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Abstract

In this paper we consider a polygonal configuration for the planar (n + 1) body

problem. When a newtonian field is considered, is well known that we have a

central configuration. By introducing general functions that depends on distance,

we prove that central configuration is preserved not only for a newtonian field but

for any field which depends on the inverse of distances. The Manev-type and the

Schwarzschild-type fields are particular cases of our study.

1 Introduction

In this paper we consider the planar motion of (n+1) bodies in such a way that n bodies

of equal mass are located at the vertices of a regular n-gon centered at the remaining body

of mass m0. This problem is usually referred to as the ring problem, since it was proposed

by Maxwell [9] to study the stability of particles surrounding Saturn. But although the

problem may be considered as a classical one, it attracted the interest of researchers in

the last years because of the possibility of considering this kind of configuration to model

some dynamical systems (formation flights, planets around a star,. . . ) and many authors

have studied this problem from different points of view [13, 10, 11, 5, 6, 7, 8, 12, 1].

Besides, the dynamics of a particle moving under the gravitational field of the ring is

very rich, since there are several parameters, which give rise to bifurcations, families of

periodic orbits, etc (see e.g. [1, 12]).

In [1] an extension of the problem is proposed, in such a way that the central body

is an spheroid or a radiation source. In this paper, we go a step ahead considering that

the force between any two bodies is a generalized force that is a function of the mutual

distance.
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It was proved by Scheeres [13] that, under Newtonian forces, the ring configuration

remains self-similar along the time, that is to say, it is a central configuration. In this

communication we prove that the configuration is central under the generalized forces

above mentioned. As an illustrations, we present the case of a potential that is finite series

of the inverse of the mutual distances; Newtonian, Manev and Schwarzchild problems are

particular cases.

2 Equations of motion and central configuration

Let us consider the motion of (n + 1) bodies (n ≥ 2) in such a way that they attract

each other by a generalized force that is proportional to a certain function of their mutual

distance in the direction of the line joining them.

Denote by ri the position vector of the i-th particle in a barycentric reference frame,

then the potential function of the system can be expressed as

U = G
∑

0≤ i < j≤n

mi mj Gij(1/rij) (1)

where G is the gravitational constant, rij = rj−ri and rij = ‖rj−ri‖. The functions Gij

depend on each specific case considered. For instance, in the Newtonian case, Gij = 1/rij;

more examples are given in Section 4.

The equations of motion are

mi
d2ri

d t2
=

∂U

∂ri

, (i = 0, . . . , n)

then, by introducing the function

gij =
∂Gij

∂(1/rij)
,

the gradient is
∂U

∂ri

= Gmi

n∑
j=0,j 6=i

mjgij
rij

r3
ij

.

Let us define the moment of inertia I as I =
∑n

i=0 mi ri · ri. Then, according with

Wintner [14, §355], the (n + 1) bodies are in central configuration if the condition

∂U

∂ri

= κ
∂I

∂ri

(2)

holds for i = 0, . . . , n and for some scalar κ which is independent of i. That is to say, the

bodies are in central configuration if the force of gravitation acting on mi is proportional

to the mass mi and to the barycentric position vector ri.
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Since in this problem the masses mi (i = 1, . . . , n) are equal, we can introduce a mass

parameter µ such that mi = m0 µ (i = 1, . . . , n). After that, the condition (2) can be

split into the following two equations

2κ

k2m0

r0 + µ
n∑

j=1

gj0
rj0

r3
j0

= 0, (3)

and
2κ

k2m0

ri + g0i
r0i

r3
0i

+ µ
n∑

j=1,j 6=i

gji
rji

r3
ji

= 0, (i = 1, . . . n) (4)

3 The regular n-gon configuration

It is known [13] that under Newtonian potential, the configuration made of a regular n-

gon with equal masses mi on the vertices and m0 on the center of the polygon is a central

configuration. However, to the knowledge of the authors, for generalized potentials of

type (1) this result has not been proved yet. Thus, we proposed ourselves to see if the

configuration given by

r0, ri = r0 + αr∗i , (i = 1, . . . , n) (5)

with α a positive scalar independent of the scrip i (but that may depend on time), and

r∗i vectors on the plane of primaries pointing towards the vertices of a regular n-gon

centered at r0 can remain self-similar under the generalized forces. To achieve our goal,

we have to replace this configuration into equations (3) and (4) and determine the value

of proportionality constant κ in order both equations be fulfilled.

As usual, we choose a barycentric system, that is, the origin is placed at the center of

mass of the system, then,

m0r0 +
n∑

i=1

miri = 0. (6)

Following Scheeres [13], let us point out some properties of the vectors involved in the

regular polygonal configuration.

1. We can assume that vectors r∗i are unit vectors, ‖r∗i ‖ = 1.

2. There is an angle θ = π/n, such that r∗i · r∗j = cos 2 θ(j − i).

3. The distance between vertices i and j is ‖r∗ij‖ = ‖r∗j − r∗i ‖ = 2 | sin θ (j − i)|.

4. The vectors are periodic in their index with period n, i.e., r∗i = r∗n+i.

5. The sum
∑n

i=1 r∗i = 0, provided n ≥ 2.
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Associated to these vectors, Scheeres [13] defines a new set of unitary vectors q∗i

orthogonal to r∗i , lying on the same plane, and with the same basic properties, that is,

‖q∗i ‖ = 1, q∗i · r∗i = 0 and q∗i × r∗i = z.

Hence, there results that

q∗i · q∗j = cos 2 θ(j − i), q∗i · r∗j = sin 2 θ(j − i),

and every vector r∗i+k can be decomposed as a linear combination of r∗i and q∗i as

r∗i+k = cos 2 θk r∗i + sin 2 θk q∗i , (7)

expression that will be used later on.

3.1 First condition

The first equation (3) to check, let us recall, is

2κ

k2m0

r0 + µ
n∑

j=1

gj0
rj0

r3
j0

= 0

Since the origin is at the center of masses (6), and taking into account expression (5),

there results that

m0

[
(1 + nµ)r0 + µα

n∑
i=1

r∗i

]
= 0,

then

r0 =
−µα

1 + nµ

n∑
i=1

r∗i = 0 =⇒ r0 = 0.

So, we only have to check that

µ
n∑

j=1

gj0
rj0

r3
j0

= 0.

Since rj0 = r0 − rj = −rj = −αr∗j , and ‖r∗i ‖ = 1, there results that

rj0 = α, and gj0 = gj0(rj0) = gj0(α‖r∗j‖) = gj0(α) = g0(α),

that is, gj0 is independent of the index j, then

µ
n∑

j=1

gj0
rj0

r3
j0

= −µg0(α)
1

α2

n∑
j=1

r∗j = 0

and the first condition (3) is fulfilled. Let us now to see the second condition (4).
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3.2 Second condition

The second condition (4) to be satisfied is

2κ

k2m0

ri + g0i
r0i

r3
0i

+ µ
n∑

j=1,j 6=i

gji
rji

r3
ji

= 0.

We already proved that r0 = 0, thus, expression (5) reduces to ri = αr∗i , and the

above condition reads

α

(g0i +
2κα3

k2m0

)
r∗i +

µ

8

∑
j 6=i

gji| csc θ(j − i)|3(r∗i − r∗j)

 = 0.

As proven before, g0i is independent of i, whereas the function gji depends on rji =

2 α | sin θ(j − i)|, namely, on α and the angular distance from the origin between bodies

mi and mj. Making a change of index k = j − i, the above expression converts into(
g0i(α) +

2κα3

k2m0

)
r∗i +

µ

8

n−1∑
k=1

gk+i,i(α, kθ) | csc kθ|3(r∗i − r∗k+i) = 0, (i = 1, . . . , n).

Taking into account the decomposition (7) of vector r∗k+i, the above expression is a linear

combination of two orthogonal vectors r∗i and q∗i ,

Qi q
∗
i + Ri r

∗
i = 0,

where

Qi =
µ

8

n−1∑
k=1

gk+i,i(α, | sin kθ|)| csc kθ|3 sin(2kθ),

Ri = g0i(α) +
2κα3

k2m0

+
µ

4

n−1∑
k=1

gk+i,i(α, | sin kθ|)| csc kθ|.

In order this linear combination be zero, it is necessary that both coefficients Qi and

Ri be null.

Each term in Qi is an odd function of the angle θ = π/n, hence, the sum is zero for

all i. In which respects to Ri, let us denote

ω̃ = g0i(α) +
µ

4

n−1∑
k=1

gk+i,i(α, sin kθ)| csc kθ|.

Since

gk+i,i(rk+i,i) = gk+i,i(α r∗k+i,i) = gk+i,i(α 2| sin kθ|) = gk(α 2| sin kθ|),

there results that

ω̃ = g0(α) +
µ

4

n−1∑
k=1

gk(α, sin kθ)| csc kθ|.

In this way, we can choose the parameter κ as

κ = −m0k
2ω̃

2α3
,
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which is independent of the index and also makes the coefficient of r∗i null. Note that κ,

in general, depends on n, µ and on time (through α).

In sum, we just proved that the regular n-gon configuration of (n + 1) bodies with

generalized central forces is a central configuration.

4 Application

As an illustration, let us consider a problem with a general potential given by

U = G
∑

0≤ i < j≤n

mi mj

(
A1

rji

+
A2

r2
ji

+
A3

r3
ji

+ . . . +
Am

rm
ji

)
=

= GA1

∑
0≤ i < j≤n

mi mj

(
1

rji

+
A∗

2

r2
ji

+
A∗

3

r3
ji

+ . . . +
A∗

m

rm
ji

)
.

These potentials are known as quasi-homogeneous potentials (see e.g. [2]), and classical

potentials, like the Newtonian, Manev or Schwarzschild are but particular cases and will

be considered below.

The g functions are

g0(α) = 1 +
2A∗

2

r0i

+
3A∗

3

r2
0i

+ . . . +
nA∗

n

rn−1
0i

= 1 +
2A∗

2

α
+

3A∗
3

α2
+ . . . +

mA∗
m

αm−1

and

gk(α, θk) = 1 +
2A∗

2

2α| sin θk|
+

3A∗
3

22α2| sin θk|2
+ . . . +

mA∗
m

2m−1αm−1| sin θk|m−1
;

hence, ω̃ is given by

ω̃ = 1 +
2A∗

2

α
+

3A∗
3

α2
+ . . . +

mA∗
m

αm−1
+

+
µ

4

n−1∑
k=1

(
1 +

2A∗
2

2α| sin θk|
+

3A∗
3

22α2| sin θk|2
+ . . . +

mA∗
m

2m−1αm−1| sin θk|m−1

)
| csc θk| =

= 1 +
µ

4

n−1∑
k=1

| csc θk|+ 2A∗
2

α

(
1 +

µ

23

n−1∑
k=1

| csc θk|2
)

+

+
3A∗

3

α2

(
1 +

µ

24

n−1∑
k=1

| csc θk|3
)

+ . . . +
mA∗

m

αm−1

(
1 +

µ

2m+1

n−1∑
k=1

| csc θk|m
)

.
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4.1 Newtonian potential

In this case the constants Ai, i = 2, . . . , n are null and so, the functions gij = 1, (i, j =

0, . . . , n) and ω̃ is given by

ω̃ = 1 +
µ

4

n−1∑
k=1

| csc θk|,

which only depends on the number of primaries n and on the mass parameter µ, as it is

well known.

4.2 Manev-type potential

The problem with a Manev potential has been studied by Mioc y Stavinschi [10]. They

proved that for the planar symmetrical (n+1) body problem with a potential of the type

U = G
∑

0≤ i < j≤n

mi mj (
A1

rji

+
A2

r2
ji

) = GA1

∑
0≤ i < j≤n

mi mj (
1

rji

+
A∗

2

r2
ji

),

the polygonal configuration is preserved all along the motion, but the n-gon has variable

side and with variable rotation around the central mass.

But it is just a particular problem of our study. In fact, it is enough to obtain the

corresponding functions gij for this potential.

For the Manev potential

ω̃ = 1 +
µ

4

n−1∑
k=1

| csc θk|+ 2A∗
2

α

(
1 +

µ

23

n−1∑
k=1

| csc θk|2
)

4.3 Schwarzschild-type potential

The potential for this problem is

U = G
∑

0≤ i < j≤n

mi mj (
A1

rji

+
A3

r3
ji

) = GA1

∑
0≤ i < j≤n

mi mj (
1

rji

+
A∗

3

r3
ji

)

The necessary functions in this case are

g0(α) = 1 +
3A∗

3

α
, gk(α, θk) = 1 +

3A∗
3

22α2| sin θk|2

and the expression of ω̃ that gives the proportionality parameter κ for the central config-

uration is:

ω̃ = 1 +
µ

4

n−1∑
k=1

| csc θk|+ 3A∗
3

α2

(
1 +

µ

24

n−1∑
k=1

| csc θk|3
)

.
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5 Conclusions

The n+1 ring configuration with generalized forces depending on the mutual distances

among the bodies is shown that is a central configuration.
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