
Symmetric planar non–collinear relative equilibria for the

Lennard–Jones potential 3–body problem with two equal masses

M. Corbera†, J. Llibre‡ and E. Pérez Chavela∗
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Abstract

In this paper we study the planar relative equilibria for a system of three point

particles with only two equal masses moving under the action of a Lennard–Jones

potential. A central configuration is a special position of the particles where the

position and acceleration vectors of each particle with respect to the center of mass

are proportional, and the constant of proportionality is the same for all particles.

Since the Lennard–Jones potential depends only on the mutual distances among the

particles, it is invariant under rotations. In a convenient rotating frame the orbits

coming from central configurations become equilibrium points, the relative equilib-

ria. Due to the form of the potential, the relative equilibria depend on the size of

the system, that is, depend strongly of the momentum of inertia I of the system. In

this work we characterize the symmetric planar non–collinear relative equilibria and

we give the values of I depending on the parameters of the Lennard–Jones potential

for which the number of relative equilibria changes.

Key words and expressions: Central configurations, Lennard–Jones potential,

relative equilibria.
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1 Introduction

In order to get an accurate model to study the action of the intermolecular and grav-

itational forces at the same time, many authors from physics, astrophysics, astronomy

and chemistry have introduced new kinds of potentials, with a structure different from

the classical Newtonian and Coulombian potentials. In this way, one potential that has

been used very often in those branches of science is the Lennard–Jones potential, which

is the one studied in this paper. For instance, it is used to model the nature and stability

of small clusters of interacting particles in crystal growth, random geometry of liquids,

or in the theory of homogeneous nucleation, see [4] and [8]. This potential also appears

in molecular dynamics to simulate many particle systems ranging from solids, liquids,

gases, and biomolecules on Earth. Also it appears in the study of the motion of stars and

galaxies in the Universe among other applications.

This work is based on the previous work [2]. In [2] the authors studied the equilibria

and the relative equilibria of the planar Lennard–Jones 2– and 3–body problem when all

the particles have equal masses. A relative equilibrium solution is a solution such that the

configuration of the three particles remains invariant under a convenient rotation. This

configuration is central, this is equivalent to say that the position and acceleration vectors

of each particle with respect to the center of mass are proportional with the same constant

of proportionality. Since the Lennard–Jones potential is invariant under rotations but it is

not invariant under homothecies, the relative equilibria depend on the size of the system,

that is, depend on the momentum of inertia I of the system. This does not happen in

other planar problems, like for instance the planar Newtonian 3–body problem (see for a

definition [3] or [6]).

In this paper we consider the planar Lennard–Jones 3–body problem with masses m1,

m2 and m3 when we have only two particles with equal masses. Without loss of generality

we shall take m1 = m2. In particular, we find the planar non–collinear equilibrium points

(see Theorem 2), we analyze the symmetric planar non–collinear central configurations

and we give the bifurcation values of I, depending on the parameters of the Lennard–Jones

potential, for which the number of central configurations changes (see Theorems 6 and 9).

When we say a symmetric planar non–collinear central configuration we mean that the

triangle formed by the three particles of a central configuration has an axis of symmetry

passing through m3. In [2] it has been proved that when the three particles are equal, all

planar non–collinear central configurations are symmetric. Here we show that when the

three particles are not equal there exist also non–symmetric central configurations.
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2 Equations of Motion

We consider two particles m1 and m2 with the same mass and a third one m3 with different

mass that are moving in the Euclidean plane. The forces between every pair of particles

are given by a Lennard–Jones potential energy. Let qi ∈ R
2 denote the position of the

particle i in an inertial coordinate system, and let q = (q1,q2,q3).

The Lennard–Jones potential is a spherically symmetric non–bounded interaction be-

tween two particles given by

φ(r) = D0

[

(

R0

r

)12

− 2

(

R0

r

)6
]

, (1)

where r is the distance between the particles, R0 is the equilibrium separation of two

interacting particles and it corresponds to the minimum of φ(r), and D0 = −φ(R0) is

sometimes called the well depth. The function (1) is equivalent to the following one by

using the relationships R0 = 21/6σ and D0 = ε

φ(r) = 4ε

[

(σ

r

)12
−

(σ

r

)6
]

,

where σ is the arithmetic mean of the two van der Waals radii of the two interacting

particles.

Let σ11 and ε11 be the parameters of the Lennard–Jones potential corresponding to

interactions between the two particles m1 and m2 with equal masses; and let σ22 and ε22

be the parameters corresponding to interactions between a pair of particles with mass m3.

Cross interactions between particles of different masses are computed using the Lorentz–

Berthelot combining rules: (see [1])

σ12 =
1

2
(σ11 + σ22) , ε12 =

√
ε11ε22 .

Choosing the units of mass, length and time conveniently we can think that the par-

ticles with mass m1 = m2 have mass 1, radius σ = 1/(21/6) (which corresponds to take

an equilibrium separation equal to 1), and an interaction energy ε = 1; and the particle

m3 has mass m, radius σ (equilibrium separation equal to R0), and an interaction energy

ε. Using the Lorentz–Berthelot combining rules we have that

σ12 =
1

2

(

1

21/6
+

R0

21/6

)

, ε12 =
√

ε .

Then, denoting by ρ the R0 corresponding to (1) for an interaction between a pair of

particles with masses 1 and m, we get that ρ = 1
2
(1 + R0). In short, from (1), the

potential energy of the three particles is given by

U =
1

r12
12

− 2
1

r6
12

+
√

ε

[

(

ρ

r13

)12

− 2

(

ρ

r13

)6
]

+
√

ε

[

(

ρ

r23

)12

− 2

(

ρ

r23

)6
]

, (2)
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where rij = |qi − qj| is the distance between the particles i and j.

The Newton’s equations of the planar motion associated to potential (2) are

M q̈ = −∇U(q) , (3)

where M =diag(1, 1, 1, 1, m, m) is a 6× 6 diagonal matrix, and the dot denotes derivative

with respect to the time t. Equations (3) are only defined on the configuration space

4 = {(q1,q2,q3) ∈ R
6 : qi 6= qj}.

The center of mass of the particles is R = 1
2+m

(q1 + q2 + mq3) . In what follows we

will assume that the center of mass of the particles is fixed at the origin.

3 Equilibrium Solutions

The simplest type of solutions of system (3) are the equilibrium points; that is, when the 3

particles are at rest for all t ∈ R. Then, an equilibrium point of (3) is a solution satisfying

the equation ∇U(q) = 0.

We denote by R12 = r12, R13 = r13/ρ and R23 = r23/ρ, then the potential energy (2)

becomes

U(R12, R13, R23) =
1

R12
12

− 2

R6
12

+
√

ε

(

1

R12
13

− 2

R6
13

)

+
√

ε

(

1

R12
23

− 2

R6
23

)

. (4)

We note that R12, R13 and R23 are functions of the variables qi, for i = 1, 2, 3.

In order to solve equation ∇U(q) = 0 we will use the following lemma proved in [2].

Lemma 1 Let u = f(x) be a function with x = (x1, x2, . . . , xn), x1 = g1(y), x2 =

g2(y),. . ., xn = gn(y), y = (y1, y2, . . . , ym) and m > n.

If rank (A) = n being

A =













∂x1

∂y1
. . .

∂xn

∂y1
.

.

.

.

.

.

.

.

.

∂x1

∂ym
. . .

∂xn

∂ym













,

then ∇f(x) = 0 if and only if ∇u(y) = 0.

Using Lemma 1 we have that if rank (A) = 3 being

A =









































∂R12

∂q11

∂R13

∂q11

∂R23

∂q11
∂R12

∂q12

∂R13

∂q12

∂R23

∂q12
∂R12

∂q21

∂R13

∂q21

∂R23

∂q21
∂R12

∂q22

∂R13

∂q22

∂R23

∂q22
∂R12

∂q31

∂R13
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∂R23

∂q31
∂R12

∂q32

∂R13

∂q32

∂R23

∂q32
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q11 − q21

r12

1

ρ

q11 − q31

r13
0

q12 − q22

r12

1

ρ

q12 − q32

r13
0

−q11 − q21

r12
0

1

ρ

q21 − q31

r23

−q12 − q22

r12
0

1

ρ

q22 − q32

r23

0 −1

ρ

q11 − q31

r13
−1

ρ

q21 − q31

r23

0 −1

ρ

q12 − q32

r13
−1

ρ

q22 − q32

r23









































,
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then

∇U(q) = 0 if and only if ∇U(R12, R13, R23) = 0 .

Here, qi = (qi1, qi2) for i = 1, 2, 3.

After some computations we see that rank (A) = 3 if and only if

det









q11 q12 1

q21 q22 1

q31 q32 1









6= 0 .

This determinant is twice the oriented area of the triangle formed by the 3 particles.

In short, if q1, q2 and q3 are not collinear, then ∇U(R12, R13, R23) = 0 if and only if

∇U(q) = 0. In this paper we do not consider the collinear case. Therefore, the planar

non–collinear equilibrium points of the Lennard–Jones 3–body problem (3) are given by

the solutions of the equation

∇U(R12, R13, R23) =









12
(

R−13
12 − R−7

12

)

12
√

ε
(

R−13
13 − R−7

13

)

12
√

ε
(

R−13
23 − R−7

23

)









=









0

0

0









.

We solve the equation R−13 − R−7 = 0 obtaining a unique positive real root R = 1. So,

∇U(R12, R13, R23) = 0 if and only if R12 = R13 = R23 = 1. Therefore, we have infinitely

many planar non–collinear equilibrium points of the Lennard–Jones 3–body problem (3)

which are characterized by the following result.

Theorem 2 The planar non–collinear equilibrium points of the Lennard–Jones 3–body

problem (3) are given by the set

{

(q1,q2,q3) ∈ R
6 : |q1 − q2| = 1, |q1 − q3| = |q2 − q3| = ρ, q3 = − 1

m
(q1 + q2)

}

.

We note that in a planar equilibrium point of the Lennard–Jones 3–body problem (3),

the three particles are at the vertices of an isosceles triangle, equilateral if ρ = 1.

4 Relative Equilibrium Solutions

Another simple type of solutions are the relative equilibrium solutions ; that is, solutions

of (3) that become an equilibrium point in a uniformly rotating coordinate system. These

solutions are characterized as follows.

Let R(θ) and J denote the 6× 6 block diagonal matrices with 3 blocks of size 2× 2 of

the form
(

cos θ − sin θ

sin θ cos θ

)

, and

(

0 −1

1 0

)

,
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respectively, over the diagonal of the 6 × 6 matrix. We define a new coordinate vector

x ∈ R
6 by q = R(ωt)x, where the constant ω is the angular velocity of the uniform

rotating coordinate system. In this new coordinate system the equation of motion (3)

becomes

M ẍ + 2ωJM ẋ = −∇U(x) + ω2Mx . (5)

Then a configuration x is central if and only if x is an equilibrium point of system (5).

That is, if and only if

−∇U(x) + ω2Mx = 0 ,

for some ω. If x is a central configuration, then q = R(ωt)x is a relative equilibrium

solution of system (3). Moreover q = R(ωt)x, is a periodic solution of system (3) with

period T = 2π/|ω|.
The study of central configurations can be seen as a problem of Lagrange multipliers

where we are looking for critical points of the potential U on the “ellipsoid” {x ∈ 4 :

(1/2)xT Mx = I} where I > 0 is a constant. Thus, x is a central configuration if it is a

solution of system

∇F (x) = 0 , i(x) − I = 0, (6)

where F (x) = −U(x) + ω2(i(x) − I) and i(x) = 1
2
xT Mx is the moment of inertia of the

configuration.

Since we have chosen the origin of the coordinates at the center of mass of the three

particles, i(x) can be written in terms of the mutual distances rij, i.e.

i(x) =
1

2(2 + m)
(r2

12 + mr2
13 + mr2

23) =
1

2(2 + m)
(R2

12 + mρ2R2
13 + mρ2R2

23) .

The potential U depends on x through the mutual distances rij, and it is given by (4).

Therefore, we can think that F depends on x through Rij.

Proceeding as in Section 3 we can see that if x1, x2 and x3 are not collinear, then

∇F (R12, R13, R23) = 0 if and only if ∇F (x) = 0. Therefore, from (6), the planar non–

collinear central configurations of the Lennard–Jones 3–body problem (3) are given by

the solutions of system

12

(

1

R13
12

− 1

R7
12

)

+
1

2 + m
R12ω

2 = 0 , 12
√

ε

(

1

R13
13

− 1

R7
13

)

+
mρ2

2 + m
R13ω

2 = 0 ,

12
√

ε

(

1

R13
23

− 1

R7
23

)

+
mρ2

2 + m
R23ω

2 = 0 ,
1

2(2 + m)
(R2

12 + mρ2R2
13 + mρ2R2

23) = I .

(7)

From the first three equations of (7) we have

− ω2

12(2 + m)
=

1

R14
12

− 1

R8
12

=

√
ε

mρ2

(

1

R14
13

− 1

R8
13

)

=

√
ε

mρ2

(

1

R14
23

− 1

R8
23

)

. (8)

We set s12 = R2
12, s13 = R2

13, s23 = R2
23, α = mρ2 and C = 2(2 + m)I, then using (8) a

solution of (7) is a solution of the system

1

s7
12

− 1

s4
12

=

√
ε

α

(

1

s7
13

− 1

s4
13

)

,
1

s7
12

− 1

s4
12

=

√
ε

α

(

1

s7
23

− 1

s4
23

)

, s12 + αs13 + αs23 = C, (9)
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satisfying that ω2 > 0. Next we analyze the solutions of (9) depending on C, α and ε.

We consider the first two equations of (9). Let f(a) = a−7 − a−4. We note that

lim
a→0+

f(a) = ∞, lim
a→∞

f(a) = 0, f(1) = 0, f(a) < 0 when a > 1, and f(a) has a minimum

at the point a = a∗ =
(

7
4

)1/3
= 1.20507 . . . with β = f(a∗) = −12

49

(

4
7

)1/3
= −0.203222 . . .

(see Figure 1).

1.5 2.5

-0.5

1

2

a∗ a
a1 a2

K

f(a)

β

Figure 1: Plot of f(a).

We note that the first two equations of (9) can be written as

f(s12) =

√
ε

α
K, f(s13) = f(s23) = K , (10)

for some K ∈ R. Since in order to have a solution of (7) we need that ω2 > 0, we are

only interested in values of sij such that f(sij) < 0. Then, the solutions of (7) come

from solutions of (10) such that K ∈ [β, 0) (see Figure 1) and additionally
√

ε
α

K ∈ [β, 0).

Therefore, if
√

ε 6 α, then we can take values of K ∈ [β, 0). Whereas if
√

ε > α, then

we can take values of K ∈ [α β/
√

ε, 0). Fixed an admissible value of K, we can find two

values a1 6 a2 satisfying that f(ai) = K (see Figure 1), and two values a1 6 a2 satisfying

that f(ai) =
√

ε
α

K. Combining these values we obtain eight types of solutions of (10)

which are detailed in cases (1)–(8) of Table 1.

We note that the case ω = 0 corresponds to the equilibrium points of the planar

Lennard–Jones 3–body problem (3) given by Theorem 2. These equilibrium points have

moment of inertia I = C
2(2+m)

= 1+2α
2(2+m)

.

The planar non–collinear central configurations of the Lennard–Jones 3–body problem

(3) are triangles with sides r12, r13 and r23 that could be equilateral, isosceles or scalene.

In Table 1 we give the solutions of (10) in the variables r12 = R12 =
√

s12, r13 = ρ R13 =

ρ
√

s13 and r23 = ρ R23 = ρ
√

s23. We see that if the solutions of (10) define a triangle

(i.e. the mutual distances rij satisfy the conditions r12 < r13 + r23, r13 < r12 + r23 and

r23 < r12 + r13), then the solutions of types (1)–(4) give central configurations that are

isosceles triangles, whereas the solutions of types (5)–(8) give central configurations that

are scalene triangles, except perhaps for a particular set of values of m, ρ and ε.
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In the variables s12, s13, s23 In the variables r12, r13, r23

(1) s12 = a1, s13 = s23 = a1 r12 =
√

a1, r13 = r23 = ρ
√

a1 ,

(2) s12 = a2, s13 = s23 = a1 r12 =
√

a2, r13 = r23 = ρ
√

a1 ,

(3) s12 = a1, s13 = s23 = a2 r12 =
√

a1, r13 = r23 = ρ
√

a2 ,

(4) s12 = a2, s13 = s23 = a2 r12 =
√

a2, r13 = r23 = ρ
√

a2 ,

(5) s12 = a1, s13 = a1, s23 = a2 r12 =
√

a1, r13 = ρ
√

a1, r23 = ρ
√

a2 ,

(6) s12 = a2, s13 = a1, s23 = a2 r12 =
√

a2, r13 = ρ
√

a1, r23 = ρ
√

a2 ,

(7) s12 = a1, s13 = a2, s23 = a1 r12 =
√

a1, r13 = ρ
√

a2, r23 = ρ
√

a1 ,

(8) s12 = a2, s13 = a2, s23 = a1 r12 =
√

a2, r13 = ρ
√

a2, r23 = ρ
√

a1 .

Table 1: Types of solutions of (10).

In this work we consider only symmetric planar non–collinear central configurations

given by solutions of (7) of the form r13 = r23, or equivalently solutions of (9) with

s13 = s23. System (9) when s13 = s23 becomes

1

s7
12

− 1

s4
12

=

√
ε

α

(

1

s7
13

− 1

s4
13

)

, s12 + 2αs13 = C . (11)

5 Symmetric Planar Non–Collinear Central Configurations When
√

ε = α

The case ε = α = m = 1 has been studied in [2]. Here, we analyze the case
√

ε = α and

m 6= 1. The results that we obtain in this case are similar to the results obtained when

ε = α = m = 1.

It is easy to see that if
√

ε = α, then a1 = a1 and a2 = a2. Then, the types of

symmetric solutions of (10) given in Table 1 when
√

ε = α are the ones in Table 2.

(1) s12 = s13 = s23 = a1 =⇒ C ∈ (1 + 2α, (1 + 2α)a∗] ,

(2) s12 = a2 , s13 = s23 = a1 =⇒ C ∈ (a∗ + 2α,∞) ,

(3) s12 = a1 , s13 = s23 = a2 =⇒ C ∈ (1 + 2αa∗,∞) ,

(4) s12 = s13 = s23 = a2 =⇒ C ∈ [(1 + 2α)a∗,∞) .

Table 2: Symmetric solutions of (10) when
√

ε = α.

From Figure 1 we see that a1 ∈ (1, a∗] and a2 ∈ [a∗,∞). Then we can find lower and

upper bounds for the value of C for each type of solutions, which are specified in Table 2.

We note that the lower bounds given in Table 2 are not necessarily the infima.

It is easy to check, from Table 2, that for any admissible value of C there are at most

3 different central configurations. On the other hand, from Figure 1, we see that a1 as

a function of K is a decreasing function, whereas a2 as a function of K is an increasing
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function. Therefore, for each C ∈ (1 + 2α, (1 + 2α)a∗] we have a solution of (11) of type

(1) and for each C ∈ [(1 + 2α)a∗,∞) we have a solution of (11) of type (4). We note that

a2 → ∞ when K → 0. Then we can find C∗ > max (a∗ + 2α, 1 + 2αa∗, (1 + 2α)a∗) =

(1 + 2α)a∗ such that there exist three different solutions of (11) for all C > C∗. On

the other hand if C ∈ (1 + 2α, C∗) with C∗ = min (a∗ + 2α, 1 + 2αa∗, (1 + 2α)a∗) there

exists only one solution of (11). For values of C ∈ (C∗, C
∗) we can have one, two or three

different solutions of (11) depending on the value of C, ε and α. It is not difficult to see

that C∗ = 1 + 2αa∗ for 0 < α < 1/2 and C∗ = a∗ + 2α for α > 1/2.

Now we analyze the bifurcation values of C for which the number of solutions of (11)

changes. From the above discussion we know that there exists at least one bifurcation

value C ∈ (C∗, C
∗).

From the second equation of (11) we have that

s12 = C − 2 s13 α . (12)

Substituting s12 into the first equation of (11) with
√

ε = α, we obtain the equation

g1(s13, α, C) g2(s13, α, C) = 0 , (13)

where g1(s13, α, C) = C − (1 + 2α) s13 , and

g2(s13, α, C) = −C6 + s13

(

−C5 + 12C5 α
)

+ s13
2

(

−C4 + 10C4 α − 60 C4 α2
)

+

s13
3

(

−C3 + C6 + 8C3 α − 40 C3 α2 + 160C3 α3
)

+

s13
4

(

−C2 + C5 + 6C2 α − 12 C5 α − 24 C2 α2 + 80C2 α3 − 240 C2 α4
)

+

s13
5

(

−C + C4 + 4C α − 10 C4 α − 12 C α2 + 60C4 α2 + 32C α3 − 80 C α4 + 192C α5
)

+

s13
6

(

−1 + C3 + 2α − 8 C3 α − 4 α2 + 40C3 α2 + 8α3 − 160 C3 α3 − 16 α4 + 32α5 − 64 α6
)

+

s13
7

(

−6 C2 α + 24C2 α2 − 80 C2 α3 + 240C2 α4
)

+

s13
8

(

12 C α2 − 32 C α3 + 80C α4 − 192 C α5
)

+ s13
9

(

−8 α3 + 16α4 − 32 α5 + 64α6
)

.

Solving equation g1(s13, α, C) = 0 with respect to s13 we get s13 = C
1+2 α

. Then, from (12)

we have that s12 = C
1+2 α

. We note that the solution s12 = s13 = C
1+2 α

is either of type (1)

or of type (4) in Table 2. We can see easily that the solution of (11) s12 = s13 = C
1+2 α

,

satisfies that ω2 > 0 if and only if C > 1 + 2α. Moreover, in order to have a symmetric

planar non–collinear central configuration of the Lennard–Jones 3–body problem (3) we

need that r12 < 2 r13, or equivalently, we need that s12 < 4α
m

s13. We note that for the

solution s12 = s13 = C
1+2 α

this condition is satisfied only when m < 4α (i.e. when

ρ > 1/2). In short, we have proved the following result.

Proposition 3 Fixed ρ > 1/2, there exists a symmetric planar non–collinear central

configuration x = (x1,x2,x3) of the Lennard–Jones 3–body problem (3) for each C >

1 + 2mρ2 satisfying that

|x1 − x2| =

√

C

1 + 2mρ2
, |x1 − x3| = |x2 − x3| = ρ

√

C

1 + 2mρ2
, x3 = − 1

m
(x1 + x2) ,
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and having moment of inertia I = C
2(2+m)

.

Next we analyze the bifurcation values C(α) for which the number of positive real

solutions s13(C, α) of equation g2(s13, C, α) = 0 changes. We have seen that there exists

at least one bifurcation value C(α) ∈ (C∗, C
∗). In particular, this bifurcation value

satisfies that C(α) > 1 + 2α. In order to simplify the computations we will take 1 + 2α

as a lower bound for the bifurcation values C(α).

Proposition 4 For every α > 0 there is a unique bifurcation value C1(α) for the number

of positive real solutions s13 of the equation g2(s13, C, α) = 0.

Proof: The number of positive real solutions of g2(s13, C, α) = 0 changes either when a

negative real solution is transformed into a positive one, by passing through the solution

s13 = 0, or when a pair of complex conjugate solutions are transformed to a pair of positive

real solutions, by passing through a double positive real solution.

Since the coefficient of the independent term of g2(s13, C, α) is always negative for

C > 1 + 2α, there is no bifurcation value C1(α) > 1 + 2α coming from passing a negative

real solution of g2(s13, C, α) = 0 to a positive one. On the other hand, a solution s13(C, α)

of g2(s13, C, α) = 0 is a double solution if it is a solution of system

g2(s13, C, α) = 0 , g3(s13, C, α) =
d g2

d s13
(s13, C, α) = 0 . (14)

Therefore, the bifurcation values C1(α), coming from passing a pair of complex conjugate

solutions to a pair of positive real solutions, are given by the solutions C = C(α) of system

(14).

In order to solve system (14) we compute the resultant (see [5] and [7] for more

information about resultants) of g2(s13, C, α) and g3(s13, C, α) with respect to s13 obtaining

the polynomial

P (C, α) = −512 C30 α9 (−1 + 2α)
(

1 + 4α2
)

P1(C, α) ,

where P1(C, α) is a polynomial of degree 30 in the variable C. We note that if α = 1/2,

then P (C, α) = 0, so, this case is treated aside. The solutions C1(α) of P1(C, α) = 0

are possible bifurcation values. We know that P1(C, α) = 0 has at least one solution

C1(α) ∈ (C∗, C
∗). Now we shall see that, for all α > 0, P1(C, α) = 0 has a unique real

solution C1(α) satisfying that C1(α) > 1 + 2α.

First we analyze the case α = 1/2. If we compute the resultant of g2(s13, C, 1/2) and

g3(s13, C, 1/2) with respect to s13 we obtain the polynomial

P (C) = 8C32
(

−14 + C3
) (

−49 + 2016C3 + 2322C6 + 432C9 + 27C12
)2

.

This polynomial has a unique positive real solution with C > 1 + 2α = 2 which is given

by C = C1 = 14
1
3 . Analyzing the solutions of g2(s13, C, 1/2) = 0 for C near C1, we see

that C1 is a bifurcation value for the solutions of g2(s13, C, 1/2) = 0.
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Now we analyze the bifurcation values α for which the number of real solutions C1(α) >

1 + 2α of equation P1(C, α) = 0 changes. As above, the number of real solutions of

P1(C, α) = 0 with C1(α) > 1 + 2α changes, either when a solution C1(α) < 1 + 2α

is transformed to a solution C1(α) > 1 + 2α by passing through the solution C1(α) =

1 + 2α, or when a pair of complex conjugate solutions are transformed to two positive

real solutions by passing through a double positive real solution with C1(α) > 1 + 2α.

We see that P1(1 + 2α, α) < 0 for all α > 0. Then, there is no bifurcation values α

coming from passing a solution C1(α) of P1(C, α) = 0 through the value 1 + 2α in the

positive sense. The bifurcation values α coming from passing a pair of complex solutions

of P1(C, α) = 0 to two positive real solutions through a double positive real solution are

given by the α’s solutions of the system

P1(C, α) = 0 ,
d P1

d C
(C, α) = 24C2 P2(C, α) = 0 . (15)

As above we solve system (15) by computing the resultant of P1(C, α) and P2(C, α) with

respect to C (we note that we are not interested in solutions of (15) with C = 0). We

obtain a polynomial G(α) of degree 762 in the variable α, whose real positive roots are

α1 = 0.0185509 . . . , α2 = 0.333133 . . . , α3 = 0.33395 . . . , α4 = 0.5,

α5 = 0.748615 . . . , α6 = 0.750450 . . . , α7 = 13.4764 . . . .

We have analyzed the solutions of P1(C, α) = 0 near the bifurcation values αi and we have

seen that for all α > 0 there exists a unique real solution C1(α) of P1(C, α) = 0 satisfying

that C1(α) > 1 + 2α. Moreover, this solution corresponds to a bifurcation value for the

solutions of equation g2(s13, C, α) = 0.

¤

Up to here, we have analyzed the number of solutions of g1(s13, C, α) = 0 and g2(s13, C,

α) = 0 separately. Since we are interested in the bifurcation values of (13), we must find

also the values of C for which the solutions of those two equations coincide. We can see

that there exists a unique value C = C2(α) = 7
1
3 (1+2 α)

2
2
3

satisfying this condition. This

value is obtained by substituting the solution s13 = C
1+2α

into g2(s13, C, α) and solving the

resulting equation g2

(

C
1+2α

, C, α
)

= 0 with respect to C.

Analyzing the solutions of (13) near the bifurcation values C1(α) and C2(α) we obtain

de following result.

Proposition 5 Suppose that
√

ε = α. Fixed α > 0, we can find two bifurcation values

C1 = C1(α) and C2 = C2(α) = 7
1
3 (1+2 α)

2
2
3

, with C0 = 1+2α < C1(α) 6 C2(α), at which the

number of positive real solutions of equation (13) changes. Fixed α > 0, the number(#)

of solutions C > C0 of equation (13) is given in Table 3. We also give their type (T),

according to Table 2, and their multiplicity (M).
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α > 1/2

C ∈ (C0, C1) C = C1 C ∈ (C1, C2) C = C2 C ∈ (C2,∞)

# T M

1 (1) 1

# T M

1 (1) 1

1 (2) 2

# T M

1 (1) 1

2 (2) 1

# T M

1 (2) 1

1 (4) 2

# T M

1 (2) 1

1 (3) 1

1 (4) 1

α = 1/2

C ∈ (C0, C1) C = C1 = C2 C > C2

# T M

1 (1) 1

# T M

1 (4) 3

# T M

1 (2) 1

1 (3) 1

1 (4) 1

α < 1/2

C ∈ (C0, C1) C = C1 C ∈ (C1, C2) C = C2 C ∈ (C2,∞)

# T M

1 (1) 1

# T M

1 (1) 1

1 (3) 2

# T M

1 (1) 1

2 (3) 1

# T M

1 (3) 1

1 (4) 2

# T M

1 (2) 1

1 (3) 1

1 (4) 1

Table 3: The number (#), type (T) and multiplicity (M) of solutions C > C0 of (13).

The solutions of (13) give planar non–collinear central configuration of the Lennard–

Jones 3–body problem (3) if s12 < 4α
m

s13; that is, if ϕ(s13, C, α) < 0 with ϕ(s13, C, α) =

C − 2αs13 − 4α
m

s13. We have analyzed previously the central configurations coming from

solutions of equation g1(s13, C, α) = 0, now we analyze the central configurations coming

from solutions of equation g2(s13, C, α) = 0. We see that there is a unique value of C for

which the solution of equation ϕ(s13, C, α) = 0 is a solution of equation g2(s13, C, α) = 0.

This value is given by

Cmα =
(2 + m)

2 m

(

m6 + 4m5 α + 16m4 α2 + 64m3 α3 + 256m2 α4 + 1024m α5 + 4096α6

(m + 4α) (m2 + 16α2)

)
1
3

,

and it corresponds to a collinear central configuration. So, if s13(C, α) is a solution of

equation g2(s13, C, α) = 0 such that ϕ(s13(Cmα, α), Cmα, α) = 0, then the number of planar

non–collinear central configurations coming from solutions of g2(s13, C, α) = 0 changes at

C = Cmα.

Fixed α > 0, we can see that Cmα → ∞ when m → 0 and when m → ∞, and Cmα has

a minimum at m = µ and Cµα = C1(α). The number of central configurations coming

from the solutions of (16) given by Proposition 5 is summarized in the following result.

Theorem 6 Suppose that
√

ε = α. Let C1 = C1(α) and C2 = C2(α), with C0 = 1+2α <

C1(α) 6 C2(α), be the bifurcation values given in Proposition 5; and let µ = µ(α) be the

minimum of Cµα. Fixed α > 0 and m > 0, the number of symmetric planar non–collinear

central configurations of the Lennard–Jones 3–body problem (3) having moment of inertia
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I = C
2(2+m)

changes at C = C1 = C1(α), C = C2 = C2(α) and C = Cm = Cmα. The

number (#) of symmetric planar non–collinear central configurations for fixed α > 0,

C > C0 and m > 0 is summarized in Table 4. In this table, µ∗
1 = µ∗

1(α) < µ and

µ∗
2 = µ∗

2(α) > µ are values such that Cµ∗

i α = C2.

α > 1/2

m ∈ (0, µ∗

1
)

C (C0, C1) C1 (C1, C2) C2 (C2, Cm) [Cm, ∞)

# 1 2 3 2 3 2

m = µ∗

1

C (C0, C1) C1 (C1, C2) C2 = C
µ
∗

1

(C2, ∞)

# 1 2 3 2 2

m = (µ∗

1
, µ)

C (C0, C1) C1 (C1, Cm) [Cm, C2) C2 (C2, ∞)

# 1 2 3 2 1 2

m = µ
C (C0, C1) C1 = Cµ (C1, C2) C2 (C2, ∞)

# 1 1 2 1 2

m = (µ, µ∗

2
)

C (C0, C1) C1 (C1, Cm] (Cm, C2) C2 (C2, ∞)

# 1 1 1 2 1 2

m = µ∗

2

C (C0, C1) C1 (C1, C2) C2 = C
µ
∗

2

(C2, ∞)

# 0 0 0 1 1

m = (µ∗

2
, ∞)

C (C0, C1) C1 (C1, C2) C2 (C2, Cm] (Cm, ∞)

# 0 0 0 0 0 1

α = 1/2

m ∈ (0, µ)
C (C0, C1) C1 (C1, Cm) [Cm, ∞)

# 1 1 3 2

m = µ
C (C0, C1) C1 = Cµ (C1, ∞)

# 0 0 1

m ∈ (µ, ∞)
C (C0, C1) C1 (C1, Cm] (Cm, ∞)

# 0 0 0 1

α < 1/2

m ∈ (0, µ∗

1
)

C (C0, C1) C1 (C1, C2) C2 (C2, Cm) [Cm, ∞)

# 1 2 3 2 3 2

m = µ∗

1

C (C0, C1) C1 (C1, C2) C2 = C
m

∗

1

(C2, ∞)

# 0 1 2 1 1

m = (µ∗

1
, µ)

C (C0, C1) C1 (C1, Cm) [Cm, C2) C2 (C2, ∞)

# 0 1 2 1 1 1

m = µ
C (C0, C1) C1 = Cµ (C1, C2) C2 (C2, ∞)

# 0 0 1 1 1

m = (µ, µ∗

2
)

C (C0, C1) C1 (C1, Cm] (Cm, C2) C2 (C2, ∞)

# 0 0 0 1 1 1

m = µ∗

2

C (C0, C1) C1 (C1, C2) C2 = C
µ
∗

2

(C2, ∞)

# 0 0 0 0 1

m = (µ∗

2
, ∞)

C (C0, C1) C1 (C1, C2) C2 (C2, Cm] (Cm, ∞)

# 0 0 0 0 0 1

Table 4: The number (#) of central configurations for
√

ε = α.

6 Symmetric Planar Non–Collinear Central Configurations When
√

ε 6= α

Now we analyze the case
√

ε 6= α. We start giving some preliminary results, and then

we will find the bifurcation values of C for which the number of central configurations

changes for a fixed value α = 2. From numerical experiments, it seems that the bifurcation

pattern for C is qualitatively the same for all α > 0, but this problem is still open.

When
√

ε < α, let a∗
1 < a∗

2 be the values satisfying that f(a∗
i ) =

√
ε

α
β, let a1 6 a2

denote the values such that f(ai) = K for some K ∈ [β, 0), and let a1 < a2 denote the

values of a, such that f(ai) =
√

ε
α

K. Since
√

ε < α it is easy to see that a1 ∈ (1, a∗],

a2 ∈ [a∗,∞), a1 ∈ (1, a∗
1] and a2 ∈ [a∗

2,∞) with a1 < a2.
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When
√

ε > α, let a∗
1 < a∗

2 be the values satisfying f(a∗
i ) = α√

ε
β, let a1 < a2 denote the

values such that f(ai) = K for some K ∈ [ α√
ε
β, 0), and let a1 6 a2 denote the values such

that f(ai) =
√

ε
α

K. In this case a1 ∈ (1, a∗
1], a2 ∈ [a∗

2,∞), a1 ∈ (1, a∗] and a2 ∈ [a∗,∞).

Finding lower and upper bounds for the value of C for each type of symmetric solutions

of Table 1, we obtain Table 5.

√
ε < α

√
ε > α

(1) s12 = a1 s13 = s23 = a1 =⇒ C ∈ (1 + 2α, a∗1 + 2α a∗] C ∈ (1 + 2α, a∗ + 2α a∗1] ,

(2) s12 = a2 s13 = s23 = a1 =⇒ C ∈ (a∗2 + 2α,∞) C ∈ (a∗ + 2α,∞) ,

(3) s12 = a1 s13 = s23 = a2 =⇒ C ∈ (1 + 2α a∗,∞) C ∈ (1 + 2α a∗2,∞) ,

(4) s12 = a2 s13 = s23 = a2 =⇒ C ∈ [a∗2 + 2α a∗,∞) C ∈ [a∗ + 2α a∗2,∞) .

Table 5: Symmetric solutions of (10) when
√

ε 6= α.

As in the case
√

ε = α, a1 and a1 are decreasing functions as functions of K, whereas a2

and a2 are increasing functions as functions of K. Therefore, when
√

ε < α, for each C ∈
(1+2α, a∗

1 +2α a∗] we have a solution of (11) of type (1), and for each C ∈ [a∗
2 +2α a∗,∞)

we have a solution of (11) of type (4). When
√

ε < α, for each C ∈ (1 + 2α, a∗ + 2α a∗
1]

we have a solution of (11) of type (1) and for each C ∈ [a∗ + 2α a∗
2,∞) we have a solution

of (11) of type (4).

On the other hand, if K → 0, then a2 → ∞ and a2 → ∞. Therefore, we can

find C∗ > max (a∗
1 + 2α a∗, a∗

2 + 2α, a∗
2 + 2α a∗) when

√
ε < α, and C∗ > max (a∗ +

2α a∗
1, a

∗ + 2α, 1 + 2α a∗
2) when

√
ε > α such that there exist three different solutions of

(11) for all C > C∗. Let C∗ = min (a∗
1 + 2α a∗, a∗

2 + 2α, a∗
2 + 2α a∗) when

√
ε < α, and

C∗ = min (a∗ + 2α a∗
1, a

∗ + 2α, 1 + 2α a∗
2) when

√
ε > α. If C ∈ (1 + 2α, C∗), then there

exists only one solution of (11). For values of C ∈ (C∗, C
∗) we can have one, two or three

different solutions of (11) depending on the values of C, ε and α.

6.1 Bifurcation values for
√

ε 6= α and α = 2

Now we analyze the bifurcation values of C for the solutions of (11) fixed the value α = 2.

Proceeding in a similar way that in the case
√

ε = α we know that there exists at least

one bifurcation value C(ε) ∈ (C∗, C
∗). Moreover, this bifurcation value satisfies that

C(ε) > 1 + 2α = 5, and 5 is taken as a lower bound for C(ε).

In order to simplify the computations, we set ε =
√

ε. From the second equation of

(11) we have that s12 = C − 2 s13 α. Substituting s12 into the first equation of (11), for

α = 2 we obtain equation

h1(s13, ε, C) = 0 , (16)

where

h1(s13, ε, C) = −C7 ε + 28C6 s13 ε − 336 C5 s13
2 ε + s13

3
(

2240 C4 ε + C7 ε
)

+

106



s13
4

(

−8960 C3 ε − 28 C6 ε
)

+ s13
5

(

21504 C2 ε + 336C5 ε
)

+

s13
6

(

−28672 C ε − 2240 C4 ε
)

+ s13
7

(

2 − 2 C3 + 16384 ε + 8960C3 ε
)

+

s13
8

(

24 C2 − 21504 C2 ε
)

+ s13
9 (−96 C + 28672C ε) + s13

10 (128 − 16384 ε) .

Next we will analyze the bifurcation values C(ε) for which the number of positive real

solutions of equation (16) changes. We will proceed in a similar way as in the proof of

Proposition 4.

The number of positive real solutions of h1(s13, C, ε) = 0 changes, either when a

negative real solution is transformed to a positive one, or when a pair of complex conjugate

solutions are transformed to a pair of positive real solutions.

Since the coefficient of the independent term of h1(s13, C, ε) = 0 is always negative for

C > 5 and ε > 0, there is no bifurcation value C(ε) > 5 coming from passing a negative

real solution of h1(s13, C, ε) = 0 to a positive one. On the other hand, the bifurcation

values C(ε) coming from passing a pair of complex conjugate solutions to a pair of real

solutions are given by the values of C as functions of ε of the solutions of system

h1(s13, C, ε) = 0 , h2(s13, C, ε) =
d h1

d s13
(s13, ε, C) = 0 . (17)

In order to solve system (17) we compute the resultant of h1(s13, C, ε) and h2(s13, C, ε)

with respect to s13 obtaining the polynomial

Q(C, ε) = −2147483648 C42 ε6 (−1 + 128 ε) Q1(C, ε) ,

where Q1(C, ε) is a polynomial of degree 36 in the variable C. We note that if ε = 1/128,

then Q(C, ε) = 0, so, this case is treated aside. The solutions C(ε) of Q1(C, ε) = 0 provide

the bifurcation values C(ε).

When ε = 1/128, the resultant of the polynomials h1(s13, C, 1/128) and h2(s13, C,

1/128) is a polynomial Q(C) of degree 77 in the variable C. This polynomial has a

unique real root satisfying that C > 5 which is C = 10.5853 . . .. Analyzing the solutions

of equations (16) with ε = 1/128 for C near 10.5853 . . . we see that C = 10.5853 . . . is a

bifurcation value where one positive real solution of (16) bifurcates to three real positive

solutions of (16).

We analyze the bifurcation values ε for which the number of real positive solutions

C(ε), with C(ε) > 5, of equation Q1(C, ε) = 0 changes. We see that Q1(5, ε) < 0 for all

ε > 0, then there is no bifurcation value ε coming from solutions C(ε) < 5 which pass

to solutions C(ε) > 5. The bifurcation values ε coming from passing a pair of complex

solutions of Q1(C, ε) = 0 to a pair of real solutions of Q1(C, ε) = 0 are given by the values

of ε solution of system

Q1(C, ε) = 0 ,
d Q1

d C
(C, ε) = 24C2 Q2(C, ε) = 0 . (18)
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We solve system (18) by computing the resultant of Q1(C, ε) and Q2(C, ε) with respect

to C. We obtain a polynomial H(ε) of degree 357 in the variable ε, whose real positive

roots are

ε1 = 0.0000155637 . . . , ε2 = 0.0000223661 . . . , ε3 = 0.00024942 . . . , ε4 = 0.00232545 . . . ,

ε5 = 0.0169526 . . . , ε6 = 0.043392 . . . , ε7 = 2, ε8 = 2.2494 . . . .

Analyzing the solutions of Q1(C, ε) = 0 for values of ε close to εi, we obtain the

following result.

Lemma 7 Fixed ε > 0, we have the following number of solutions C(ε) of equation

Q1(C, ε) = 0 such that C(ε) > 5.

(a) For ε < 2 there exists a unique solution, C1(ε), with multiplicity 1.

(b) For ε = 2 there exist two different solutions, C1(ε) < C2(ε); C1(ε) with multiplicity

1 and C2(ε) with multiplicity 2.

(c) For ε ∈ (2, 2.2494 . . .) there exist three different solutions, C1(ε) < C2(ε) < C3(ε),

with multiplicity 1.

(d) For ε = 2.2494 . . . there exist two different solutions, C1(ε) < C3(ε); C1(ε) with

multiplicity 2 and C3(ε) with multiplicity 1.

(e) For ε > 2.2494 . . . there exist a unique solution, C3(ε), with multiplicity 1.

Analyzing the solutions of equation (16) near the bifurcation values Ci(ε) given in

Lemma 7 we obtain the following result.

Proposition 8 Suppose that α = 2 and ε =
√

ε. Let Ci = Ci(ε) be the bifurcation values

given in Lemma 7. Fixed ε > 0 the number(#) of solutions of equation (16) for C > 5 is

given in Table 6.

ε < 2
C (5, C1) C1 (C1,∞)

# 1 2 3

ε = 2
C (5, C1) C1 (C1, C2) C2 (C2,∞)

# 1 2 3 2 3

ε ∈ (2, 2.2494 . . .)
C (5, C1) C1 (C1, C2) C2 (C2, C3) C3 (C3,∞)

# 1 2 3 2 1 2 3

ε = 2.2494 . . .
C (5, C1) C1 (C1, C3) C3 (C3,∞)

# 1 1 1 2 3

ε > 2.2494 . . .
C (5, C3) C3 (C3,∞)

# 1 2 3

Table 6: The number (#) of solutions of equation (16) with C > 5.
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In order to count the number of planar non–collinear central configurations of the

Lennard–Jones 3–body problem (3) that come from solutions of (16), we proceed in a

similar way as in Section 5.

The solutions of (16) give planar non–collinear central configuration of the Lennard–

Jones 3–body problem (3) if s12 < 8
m

s13; that is, if ϕ(s13, C) < 0 with ϕ(s13, C) =

C − 4s13 − 8
m

s13. We see that there is a unique value of C for which the solution of

equation ϕ(s13, C) = 0 is a solution of equation (16). This value is given by

Cmε =
2 + m

2 m

(

m7 − 1048576 ε

m4 − 2048 ε

)
1
3

,

and it corresponds to a collinear central configuration. So, if s13(C, ε) is a solution of

equation (16) such that ϕ(s13(Cmε), Cmε) = 0, then the number of planar non–collinear

central configurations coming from solutions of (16) changes at C = Cmε.

Fixed ε > 0 and ε 6= 2, we analyze the properties of the function Cmε as a function of

m (see Figure 2 for details). When ε = 2 we have that
√

ε = α = 2, and this case has

been studied in Section 5.

C1
5

µ1

µ2
��

µ3

a)

C3

C1

C2

5

µ1 µ2

µ3

µ5

µ4
�� BB

��

b)

C3

5

µ1

µ2
�
� µ3

c)

Figure 2: Plot of Cmε.

109



If ε ∈ (0, 2), then Cmε → ∞ when m → 0+; Cmε has a minimum at a point m =

µ1 = µ1(ε) with Cµ1ε = C1(ε), where C1(ε) is the bifurcation value given in Lemma 7;

Cmε → ∞ when m → µ−
2 with µ2 = µ2(ε) = 4 2

3
4 ε

1
4 . For m > µ2, Cmε is an increasing

function such that Cmε → −∞ when m → µ+
2 ; Cmε = 0 when m = 4 2

6
7 ε

1
7 ; Cmε < 5 when

m ∈ (µ2, µ3) with µ3 = 8; and Cmε → ∞ when m → ∞ (see Figure 2 a)). We note that

µ1 < µ2 < 4 2
6
7 ε

1
7 < µ3.

If ε ∈ (2, 2.2494 . . .) where ε = 2.2494 . . . is the bifurcation value for ε given in

Lemma 7, then Cmε → ∞ when m → 0+; Cmε has a minimum at a point m = µ1 = µ1(ε)

with Cµ1ε = C1(ε); Cmε has a maximum at a point m = µ2 = µ2(ε) with Cµ2ε = C2(ε);

Cmε = 5 when m = µ3 = 8; Cmε = 0 when m = 4 2
6
7 ε

1
7 ; Cmε → −∞ when m → µ−

4

with µ4 = µ4(ε) = 4 2
3
4 ε

1
4 ; Cmε → ∞ when m → µ+

4 ; Cmε has a minimum at a point

m = µ5 = µ5(ε) with Cµ5ε = C3(ε); and Cmε → ∞ when m → ∞ (see Figure 2 b)).

Here C1(ε), C2(ε) and C3(ε) are the bifurcation values given in Lemma 7. We note that

µ1 < µ2 < µ3 < 4 2
6
7 ε

1
7 < µ4 < µ5.

If ε = 2.2494 . . ., then Cmε → ∞ when m → 0+; Cmε has an inflection point at

m = µ(ε) = µ(ε) with Cµε = C1(ε); Cmε = 5 when m = µ1 = 8; Cmε = 0 when

m = 4 2
6
7 ε

1
7 ; Cmε → −∞ when m → µ−

2 with µ2 = µ2(ε) = 4 2
3
4 ε

1
4 ; Cmε → ∞ when

m → µ+
2 ; Cmε has a minimum at a point m = µ3 = µ3(ε) with Cµ3ε = C3(ε); and

Cmε → ∞ when m → ∞. Here C1(ε) and C3(ε) are the bifurcation values given in

Lemma 7. We note that µ < µ1 < 4 2
6
7 ε

1
7 < µ2 < µ3.

If ε > 2.2494 . . ., then, for C ∈ (0, µ2) with µ2 = 4 2
3
4 ε

1
4 , Cmε is a decreasing function

such that Cmε → ∞ when m → 0+; Cmε = 5 when m = µ1 = 8; Cmε = 0 when

m = 4 2
6
7 ε

1
7 ; Cmε → −∞ when m → µ−

2 with µ2 = 4 2
3
4 ε

1
4 . Moreover, Cmε → ∞ when

m → µ+
2 ; Cmε has a minimum at a point m = µ3 with Cµ3ε = C3(ε) where C3(ε) is the

bifurcation value given in Lemma 7; and Cmε → ∞ when m → ∞ (see Figure 2 c)). We

note that µ1 < 4 2
6
7 ε

1
7 < µ2 < µ3.

The number of central configurations coming from the solutions of (16) given by Propo-

sition 8 is summarized in the following result.

Theorem 9 Let C1 = C1(ε), C2 = C2(ε) and C3 = C3(ε), with 5 < C1(ε) 6 C2(ε) 6

C3(ε), be the bifurcation values given in Proposition 8; and let µi = µi(ε) be the values

defined above. Fixed ε > 0 and m > 0, the number of symmetric planar non–collinear

central configurations of the Lennard–Jones 3–body problem (3) having moment of inertia

I = C
2(2+m)

changes at C = C1 = C1(ε), C = C2 = C2(ε), C = C3 = C3(ε) and

C = Cm = Cmε.

(a) Fixed ε ∈ (0, 2), the number (#) of symmetric planar non–collinear central configu-

rations for C > 5 and m > 0 is summarized in Table 7. In this table, µ∗ = µ∗(ε) >

µ3 is a value such that Cµ∗ε = C1.
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m ∈ (0, µ1)
C (5, C1) C1 (C1, Cm) [Cm,∞)

# 1 2 3 2

m = µ1
C (5, C1) C1 = Cµ1 (C1,∞)

# 1 1 2

m = (µ1, µ2)
C (5, C1) C1 (C1, Cm] (Cm,∞)

# 1 1 1 2

m = [µ2, µ3]
C (5, C1) C1 (C1,∞)

# 1 1 1

m = (µ3, µ
∗)

C (5, Cm] (Cm, C1) C1 (C1,∞)

# 0 1 1 1

m = µ∗ C (5, C1) C1 = Cµ∗ (C1,∞)

# 0 0 1

m = (µ∗,∞)
C (5, C1) C1 (C1, Cm] (Cm,∞)

# 0 0 0 1

Table 7: The number (#) of central configurations fixed ε ∈ (0, 2).

(b) If ε = 2, then
√

ε = α = 2. Therefore the number (#) of symmetric planar non–

collinear central configurations for C > 5 and m > 0 is given by Theorem 6 (see

Table 4).

(c) Fixed ε ∈ (2, 2.2494 . . .), the number (#) of symmetric planar non–collinear central

configurations for C > 5 and m > 0 is summarized in Table 8. In this table,

µ∗
1 = µ∗

1(ε), µ∗
2 = µ∗

2(ε) and µ∗
3 = µ∗

3(ε) are values such that µ∗
1 < µ∗

2 < µ2 < µ2 <

µ∗
3 < µ4 < µ5 and Cµ∗

1ε = C3, Cµ∗

2ε = C2 and Cµ∗

3ε = C1.

(d) Fixed ε > 2.2494 . . ., the number (#) of symmetric planar non–collinear central

configurations for C > 5 and m > 0 is summarized in Table 9. In this table,

µ∗ = µ∗(ε) < µ1 is a value such that Cµ∗ε = C3.
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m ∈ (0, µ∗

1
)

C (5, C1) C1 (C1, C2) C2 (C2, C3) C3 (C3, Cm) [Cm,∞)

# 1 2 3 2 1 2 3 2

m = µ∗

1

C (5, C1) C1 (C1, C2) C2 (C2, C3) C3 = Cµ
∗

1
(C3,∞)

# 1 2 3 2 1 1 2

m = (µ∗

1
, µ∗

2
)

C (5, C1) C1 (C1, C2) C2 (C2, Cm) [Cm, C3) C3 (C3,∞)

# 1 2 3 2 1 0 1 2

m = µ∗

2

C (5, C1) C1 (C1, C2) C2 = Cµ
∗

2
(C2, C3) C3 (C3,∞)

# 1 2 3 1 0 1 2

m = (µ∗

2
, µ1)

C (5, C1) C1 (C1, Cm) [Cm, C2) C2 (C2, C3) C3 (C3,∞)

# 1 2 3 2 1 0 1 2

m = µ1

C (5, C1) C1 = Cµ1
(C1, C2) C2 (C2, C3) C3 (C3,∞)

# 1 1 2 1 0 1 2

m = (µ1, µ2)
C (5, C1) C1 (C1, Cm] (Cm, C2) C2 (C2, C3) C3 (C3,∞)

# 1 1 1 2 1 0 1 2

m = µ2

C (5, C1) C1 (C1, C2) C2 = Cµ2
(C2, C3) C3 (C3,∞)

# 1 1 1 0 0 1 2

m = (µ2, µ
∗

3
)

C (5, C1) C1 (C1, Cm) [Cm, C2) C2 (C2, C3) C3 (C3,∞)

# 1 1 1 0 0 0 1 2

m = µ∗

3

C (5, C1) C1 = Cµ
∗

3
(C1, C2) C2 (C2, C3) C3 (C3,∞)

# 1 0 0 0 0 1 2

m = (µ∗

3
, µ3)

C (5, Cm) [Cm, C1) C1 (C1, C2) C2 (C2, C3) C3 (C3,∞)

# 1 0 0 0 0 0 1 2

m = [µ3, µ4]
C (5, C1) C1 (C1, C2) C2 (C2, C3) C3 (C3,∞)

# 0 0 0 0 0 1 2

m = (µ4, µ5)
C (5, C1) C1 (C1, C2) C2 (C2, C3) C3 (C3, Cm) [Cm,∞)

# 0 0 0 0 0 1 2 1

m = µ5

C (5, C1) C1 (C1, C2) C2 (C2, C3) C3 = Cµ5
(C3,∞)

# 0 0 0 0 0 0 1

m = (µ5,∞)
C (5, C1) C1 (C1, C2) C2 (C2, C3) C3 (C3, Cm] Cm,∞)

# 0 0 0 0 0 0 0 1

Table 8: The number (#) of central configurations fixed ε ∈ (2, 2.2494 . . .).

112



m ∈ (0, µ∗)
C (5, C3) C3 (C3, Cm) [Cm,∞)

# 1 2 3 2

m = µ∗ C (5, C3) C3 = Cµ∗ (C3,∞)

# 1 1 2

m = (µ∗, µ1)
C (5, Cm) [Cm, C3) C3 (C3,∞)

# 1 0 1 2

m = [µ1, µ2]
C (5, C3) C3 (C3,∞)

# 0 1 2

m = (µ2, µ3)
C (5, C3) C3 (C3, Cm) [Cm,∞)

# 0 1 2 1

m = µ3
C (5, C3) C3 = µ3 (C3,∞)

# 0 0 1

m = (µ3,∞)
C (5, C3) C3 (C3, Cm] (Cm,∞)

# 0 0 0 1

Table 9: The number (#) of central configurations fixed ε > 2.2494 . . ..
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