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Abstract

The equations of motion of a three-body problem made of a dumb-bell (two

masses at fixed distance) moving around a central mass under gravitational at-

traction have been stablished. Linear and isosceles stationary solutions of these

equations have been studied and sufficient conditions for the stability have been

found in terms of Lyapunov’s stability functions.

1 Introduction

In this paper we study the motion of a system made of three material points M1,M2

and M3 interacting by Newtonian law, under the assumption that the distance between

M2 and M3 is constant, i.e., points M2 and M3 form a dumb-bell. Particular cases of

this problem are equivalent to the classical restricted three bodies problem or to the

generalized two fixed centres [1].

The purpose of this paper is the study of the different stationary solutions of the

problem for arbitrary masses of the bodies and arbitrary size of the dumbell. The interest

of this study derives from the fact that it is the simplest problem about traslational-

rotational motion of the a satellite in a gravitational field and gives the generic conections

between the solution of this restricted three body problem and the classical one [2].

In the stationary solutions studied in the paper the mutual distances are constant and

the triangle M1M2M3 rotates, as a rigid body, about the Gz axis passing through the

center of mass of the system.

It is shown that, when the points move on a fixed plane, there are linear solutions

in which the points are on a rotating axis. When the mass of M1 tends to zero, the

stationary solution reduces to the linear Eulerian solution of the classical restricted three
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body problem [4, 5]. Necessary and sufficient conditions for stability of the solutions have

been obtained.

Other solutions considered are the isosceles, in which the distances from M1 to M2

and M3 are constant and equal. Now, the three points rotate around the Gz axis crossing

orthogonaly to the plane of motion through the mutual center of mass and the points are

permanently on isosceles relative position. Necessary and sufficient conditions for stability

of the solutions have also been obtained [7].

Apart from its own dynamical properties, this model may be considered as an approx-

imation for describing the motion of a binary small-body system, such as an asteroid or

a Kuiper belt object. Indeed, one of the main features of asteroids is its irregular shape,

and in particular its elongation, which at times is modelled by a finite straight segment

[8, 9] or by the dumb-bell structure, among other choices.

2 Formulation of the problem

Let us consider three material points M1, M2 and M3, of masses m1, m2 and m3,

mutually attracted by the Newtonian gravitational forces. Let us assume that points M2

and M3 are rigidly connected by a segment of constant length l and negligible mass, i.e.,

they form a dumb-bell.

Let C be the center of masses of the dumb-bell and l2, l3 the distances from M2 and

M3 to C. We can define a rotating frame B(C, b1, b2, b3) such that b3 is directed along the

dumb-bell towards the point M3 and b1, b2 are two orthonormal vectors, perpendicular

to b3. In this frame, the principal moments of inertia (A,B,C) of the dumb-bell are

I1 = I2 = m2l
2
2 +m3l

2
3 =

m2m3

m2 +m3

l2, I3 = 0.

Let us introduce now an inertial reference frame S(C, s1, s2, s3). The attitude of the

dumb-bell in S is given by two angles, namely nutation θ and precession φ. The angle

θ ∈ [0, π) is such that cos θ = s3 · b3. For the precession angle, we build the nodal vector

ℓ as s3 ×b3 = ℓ sin θ. Then, we define the precession angle φ as the longitude of the node

ℓ reckoned from s1 in the plane normal to s3, that is to say,

ℓ = s1 cosφ+ s2 sin φ, 0 ≤ φ < 2π.

With these angles, the coordinates of points m3 and m2 in the space frame are

x
c
3 = l3b3 = l3(s1 sin θ sinφ− s2 sin θ cosφ+ s3 cos θ),

x
c
2 = −l2b3 = −l2(s1 sin θ sinφ− s2 sin θ cosφ+ s3 cos θ).

According to Köning’s theorem, the kinetic energy of the dumb-bell is the sum of the

kinetic energy of the center of masses C, assuming the total mass m2 +m3 is on it, plus
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the kinetic energy of rotation. To find the total kinetic energy of the three bodies, we

have to add the kinetic energy of the body M1.

The frame (C ; ℓ, b3 × ℓ, b3) (see figure 1) is made of principal axes of inertia. The

angular velocity of rotation is

Ω = φ̇s3 + θ̇ℓ = θ̇ℓ + φ̇ sin θ(b3 × ℓ) + φ̇ cos θb3.

s1

s2

s3

b1

b2

b3

M1 M2

M3

r

z

λ

φ

θ

s1

s2

s3

Figure 1.— The reference frames

We can reduce the order of the system by taking the so called heliocentric coordinates,

that is, by referring the motion of M2 and M3 to the body M1. Thus, we will refer the

motion of the dumb-bell to the frame (M1, s1, s2, s3).

In these heliocentric coordinates, the total kinetic energy is (see e.g. Wintner [10])

T =
1

2

m1(m2 +m3)

m1 +m2 +m3
ẋ

2
c +

1

2
Ω · IΩ.

But taking into account the values of the angular velocity of rotation Ω, and by using

cylindrical coordinates (r, λ, z) for the orbital motion,

xc = r cosλs1 + r sinλs2 + zs3,

the kinetic energy is

T =
1

2
m(ṙ2 + r2λ̇2 + ż2) +

1

2
A(θ̇2 + φ̇2 sin2 θ), (1)

where

m =
m1(m2 +m3)

m1 +m2 +m3
, and A =

m2m3

m2 +m3
l2 =

m1 m2m3

m (m1 +m2 +m3)
l2.

The potential function is

U = −Gm1

(

m2

r12
+
m3

r13

)

,
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where mutual distances r1j , for j = 2, 3, are

r2
1j = r2 + z2 + l2j − (−1)j 2 lj

[

z cos θ + r sin θ sin(φ− λ)
]

.

From the expressions of the kinetic energy and the potential, we can derive the Hamil-

tonian

H =
1

2m

(

P 2
r +

P 2
λ

r2
+ P 2

z

)

+
1

2A

(

P 2
φ

sin2 θ
+ P 2

θ

)

+ U(r, z, φ− λ, θ).

Since angles φ and λ appear only as the difference (φ−λ), we can reduce the order of the

Hamiltonian by means of the following canonical transformation

ψ = φ− λ, Pψ = Pφ,

ω = λ, Pω = Pφ + Pλ.

Indeed, with this transformation, the Hamiltonian becomes

H =
1

2m

(

P 2
r +

(Pω − Pψ)
2

r2
+ P 2

z

)

+
1

2A

(

P 2
ψ

sin2 θ
+ P 2

θ

)

+ U(r, z, ψ, θ),

that is, it is reduced to four degrees of freedom. Since angle ω is cyclic, its conjugate

moment Pω is an integral of the motion. The Hamiltonian itself is another integral.

The equations of motion are

ṙ =
Pr
m
, Ṗr =

(Pω − Pψ)
2

mr3
−
∂U

∂r
,

ż =
Pz
m
, Ṗz = −

∂U

∂z
,

θ̇ =
Pθ
A
, Ṗθ =

P 2
ψ cos θ

A sin3 θ
−
∂U

∂θ
,

ψ̇ = −
Pω − Pψ
mr2

+
Pψ

A sin2 θ
, Ṗψ = −

∂U

∂ψ
.

(2)

Equilibria are found by zeroing this system. Thus, there results that

Pr = Pz = Pθ = 0, Pω − Pψ =
mr2

A sin2 θ
Pψ,

and
∂U

∂r
=

mr

A2 sin4 θ
P 2
ψ,

∂U

∂z
= 0,

∂U

∂θ
=
A sin θ cos θ

mr

∂U

∂r
,

∂U

∂ψ
= 0.

We need to compute the partial derivatives of the potential U . Let us define firstly the

shorcuts

F = Gm1

(

m3

r3
13

+
m2

r3
12

)

, G = Gm1

(

m3l3
r3
13

−
m2l2
r3
12

)

. (3)

Then, we have that the partial derivatives may be put as

∂U

∂r
= Fr +G sin θ sinψ,

∂U

∂z
= Fz +G cos θ,

∂U

∂θ
= G(−z sin θ + r cos θ sinψ),

∂U

∂ψ
= G sin θ cosψ,
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and equations for equilibria reduce to

Pψ =
A sin2 θ

m r2 + A sin2 θ
Pω (4)

F r +G sin θ sinψ =
mr

A2 sin4 θ
P 2
ψ (5)

Fz +G cos θ = 0, (6)

A sin θ cos θ (Fr +G sin θ sinψ) −mrG (−z sin θ + r cos θ sinψ) = 0, (7)

Gr sin θ cosψ = 0. (8)

The finding of general solution of this system is rather complicated, hence, we will

look only for particular solutions. Cases r = 0 and θ = 0 will be excluded since they

correspond to singularities of the problem.

3 Planar motions

Let us consider that the three bodies move on the fixed plane M1s1s2. In that case,

z = 0 and θ = π/2. If the bodies are at equilibrium position, then r = r0 = constant.

Thus, equations (6)-(8) are only reduced to

G cosψ = 0,

that is fulfilled either when ψ = π/2, 3π/2 or when G = 0, i.e., when r12 = r13.

M1

M2

M3

r

φ

s1

s1

s2

s2

b1

b3

λ

− ψ

Figure 2.— Motion on the plane s1s2. It is achieved when z = 0 and θ = π/2.

3.1 Linear solution

When z = 0, r = r0, θ = π/2 and ψ = π/2, 3π/2, the three points are on a line on the

M1s1s2 plane that is rotating about the s3 with constant angular velocity, n = ω̇, given

(taking into account (4)) by

ω̇ =
∂H

∂Pω
=

1

mr2
0

(Pω − Pψ) =
1

mr2
0 + A

Pω (9)
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The equilibrium must fulfill equation (5), now written as

F r0 ±G =
mr0
A2

P 2
ψ =

mr0
(mr2

0 + A)2
P 2
ω ≥ 0.

Writing ǫ = ±1 if ψ = π/2 and r > l2 or ψ = 3π/2 and r > l3, the previous equation

particularize to

F r0 + ǫG = Gm1

(

m3

(r0 + ǫ l3)2
+

m2

(r0 − ǫ l2)2

)

=
mr0

(mr2
0 + A)2

P 2
ω ,

or, equivalently, if ν = m3/m2 and ρ = l/r0:

ν

(1 + ν + ǫ ρ)2
+

1

(1 + ν − ǫ ν ρ)2
= C0

ρ

(m+
m2 m3

m2 +m3
ρ2)2

, C0 =
mP 2

ω

Gm1 m2 l
.

This equation is equivalent to a polynomical one of degree six, hence it have six roots;

for instance, for ψ = π/2, m1 = 10, m2 = 2 = m3, l = 1, C0 ≥ 4.4299, two real roots

(positives, less than 1 + ν, so r > l2) and four complex roots appear; if C0 ≤ 4.4298, only

complex roots appear.

The position of the points in both cases, ǫ = ±1, is shown in the figure 3.

M1

M2

M3

r

s1

s1

s2

s2

b1 b3

λ

ψ =
π

2

φ λ

M1

M2

M3

r

s1

s1

s2

s2

b1

b3

λ

ψ =
3π

2

φ λ

Figure 3.— Relative positions of the bodies in the collinear solution. Left: ψ = π/2.

Right: ψ = 3π/2.

3.2 Isosceles stationary solutions.

These solutions are defined by

r = r0, z = 0, θ = π/2, G = 0 (⇐⇒ r12 = r13),

condition (5)

F r0 +G sin θ sinψ =
mr0

A2 sin4 θ
P 2
ψ,

and condition (4)

Pψ =
A sin2 θ

m r2 + A sin2 θ
Pω
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Then

r2
12 = r2

0 − 2 l2 r0 sinψ + l22 = r2
13 = r2

0 + 2 l3 r sinψ + l23 =⇒

sinψ =
l2 − l3
2 r0

= −
1

2

1 − ν

1 + ν

l

r0
, r2

12 = r2
13 = r2

0 + l2 l3 = r2
0 +

ν

(1 + ν)2
l2, (10)

what it is only possible if

r0 ≥
1

2

1 − ν

1 + ν
l and so r12 ≥

l

2

M1

M2

M3

r

s1

s1

s2

s2

b1

b3

λ

C

r12

r13

Figure 4.— The isosceles solution

In the figure 4, we can see the three points at the isosceles position.

Condition (5) is now written as

F = Gm1
m2 +m3

r3
12

=
m

(mr2
0 + A)2

P 2
ω (11)

what together to relations (10) define the values of r0 and ψ0 (and r12) in the equilibria.

We can note that these two condition are equivalent to the following polynomical

equation or order 4 in the variable r12

(A+m (−l2 l3 + r2
12))

2 = D0 r
3
12, D0 =

P 2
ω

G (m1 +m2 +m3)
,

or

m2 r4
12 −D0 r

3
12 + 2m (A− l2 l3 m) r2

12 + (A− l2 l3m)2 = 0 (12)

Taking into account the coefficients of this polynomial, the Descartes and Huat the-

orems ([3]) allow one to assure that there exist two positive real roots or none and that

there exist at least two complex conjugate roots. Lower and upper bounds for the positive

real roots ([3]) are defined by the quantities

(1 +
mP 2

ω

Gm1 ((m2 +m3) (A− l2 l3)2
)−1, 1 +

mP 2
ω

Gm2m1 ((m2 +m3)
;

besides, r12 ≥ l/2. Hence, the Bolzano mean value theorem will help us to finally conclude

if there exist one valid positive root or none.
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The frequency of the motion of rotation about the Gz axis (see eq. (9) ) is given by

n = ω̇ =
∂H

∂Pω
=

1

mr2
0

(Pω − Pψ) =
1

mr2
0 + A

Pω

Taking into account expresion (10) and equation (11), we obtain

n2 = ω̇2 =
Gm1 (m2 +m3)

m

1

r3
12

= G
m1 +m2 +m3

r3
0

(

1 +
ν

(1 + ν)2
(
l

r0
)2

)

−3/2

,

or, equivalently,

n

n0
=

(

1 +
ν

(1 + ν)2
(
l

r0
)2

)

−3/4

, where n0 = G
m1 +m2 +m3

r3
0

The relative frequency, n/n0, versus ν and l/r0 is shown in the figure ??. Of course,

when r → +∞, n→ n0.

4 Sufficient conditions for stability of the stationary solutions.

The stationary solutions are defined by the following found values:

P (0)
r = P (0)

z = P
(0)
θ = 0, P

(0)
ψ , r(0), z(0), ψ(0), θ(0)

Introducing the vector v = (y1, y2, y3, y4, x1, x2, x3, x4) of variations of the coordinates

and momenta

y1 = Pr, y2 = Pz, y3 = Pψ − P
(0)
ψ , y4 = Pθ,

x1 = r − r(0), x2 = z − z(0), x3 = ψ − ψ(0), x4 = θ − θ(0),

the Hamiltonian of the linearized perturbed problem [2] is, formaly, the same as the

nonlinearized, but with coefficients evaluated at the equilibrium solution. Consequently,

the quadratic part of the Hamiltonian of the linearized perturbed problem is the sum of

a positive defined part, the kinetic energy, and the Hessian of the potential energy. This

last part is

V2 = 1
2

4
∑

i,j=1

Vij xi xj, (13)

where Vij are the following second derivatives of the potential evaluated at the equilibrium

solution

V11 = Urr = F + r Fr +Gr sinψ sin θ, V12 = Urz = r Fz +Gz sinψ sin θ

V13 = Urψ = r Fψ +G cosψ sin θ + Gψ sinψ sin θ,

V14 = Urθ = r Fθ +G cos θ sinψ + Gθ sinψ sin θ

V22 = Uzz = F + z Fz +Gz cos θ, V23 = Uzψ = z Fψ +Gψ cos θ

V24 = Uzθ = z Fθ +Gθ cos θ −G sin θ, V33 = Uψψ = r sin θ (Gψ cosψ −G sinψ)

V34 = Uψθ = r cosψ (G cos θ +Gθ sin θ)

V44 = Uθθ = −G(z cos θ + r sinψ sin θ)−Gθ (z sin θ − r cos θ sinψ)
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and

Fr =
∂F

∂r
= −3 (F5 r +H5 sinψ sin θ), Fz =

∂F

∂z
= −3 (F5 z +H5 cos θ),

Fψ =
∂F

∂ψ
= −3H5 r cosψ sin θ, Fθ =

∂F

∂θ
= −3H5 (r cos θ sinψ − z sin θ) ,

Gr =
∂G

∂r
= 3 (J5 r +K5 sinψ sin θ), Gz =

∂G

∂z
= 3 (J5 z +K5 cos θ),

Gψ =
∂G

∂ψ
= 3K5 r cosψ sin θ, Gθ =

∂G

∂θ
= 3K5 (r cos θ sinψ − z sin θ)

and we have adopted the following notation:

F5 = Gm1

(

m2

r5
12

+
m3

r5
13

)

, H5 = Gm1

(

−
l2 m2

r5
12

+
l3m3

r5
13

)

, (14)

J5 = Gm1

(

l2m2

r5
12

+
l3m3

r5
13

)

, K5 = Gm1

(

−
l22 m2

r5
12

+
l23 m3

r5
13

)

(15)

We will use this function as a Lyapunov function for our analysis of the statibility. In

this way, the Lyapunov’s stability of the stationary solutions follows from the fact that the

quadratic form (13) be positively defined, i.e., in agreement with the Jacobi’s criterium,

if all the principal minors of the matrix which elements are (Vij) have positive value.

4.1 Sufficient conditions for stability of stationary linear motions.

The matrix (Vij) reduce, in this case, to

















V11 0 0 0

0 V22 0 V24

0 0 V33 0

0 V24 0 V44

















,

where
V11 = F + r Fr + ǫGr,

V22 = F, V33 = −ǫ r G, V44 = −ǫ r G, V24 = −G,

and conditions for Lyapunov’s stability become

V11 > 0, V22 > 0, V33 > 0, V44 V22 − V 2
24 > 0 (16)

Let us note that, in this case, ǫG ≤ 0, so, from the definitions of quantities F and

G in (3) and (5), we may assure that the tree first conditions are fulfilled; last condition

(16) is now written as

V44 V22 − V 2
24 = −ǫ r GF −G2 = −ǫG (r F + ǫG),

that is also fulfilled.
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4.2 Sufficient conditions for stability of the isosceles motions.

In this case, the only non vanishing elements of matrix Vij are

V11 = F + r Fr +Gr sinψ, V13 = 3 rK5 cosψ sinψ,

V22 = F, V33 = 3 r2K5 cos2 ψ

and conditions for Lyapunov’s stability become now

V11 > 0, V22 > 0, (17)

V33 V11 − V 2
13 > 0. (18)

The second condition (17) is fulfilled, but the first one, that can be written as

V11 =
Gm1

r3
12

[

(m2 +m3) (1 − 3
r2

r2
12

) − 3
l2m2 (l3 − l2)

r2
12

(1 −
(l3 − l2)

2

4 r2
)

]

,

is equivalent to the following condition

3 l2m2 (l2 − l3)
3 + 8 l2m2 (

m2

m3
− 2) r2 + 8 (m2 +m3) r

4 < 0

that is never fulfilled as the signs of the coefficients explain.

Consequently, this function V is not an adequated Lyapunov function.

Nevertheless, necessary conditions for stability can be obtained by analizing the roots

of the characteristic equation of the linearized equations of motion in the neighbourhood

of the stationary solution. These equations, defined by the linearized Hamiltonian H at

the equilibria, are

ẏ1 = −V11 x1 − V13 x3, ẏ3 = −V33 x3 − V13 x1,

ẋ1 =
1

m
y1, ẋ3 =

1

mr2
y3 −−

Pω
mr2 + A

,

ẏ2 = −V22 x2, ẋ2 =
1

m
y2,

ẏ4 = −V44 x4, ẋ4 =
1

A
y4

Hence, the charateristic equation can be separated into the following three equations:

λ4 + a λ2 + b = 0, λ2 +
V22

m
= 0, λ2 +

V44

A
= 0,

where

a =
r2 V11 + V33

mr2
, b =

V11 V33 − V 2
13

m2 r2

and stability follows if all the roots have vanishing real part.

Since

V22 > 0, V44 ≥ 0,
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the last two inequalities are fulfilled. The first one is a biquadratic equation that define

other four imaginaries roots if

a ≥ 0, b ≥ 0, a2 − 4 b ≥ 0.

18375 18380 18385
r

-0.02

-0.01

0.01

0.02

P_r

20000 40000 60000 80000 100000
Time

3.14

3.16

3.18

3.22

3.24

3.26

psi

Figure 5.— A particular trajectory in the plane (r, Pr)

If, for instance, we take the following very particular values for the constants:

m1 = 10, m2 = m3 = 2, l = 1, Pω = 914917.,G = 398585.28, (⇒ r0 = 18376.)

and the initial values

Pr = 0, Pz = 0, Pψ =
AP 2

ω

mr2 + A
,Pθ = 0, r = r0 − 10, z = 0, ψ = π, θ = π/2,

the trajectories are bounded, as we can see in figure 5. The distance follows the typical

variation of the Keplerian motion, while the angular variable ψ grows almos linearly with

time. This shows the instability of this equilibrium point. On the contrary, if we change

the value of r to r = 100, the trajectories become unbounded.

5 Conclusions

The equations of motion of one three-body problem composed of a dumb-bell (two

masses at fixed distance) moving around a central mass have been established. Several

cases of stationary solutions of these equations have studied and sufficient conditions for

stability has been found in terms of Lyapunov’s stability functions.
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