from the x-axis): φ ,

• distance from the origin (centre of force): ‖z‖ = r =
√
x2 + y2 .

• conjugate complex: z∗ = x− iy , from which ‖z‖2 = ‖z∗‖2 = z z∗ = x2 + y2 = r2 ,

• complex velocity: ż = dz/dt .

Then Newton’s equation of motion for the Kepler motion reads

z̈ = − K z

‖z‖3 = − K z

z z∗‖z‖ = − K

z∗‖z‖ .

Equivalently

( z̈ )∗ =

[

− K

z∗‖z‖

]

∗

=⇒ z̈ ∗ = − K

z‖z‖ ,

and the constancy of angular momentum takes on the form:

d

dt
(żz∗ − zż∗) = 0 ⇒ (żz∗ − zż∗) = 2 iA ,

the integration constant A being real, because zż∗ is the conjugate complex of żz∗ . In

fact,

A = x ẏ − y ẋ = Im(żz∗) , and 2 iA = (z∗)2 d

dt

(

z

z∗

)

.

Some helpful auxiliary formulae are:

‖z‖
z∗

=
‖z‖z
z∗z

=
‖z‖z
‖z‖2 =

z

‖z‖ ,
z

z∗
=

z

z∗
z

z
=

z2

‖z‖2 =

(

z

‖z‖

)2

⇒ 2 iA = 2 z∗ ‖z‖ d
dt

(

z

‖z‖

)

=⇒ 2 iA z̈ = − 2 z∗ ‖z‖ d
dt

(

z

‖z‖

)

K

‖z‖z∗

⇒ iA z̈ = −K d

dt

(

z

‖z‖

)

=⇒ d

dt

(

z

‖z‖ +
iA
K

ż

)

= 0 ,

which is integrated (in terms of real integration constants) to yield

z

‖z‖ +
iA
K

ż = A + i B =⇒ z∗

‖z‖ −
iA
K

ż∗ = A − i B .
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From these expressions one obtains

2 ‖z‖ +
iA
K

[ żz∗ − zż∗ ] = A(z + z∗) − i B(z − z∗) .

After restoring the original Cartesian variables,

√

x2 + y2 − A
2

K
= Ax + By ,

which is the equation of a conic section with a focus at the coordinate origin (coinciding

with the force centre).

In the general case when

Vn(r) = Vκ + Vn(r) = − K
r

+
N
rn

,

∇(x,y)Vn = − nN
rn+1

(

x

r
,
y

r

)

,

the equations of motion

ẍ = Φn x , ÿ = Φn y ,

are rewritten in the form

z̈ =

[

− K

‖z‖3 +
nN
‖z‖n+2

]

z =

[

− K

‖z‖ +
nN
‖z‖n

]

z

z z∗
=

1

z∗‖z‖

[

−K +
nN
‖z‖n−1

]

.

Equivalently

z̈ ∗ =
1

z‖z‖

[

−K +
nN
‖z‖n−1

]

.

And one arrives at the expression:

iA z̈ =

[

−K +
nN
‖z‖n−1

]

d

dt

(

z

‖z‖

)

.

Completing the required calculations, a line of reasoning similar to the one followed

at the end of the preceding section leads to analogous conclusions concerning solutions

described as conic sections in precession.

6 An Approach to the Kepler Problem Due to Laplace

Weinstock (1992, §V) reports on one of the solutions to the inverse–square orbit prob-

lem proposed by Laplace. He simplifies the derivation, and adapts it to our present–day,

modern terminology and notations.

Starting from the Newtonian equations of motion,

ẍ = − K
r3
x ⇒ r3 ẍ = −Kx⇒ d

dt
(r3 ẍ) = −Kẋ,

ÿ = − K
r3
y ⇒ r3 ÿ = −Ky ⇒ d

dt
(r3 ÿ) = −Kẏ,

⇒ d

dt
(r3 r̈) = −Kṙ.
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Accordingly, functions x = x(t), y = y(t) and r = r(t) satisfy the same second–order,

homogeneous linear ODE, namely

d

dt

(

ψ(t)
dU

dt

)

= −K U , with ψ(t) = r3 along the motion .

Then one must have a linear relation of the type ṙ = c1 ẋ + c2 ẏ , from which (excluding

rectilinear motion) one concludes that the orbit must be some conic–section given as

r = c1 x+ c2 y + c3 with r =
√
x2 + y2 .

Application of this approach to the case Vn = Vκ + Vn hinges on a set of intermediate

formulae, starting from the equations of motion

ẍ =
[

− K
r3

+
nN
rn+2

]

x = Φn x , ÿ =
[

− K
r3

+
nN
rn+2

]

y = Φn y ;

r3ẍ =
[

−K +
nN
rn−1

]

x , r3ÿ =
[

−K +
nN
rn−1

]

y

d (r3ẍ)

dt
= −K ẋ +

nN
rn

[

ẋ r − (n− 1) x ṙ
]

,

d (r3ÿ)

dt
= −K ẏ +

nN
rn

[

ẏ r − (n− 1) y ṙ
]

,

d (r3r̈)

dt
= −K ṙ +

n(2− n)N
rn−1

ṙ .

The discussion of values of the exponent n compatible with a Keplerian–like description

of motion is similar to the considerations in preceding sections.
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71–76.
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