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Abstract

Partitioned Runge-Kutta (PRK) methods are suitable for the numerical inte-

gration of separable Hamiltonian systems. For implicit PRK methods, the compu-

tational effort may be dominated by the cost of solving the non-linear systems. For

these non-linear systems, good starting values minimize both the risk of a failed

iteration and the effort required for convergence.

In this paper we consider the Lobatto IIIA-IIIB pair. Applying the theory de-

veloped by the authors for PRK methods, we obtain optimum predictors for this

pair. Numerical experiments show the efficiency of these predictors.

Key words and expressions: Starting algorithms, stage value predictors, parti-
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1 Introduction

We consider partitioned differential equations of the form






y′ = f(y, z) y(x0) = y0 ,

z′ = g(y, z) z(x0) = z0 ,
(1)

where f : IRl × IRm −→ IRl and g : IRl × IRm −→ IRm are sufficiently smooth functions.

An example of this type of systems are Hamiltonian systems

p′ = −∂H

∂q
, (2)

q′ =
∂H

∂p
, (3)
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where the Hamiltonian function H has the special structure

H(p, q) = T (p) + V (q) .

In this case, the Hamiltonian system (2)-(3) is of the form

p′ = f(q)

q′ = g(p)

with f = −∇qV , g = ∇pT .

For the numerical integration of (1) we consider partitioned Runge-Kutta (PRK) meth-

ods. The idea of the PRK methods is to take two different Runge-Kutta (RK) methods,

(A, b, Â, b̂), and to treat the variables y with the first method, (A, b), and the z vari-

ables with the second one, (Â, b̂). In this way, the numerical solution from (tn, yn, zn) to

(tn+1, yn+1, zn+1) with the s-stage PRK method (A, b, Â, b̂) is given by

yn+1 = yn + h (bt ⊗ Il) f(Yn+1, Zn+1) ,

zn+1 = zn + h (b̂t ⊗ Im) g(Yn+1, Zn+1) ,

where the internal stages vectors Yn+1, Zn+1 are obtained from the system

Yn+1 = e ⊗ yn + h (A⊗ Il) f(Yn+1, Zn+1) , (4)

Zn+1 = e ⊗ zn + h (Â ⊗ Im) g(Yn+1, Zn+1) . (5)

As usual, we have denoted by ⊗ the Kronecker product and by e = (1, . . . , 1)t. For

implicit PRK methods, the computational effort may be dominated by the cost of solving

the non-linear systems (4)-(5). These non-linear systems are solved with an iterative

method that requires starting values Y
(0)
n+1, Z

(0)
n+1, and it is well known that these values

must be as accurate as possible, because in other case, the number of iterations in each

step may be too high or even worse, the convergence may fail.

A common way to proceed is to take as starting values the last computed numerical

solution, i.e., Y
(0)
n+1 = e⊗yn, Z

(0)
n+1 = e⊗zn. We will refer to them as the trivial predictors.

However it is also possible to involve the last computed internal stages, Yn, Zn, and the

approximation yn−1, and consider starting algorithms of the form

Y
(0)
n+1 = b0 ⊗ yn−1 + (B ⊗ Il)Yn , (6)

Z
(0)
n+1 = c0 ⊗ zn−1 + (C ⊗ Im)Zn , (7)

where b0, c0 ∈ IRs, B and C are s × s matrices which have to be determined.

Several kinds of starting algorithms for RK methods, also called stage value predictors,

have been studied by different authors ([16], [12], [14], [7], [4], [3], [5], [6], [1], [2]). The
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starting algorithms considered for example in [16], [15] or [7] are of the form (6)-(7),

whereas the ones considered for example in [12], [4] or [1] also involve function evaluations

of the internal stages.

Although in this paper we only deal with Hamiltonian systems without restrictions

(ODEs), we are also interested in Hamiltonian systems with restrictions (DAEs). For

ODE systems we can use any of the stage value predictors mentioned in the previous

paragraph, but this is not the case for DAEs. Predictors involving function evaluations

cannot be used for this type of systems ([15], [8]). This is the reason why we use predictors

of the form (6)-(7). These predictors have already been studied for PRK methods in [9].

In this paper we consider the PRK methods Lobatto IIIA-IIIB, that have been proved

to be suitable ones for Hamiltonian systems ([10], [18]) and construct good starting algo-

rithms for them. This is done in Section 2. The numerical experiments done in Section

3, show the efficiency of these starting algorithms.

2 Starting Algorithms for Lobatto IIIA-IIIB Methods

We consider the PRK methods (A, b, Â, b̂), where (A, b) is the Lobatto IIIA method and

(Â, b̂) is the Lobatto IIB method. We will refer to this PRK method as the Lobatto

IIIA-IIB method. Observe that these methods share the same nodes, that is to say c = ĉ.

Furthermore, the s-stage Lobatto IIIA method satisfies C(s), and thus Acq−1 = cq/q,

q = 1, ..., s; whereas the s-stage Lobatto IIIB method satisfies C(s − 2), and therefore

Âĉq−1 = ĉq/q, q = 1, ..., s − 2.
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Figure 1: The pair Lobatto IIIA-IIIB for s = 3
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Figure 2: The pair Lobatto IIIA-IIIB for s = 4
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In [9] the general order conditions for predictors of the form (6)-(7) have been obtained.

Fortunately, these conditions are reduced considerably if the method PRK satisfies some

simplifying assumptions, as it occurs with Lobatto IIIA-IIIB methods.

For s ≥ 3, the s-stage Lobatto IIIA and IIIB methods satisfy at least C(3) and C(1)

respectively. In this case, the general order conditions in [9] for the variable y are reduced

to the following ones

Consistency: b0 + B e = e ,

Order 1: B c = e + r c ,

Order 2: B A c = ebtc + rA(e + rc) , (8)

Order 3: B Ac2 = ebtc2 + rA(e + rc)2 ,

B AÂc = ebtÂc + rAebtc + r2AÂ(e + rc) ,

whereas the order conditions for the variable z are reduced to

Consistency: c0 + C e = e ,

Order 1: C c = e + r c ,

Order 2: C Â c = eb̂tc + rÂ(e + rc) , (9)

Order 3: C Âc2 = eb̂tc2 + rÂ(e + rc)2 ,

C Â2c = eb̂tÂc + rÂeb̂tc + r2Â2(e + rc) .

The parameter r = hn+1/hn, where hn+1 denotes the current stepsize, hn+1 = tn+1 − tn,

and hn denotes the last stepsize, hn = tn − tn−1.

For s = 3, if we take into account the number of parameters available and the number

of order conditions, we get that the maximum order achieved is 2 for both variables, y

and z. It is still possible to impose one of the two conditions of order 3, but not both of

them.

For s ≥ 4, the s-stage Lobatto IIIA and IIIB methods satisfy at least C(4) and C(2)

respectively. Both of them satisfy btc = b̂tc = 1/2. In this case, in (8) and (9) the two

conditions of order 3 are equivalent. Hence for s = 4, it is possible to achieve order 3 for

both variables, y and z.

In order to simplify the implementation, it is interesting to initialize the variables y

and z with the same coefficients. This situation corresponds to the case b0 = c0 and

B = C in (6)-(7).
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In that case, for s ≥ 3, up to order 2, the joint order conditions (8) and (9) are reduced

to the following ones

Consistency: b0 + B e = e ,

Order 1: B c = e + r c ,

Order 2: B A c = ebtc + rA(e + rc) ,

B Â c = eb̂tc + rÂ(e + rc) .

Now it is easy to conclude that there exists a unique joint predictor of order 2 for the

case s = 3. This predictor is given by the following coefficients

b0 =











−r2

r(3 + 2r)

r(6 + 5r)











, B =











r2 0 1

−1

2
r(5 + 3r) −r(2 + r) 1

2
(2 + 3r + r2)

−r(5 + 3r) −4r(1 + r) 1 + 3r + 2r2











. (10)

For s ≥ 4, up to order 3, the joint order conditions (8) and (9) are reduced to the

following ones

Consistency: b0 + B e = e ,

Order 1: B c = e + r c ,

Order 2: B A c = ebtc + rA(e + rc) ,

Order 3: B Ac2 = ebtc2 + rA(e + rc)2 ,

B Âc2 = eb̂tc2 + rÂ(e + rc)2 .

We immediately obtain that for s = 4 there exists a unique joint predictor of order 3.

This predictor is given by the following coefficients

b0 =























−1 − r3

−1 +
(

−6 + 6
√

5

)

r + 3
(

−3 +
√

5
)

r2 +
(

−4 + 9
√

5

)

r3

−1 − 6 (5+
√

5) r

5
− 3

(

3 +
√

5
)

r2 +
(

−4 − 9
√

5

)

r3

−1 − 12 r − 30 r2 − 19 r3























, (11)

B =

















1 + r3 0 0 1

b21 b22 b23 b24

b31 b32 b33 b34

b41 b42 b43 b44

















, (12)
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where

b21 = 1 − 11
(

−5 +
√

5
)

r

10
− 5

(

−3 +
√

5
)

r2

2
+

(

3 − 7√
5

)

r3 ,

b22 =

(

−5 + 3
√

5
)

r

2
+

(

−9 + 5
√

5
)

r2

2
+

(

−2 +
√

5
)

r3 ,

b23 = −
√

5 r +
(

3 − 2
√

5
)

r2 +
(

2 −
√

5
)

r3 ,

b24 = 1 +

(

3 − 3√
5

)

r +
(

3 −
√

5
)

r2 +

(

1 − 2√
5

)

r3 ,

b31 = 1 +
11

(

5 +
√

5
)

r

10
+

5
(

3 +
√

5
)

r2

2
+

(

3 +
7√
5

)

r3 ,

b32 =
√

5 r +
(

3 + 2
√

5
)

r2 +
(

2 +
√

5
)

r3 ,

b33 =

(

−5 − 3
√

5
)

r

2
+

(

−9 − 5
√

5
)

r2

2
+

(

−2 −
√

5
)

r3 ,

b34 = 1 +

(

3 +
3√
5

)

r +
(

3 +
√

5
)

r2 +

(

1 +
2√
5

)

r3 ,

b41 = 1 + 11 r + 25 r2 + 14 r3 ,

b42 =
5

(

−1 +
√

5
)

r

2
+

5
(

−1 + 3
√

5
)

r2

2
+ 5

√
5 r3 ,

b43 =
−5

(

1 +
√

5
)

r

2
− 5

(

1 + 3
√

5
)

r2

2
− 5

√
5 r3 ,

b44 = 1 + 6 r + 10 r2 + 5 r3 .

For Lobatto IIIA, the first stage of the variable y is explicit. As Yn,1 = yn−1 and

Yn,s = yn, in (10) and (11)-(12) we get Y
(0)
1 = yn, and therefore, as expected, the first

stage of the variable y is not initialized. Observe that this is not the case for Lobatto IIIB

method. In this case the first stage is implicit and the coefficients in (10) and (11)-(12)

are necessary to obtain a predictor.

3 Numerical Experiments

In this section we test the predictor constructed in the previous section for the 3-stage pair

Lobatto IIIA-IIIB. We have selected an academic problem and the well known restricted

three-body problem.

In both cases we have proceeded in the same way. The stopping criteria for the Newton

iterations is
||∆Y (k)||
||Y (k)|| ≤ TOL .
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The problems have been integrated for different values of TOL and for different stepsizes.

In Tables 1-6 we show the average number of iterations per step needed when the trivial

predictor is used, and the ones when the optimum predictor given by (10) is used. For each

value of TOL and h, the values on the left correspond to the trivial predictor, whereas

the values on the right correspond to the optimum predictor given by (10).

3.1 Problem 1

The problem is given by











y′ = 4(z + t)2 + 2t − 2 y(0) = 0

z′ = − y−t2

2(z+t)
− 1 z(0) = 1

(13)

The exact solution is y(t) = sin t + t , z(t) = cos t − t. We have integrated this problem

for t ∈ [0, 1].

TOL 1.0E-3 1.0E-5 1.0E-7

h

1.0E-2 2.000/1.010 2.000/1.190 3.000/2.010

5.0E-3 2.000/1.005 2.000/1.005 2.555/2.005

2.5E-3 2.000/1.002 2.000/1.002 2.000/2.000

1.0E-3 1.898/1.001 2.000/1.001 2.000/1.192

Table 1: Iterations per step. Problem 1

It can be seen that except in one case, the number of iterations is lower with the

predictor constructed in this paper. The exception is for h = 2.5E-03 and TOL = 1.0E-7

where the number of iterations coincides. We remark that in this case, the numerical

solution obtained with the optimum predictor is more accurate.

3.2 The restricted three-body problem

We have considered the restricted three-body problem from [13]











































































x′ = vx x(0) = x0

y′ = vy y(0) = y0

z′ = vz z(0) = z0

v′
x = 2 vy + x −

[

µ1
x+µ2

r3
1

+ µ2
x−µ1

r3
2

]

vx(0) = vx0

v′
y = −2 vx + y −

[

µ1

r3
1

+ µ2

r3
2

]

y vy(0) = vy0

v′
z = −

[

µ1

r3
1

+ µ2

r3
2

]

z vz(0) = vz0

(14)
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where µ2 = 1 − µ1, and

r1 =
√

(x + µ2)2 + y2 + z2 r2 =
√

(x − µ1)2 + y2 + z2 .

We have integrated this problem for t ∈ [0, 5] with different values of the parameter µ1

and different initial conditions.

Case I

We take µ1 = 0.8 and the initial values (0.45, 0, 0, 0, 0, 0). The numerical results are shown

in Table 2.

TOL 1.0E-3 1.0E-5 1.0E-7

h

1.0E-2 2.112/1.284 2.542/1.130 3.090/2.436

5.0E-3 2.028/1.103 2.300/1.802 2.874/2.187

2.5E-3 2.005/1.026 2.136/1.492 2.560/2.056

1.0E-3 1.913/1.000 2.026/1.206 2.277/1.938

Table 2: Iterations per step: µ1 = 0.8

Case II

We take µ1 = 0.95 and the initial values (0.45, 0, 0, 0, 1.199, 0.11). The numerical results

are shown in Table 3.

TOL 1.0E-3 1.0E-5 1.0E-7

h

1.0E-2 2.026/1.050 2.094/1.400 2.540/2.074

5.0E-3 2.010/1.023 2.049/1.123 2.296/2.036

2.5E-3 2.004/1.011 2.025/ 1.061 2.091/2.015

1.0E-3 1.291/1.000 2.010/ 1.030 2.042/1.317

Table 3: Iterations per step: µ1 = 0.95

Case III

We take µ1 = 0.999046125 and the initial values (−1.02745, 0, 0, 0, 0.04032, 0). The nu-

merical results are shown in Table 4.

TOL 1.0E-5 1.0E-7 1.0E-9

h

1.0E-2 2.000/1.002 2.000/1.002 2.000/1.066

5.0E-3 2.000/1.001 2.000/1.001 2.000/1.001

2.5E-3 2.000/1.000 2.000/ 1.001 2.000/1.000

1.0E-3 2.000/1.000 2.000/ 1.000 2.000/1.000

Table 4: Iterations per step: µ1 = 0.999046125
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In Tables 2-4 we again see that the number of iterations needed when we use the pre-

dictors constructed in this paper is lower than the ones needed when the trivial predictor

is used.

We remark that the reduction in the number of iterations when solving the non-linear

systems implies a reduction in the total CPU time needed for the numerical integration,

and hence it may be essential when long time integrations are done.
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