The Gravitational Parameter from the Viewpoint of Canonical Celestial Mechanics

Luis Floría *
Grupo de Mecánica Espacial. Universidad de Zaragoza

Abstract

We consider the introduction of the gravitational coupling parameter μ as a canonical variable. In the special case of Keplerian systems, this variable can be incorporated, as a canonical orbital element (in fact, a canonical constant), into the segment of momenta of certain canonical sets. The corresponding canonically conjugate coordinate turns out to be an eccentric-like anomaly.

Key words: Keplerian systems, gravitational coupling parameter, extended phase space, canonical transformations, canonical orbital elements, time transformations.

1 Introduction

Baumgarte (1980, §2; Appendix 1) studied canonical transformations to make a canonical variable (momentum) of the gravitational coupling parameter μ, its conjugate coordinatetype variable being -essentially- the eccentric anomaly of elliptic Keplerian motion.

In a certain sense, this way of thinking may be looked on as pertaining to a kind of dual version of attempts to introduce some anomaly-like parameters as canonical elements (e.g., Andoyer 1913, and references therein) within the canonical theory of Keplerian systems; in particular, this sort of duality between μ and an eccentric-like anomaly is found in Levi-Civita (1913, specially $\S 2$), the energy of the system being treated as an absolute constant. Certain classical results due to these two authors, as well as several proposals by some other researchers -dating back to the second decade of the 20th century-, were thoroughly examined, systematized and extended by Soudan $(1953,1955)$, whose analysis concentrates on canonical orbital elements for elliptic-type quasi-Keplerian motion. In this respect, see also Hagihara (1970, §5.20).

Further generalizations, not only for bound orbits, were derived by Cid \& Calvo (1973/1975), starting from polar nodal variables. Palacios (1973/1977) extended Soudan's treatment of quasi-Keplerian motion to the case of hyperbolic-type orbits.

[^0]After a review of some of these precedents for a canonical approach to the treatment and interpretation of the gravity parameter μ, we give an outline of their possible extensions within the framework of a uniform formulation and description of two-body motion, i.e., regardless of the type of conic orbit at issue (Stiefel \& Scheifele 1971, §11; Floría 2000).

2 Baumgarte's First Approach: Naïve Homogeneous Formalism

In this Section we reformulate the canonical approach taken by Baumgarte $(1980, \S 2)$ to deal with elliptic orbits in the Kepler problem, provided that the eccentric anomaly is chosen as the independent variable. On the basis of his results, we sketch out a proposal for their adaptation to a universal treatment of Keplerian orbits.

Let the canonical set of Cartesian variables be represented by the symbols (\mathbf{p}, \mathbf{x}), where the notation $\mathbf{p}^{t} \equiv\left(p_{1}, p_{2}, p_{3}\right)$ refers to the momenta canonically conjugate to the usual Cartesian coordinates $\mathbf{x}^{t} \equiv\left(x_{1}, x_{2}, x_{3},\right)$; accordingly, $r^{2}=\|\mathbf{x}\|^{2} \equiv \mathbf{x}^{2}=x_{1}^{2}+x_{2}^{2}+x_{3}^{2}$. Here the notation ($)^{t}$ represents the usual matrix transposition, while t stands for the independent variable (physical time).

In these notations, the unperturbed two-body motion, with t as the independent variable, is governed by the standard, conservative Keplerian Hamiltonian

$$
\begin{equation*}
\mathcal{H}_{K} \equiv \mathcal{H}_{K}(\mathbf{p} ; \mathbf{x} ;-)=(1 / 2) \mathbf{p}^{2}-(\mu / r), \tag{1}
\end{equation*}
$$

where μ designates the gravitational parameter of the two-body system (essentially attached to the attracting central mass). If \mathcal{E} is the total energy of the system, the problem possesses the first integral $\mathcal{H}_{K}=\mathcal{E}$. In the case of bound orbits $(\mathcal{E}<0)$, one may introduce an action variable $\alpha=\mu / \sqrt{-2 \mathcal{E}}$, which suggests the use of the homogeneous canonical formalism (Stiefel \& Scheifele 1971, §30, §34, §37), on enlarging the ordinary phase space with two additional dimensions, that is, introducing a new pair of canonically conjugate variables (p_{0}, x_{0}), where $p_{0}=-\mathcal{E}$ is minus the total energy, and $x_{0} \equiv t$. In this way, the physical time t is viewed as a dependent canonical variable (more precisely, an additional coordinate occurring on equal footing with the usual spatial coordinates). In addition to this, transformations of the independent variable $x_{0} \equiv t \longrightarrow s$, from t to a new fictitious time s, can be defined by means of differential relations of the type

$$
\begin{equation*}
d t=\tilde{f} d s, \quad t^{\prime}=\tilde{f}, \quad \text { where } \quad \tilde{f} \equiv \tilde{f}\left(\mathbf{p}, \mathbf{x}, p_{0}, x_{0}\right)>0, \quad()^{\prime} \equiv d / d s \tag{2}
\end{equation*}
$$

In extended phase space formulation, with t as the independent variable, the preceding Keplerian Hamiltonian reads (after adequate choice of initial conditions)

$$
\begin{equation*}
\mathcal{H}_{h} \equiv \mathcal{H}_{h}\left(\mathbf{p}, p_{0} ; \mathbf{x}-;-\right)=\mathcal{H}_{K}+p_{0}=0 . \tag{3}
\end{equation*}
$$

An extended phase space Hamiltonian which vanishes initially will vanish on any solution of the system of differential equations. The corresponding homogeneous Hamiltonian,
with the fictitious time s taking the role of the independent variable, is

$$
\begin{equation*}
\mathcal{H}_{h}^{*}=\mathcal{H}_{h} \tilde{f}=\left(\mathcal{H}_{K}+p_{0}\right) \tilde{f}=\frac{1}{2} \mathbf{p}^{2} \tilde{f}+p_{0} \tilde{f}-\frac{\mu}{r} \tilde{f} \tag{4}
\end{equation*}
$$

This scaling function \tilde{f} for the differential time transformation (2) is now chosen so as to create and isolate an additive term with expression $-\mu / \sqrt{2 p_{0}}$, say from

$$
\begin{equation*}
-\mu \tilde{f} / r \longleftrightarrow-\mu / \sqrt{2 p_{0}} \Longrightarrow \tilde{f}=r / \sqrt{2 p_{0}} \tag{5}
\end{equation*}
$$

The pseudo-time $s \equiv E$ is the eccentric anomaly, and the Keplerian Hamiltonian becomes

$$
\begin{equation*}
\mathcal{H}_{h}^{*}=\left[(1 / 2) \mathbf{p}^{2}+p_{0}\right]\left(r / \sqrt{2 p_{0}}\right)-\left(\mu / \sqrt{2 p_{0}}\right) . \tag{6}
\end{equation*}
$$

One may attempt to eliminate the additive isolated term $-\mu / \sqrt{2 p_{0}}$ from \mathcal{H}_{h}^{*} : given that the coordinate x_{0} is ignorable in \mathcal{H}_{h}^{*}, the canonically conjugate momentum p_{0} is constant. Dropping the constant expression $-\mu / \sqrt{2 p_{0}}$ allows one to omit the x_{0}^{\prime}-equation.

Accordingly, an alternate treatment of this question proceeds as follows: the expression $(-\mu)$, originally a parameter, can be contemplated as a canonical momentum in \mathcal{H}_{h}^{*},

$$
\begin{equation*}
-\mu=p_{4} \tag{7}
\end{equation*}
$$

The coordinate x_{4}, canonically conjugate to p_{4}, is ignorable in \mathcal{H}_{h}^{*} :

$$
\begin{equation*}
\mathcal{H}_{h}^{*} \equiv \mathcal{H}_{h}^{*}\left(p_{0}, p_{1}, p_{2}, p_{3}, p_{4} ;-, x_{1}, x_{2}, x_{3},-;-\right)=\left[\frac{1}{2} \mathbf{p}^{2}+p_{0}\right] \frac{r}{\sqrt{2 p_{0}}}+\frac{p_{4}}{\sqrt{2 p_{0}}} \tag{8}
\end{equation*}
$$

Now, perform a canonical transformation to new variables $\left(\bar{p}_{k}, \bar{x}_{k}\right), k=0,1,2,3,4$, such that the momenta should change according to the equations

$$
\begin{equation*}
p_{i}=\bar{p}_{i}, \quad i=0,1,2,3, \quad \bar{p}_{4}=p_{4} / \sqrt{2 p_{0}} \equiv-\mu / \sqrt{2 p_{0}} \tag{9}
\end{equation*}
$$

Thus, $x_{j}=\bar{x}_{j}(j=1,2,3)$, and the transformation operates non-trivially on the variables of interest, that is, on the variables $\left(p_{0}, p_{4}, x_{0}, x_{4}\right)$,

$$
\begin{align*}
& \bar{p}_{4}=p_{4} / \sqrt{2 p_{0}}, \quad p_{0}=\bar{p}_{0}, \tag{10}\\
& x_{4}=\bar{x}_{4} / \sqrt{2 \bar{p}_{0}}, \quad x_{0}=\bar{x}_{0}-\left(\bar{p}_{4} / 2 \bar{p}_{0}\right) \bar{x}_{4}, \quad \text { with } \tag{11}\\
& \bar{x}_{4}=s=E(+ \text { const. }) \tag{12}
\end{align*}
$$

after which the Hamiltonian of the Kepler problem is converted into the function

$$
\begin{equation*}
\overline{\mathcal{H}}_{h}^{*} \equiv \frac{\bar{r}}{\sqrt{2 \bar{p}_{0}}}\left[\frac{1}{2} \overline{\mathbf{p}}^{2}+\bar{p}_{0}\right]+\bar{p}_{4}=\frac{r}{\sqrt{2 p_{0}}}\left[\frac{1}{2} \mathbf{p}^{2}+p_{0}\right]+\bar{p}_{4} \tag{13}
\end{equation*}
$$

where, for convenience in writing, one has simplified the notation by omitting the overbars according to the convention $\bar{r} \rightarrow r, \overline{\mathbf{p}} \rightarrow \mathbf{p}$, and $\bar{p}_{0} \rightarrow p_{0}$. This function can be viewed as
a new homogeneous Hamiltonian, in which \bar{p}_{4} would play the part of the energy-like term of the canonical couple $\left(\bar{p}_{4}, \bar{x}_{4}\right)$. Consequently, if the isolated momentum \bar{p}_{4} is removed,

$$
\begin{equation*}
\mathcal{H}^{*} \equiv\left(r / \sqrt{2 p_{0}}\right)\left[(1 / 2) \mathbf{p}^{2}+p_{0}\right] \tag{14}
\end{equation*}
$$

can be viewed as a non-homogeneous Hamiltonian (in an ordinary phase-space coordinatized by the chart $\left.\left(\bar{p}_{i}, \bar{x}_{i}\right), i=0, \ldots, 3\right)$, to which an action variable $\alpha=\mathcal{H}^{*}$ is attached.

The new independent variable corresponding to \mathcal{H}^{*} is the canonical variable \bar{x}_{4}, conjugate to \bar{p}_{4}, that is, $\bar{x}_{4}=s=E$ (up to an additive constant).

These results, originally restricted to elliptic motion, can be generalized to the case of other types of two-body conic-section orbits. If a unified treatment of Keplerian orbital motion is desired, use can be made of universal functions, variables and parameters (Stiefel \& Scheifele 1971, §11; Battin 1987, §4.5, §4.6; Floría 2000). To this end, irrespective of the specific kind of orbit, a new time parameter τ is directly introduced, instead of the elliptic eccentric anomaly, via Eq. (2): the scaling function \tilde{f} in Eq. (5) is to be taken as

$$
\begin{equation*}
\tilde{f}=r \Longrightarrow t \longrightarrow \tau: d t=r d \tau \text {, (universal) Sundman's transformation, } \tag{15}
\end{equation*}
$$

thanks to which the transition to variables $\left(\bar{p}_{k}, \bar{x}_{k}\right), k=0, \ldots, 4$, can be avoided, Hamiltonian (4) can be dealt with exactly in the same way as $\overline{\mathcal{H}}_{h}^{*}$ in Eq. (13), and the independent argument τ is, essentially, the canonical coordinate x_{4} conjugate to p_{4}.

3 Baumgarte's Second Approach: Hamilton-Jacobi Theory

Referring to Baumgarte (1980, Appendix 1), the Kepler problem can also be treated within the extended-phase-space Hamilton-Jacobi theory formulated in (enlarged) spherical polar variables, for which the notations $\left(x_{0}, r, \theta, \varphi ; p_{0}, p_{r}, p_{\theta}, p_{\varphi}\right)$ are adopted,

$$
\begin{array}{lll}
x_{1}=r \cos \theta \cos \varphi, & x_{2}=r \cos \theta \sin \varphi, & x_{3}=r \sin \theta, \\
p_{r}=\dot{r}, & p_{\theta}=r^{2} \dot{\theta}, & p_{\varphi}=r^{2} \dot{\varphi} \cos ^{2} \theta,
\end{array}
$$

with $x_{0} \equiv t$. Consider also $-\mu=p_{4}$, and the homogeneous Keplerian Hamiltonian

$$
\begin{equation*}
\mathcal{H}_{h} \equiv \mathcal{H}+p_{0}=\frac{1}{2}\left[p_{r}^{2}+\frac{p_{\theta}^{2}}{r^{2}}+\frac{p_{\varphi}^{2}}{r^{2} \cos ^{2} \theta}\right]+\frac{p_{4}}{r}+p_{0}(=0) . \tag{16}
\end{equation*}
$$

As well known, p_{φ} is the z-component of the angular momentum vector, while the combination $p_{\theta}^{2}+p_{\varphi}^{2} / \cos ^{2} \theta$ measures the square of the magnitude of that vector. In view of the above Hamiltonian, the momenta p_{0} and p_{4} are already elements. Take

$$
\begin{equation*}
p_{0}=P_{0}, \quad \sqrt{p_{\theta}^{2}+\left(p_{\varphi}^{2} / \cos ^{2} \theta\right)}=P_{\psi}, \quad p_{\varphi}=P_{\varphi}, \quad p_{4}=P_{4}, \tag{17}
\end{equation*}
$$

and the generating function $S \equiv S\left(x_{0}, r, \theta, \varphi, x_{4} ; P_{0}, P_{\psi}, P_{\varphi}, P_{4}\right)$ as a complete solution to the Hamilton-Jacobi partial differential equation linked to Hamiltonian (16),

$$
\begin{equation*}
\frac{1}{2}\left[\left(\frac{\partial S}{\partial r}\right)^{2}+\frac{1}{r^{2}}\left\{\left(\frac{\partial S}{\partial \theta}\right)^{2}+\frac{1}{\cos ^{2} \theta}\left(\frac{\partial S}{\partial \varphi}\right)^{2}\right\}\right]+\frac{1}{r} \frac{\partial S}{\partial x_{4}}+\frac{\partial S}{\partial x_{0}}=0 \tag{18}
\end{equation*}
$$

Subsequent calculations will take advantage of the useful abbreviations

$$
\begin{equation*}
Q^{*}=p_{\theta}^{2}=P_{\psi}^{2}-\frac{P_{\varphi}^{2}}{\cos ^{2} \theta}, \quad Q=p_{r}^{2}=-2 P_{0}-\frac{2 P_{4}}{r}-\frac{P_{\psi}^{2}}{r^{2}}, \quad I_{j}=\int_{r_{0}}^{r} \frac{d r}{r^{j} \sqrt{Q}} \tag{19}
\end{equation*}
$$

The lower limit r_{0} in the integral over r will be the lowest positive root of $Q=0$. Accordingly, separation of variables leads to the expression for the generating function

$$
\begin{equation*}
S=\int_{r_{0}}^{r} \sqrt{Q} d r+\int_{0}^{\theta} \sqrt{Q^{*}} d \theta+\varphi P_{\varphi}+x_{4} P_{4}+x_{0} P_{0} \tag{20}
\end{equation*}
$$

which defines a canonical transformation in which all the new variables are cyclic for the problem posed by (16): the transformation generated by S brings \mathcal{H}_{h} into the equilibrium. Four constants are obtained for the derivatives $\partial S / \partial P_{0}, \partial S / \partial P_{4}, \partial S / \partial P_{\psi}$ and $\partial S / \partial P_{\varphi}$:

$$
\begin{align*}
\partial S / \partial P_{0} & =x_{0}-I_{0}=c_{0}, \quad \partial S / \partial P_{4}=x_{4}-I_{1}=c_{4}, \tag{21}\\
\frac{\partial S}{\partial P_{\psi}} & =-P_{\psi} I_{2}+\int_{0}^{\theta} \frac{P_{\psi}}{\sqrt{Q^{*}}} d \theta=c_{\psi}, \quad \frac{\partial S}{\partial P_{\varphi}}=\varphi-P_{\varphi} \int_{0}^{\theta} \frac{d \theta}{\cos ^{2} \theta \sqrt{Q^{*}}}=c_{\varphi} . \tag{22}
\end{align*}
$$

With the notations (amending some typing mistakes in Baumgarte's formulae) for quantities a and e, as functions of the new momenta,

$$
\begin{equation*}
a=-P_{4} /\left(2 P_{0}\right), \quad P_{\psi}^{2}=-P_{4} a\left(1-e^{2}\right), \tag{23}
\end{equation*}
$$

after performing the required quadratures I_{1} and I_{0} over r, one obtains

$$
\begin{equation*}
I_{1}=E / \sqrt{2 P_{0}}, \quad E=\sqrt{2 P_{0}}\left(x_{4}-c_{4}\right), \quad r=a(1-e \cos E), \tag{24}
\end{equation*}
$$

which gives the parametric representation of an ellipse with the eccentric anomaly E as the parameter, semi-major axis a and eccentricity e. And from relations (21),

$$
\begin{equation*}
d x_{0} / d E=r / \sqrt{2 P_{0}} \Longrightarrow x_{0}-\text { const. }=t-t_{P}=\left[a /\left(2 P_{0}\right)^{1 / 2}\right](E-e \sin E)=I_{0} . \tag{25}
\end{equation*}
$$

In these formulae r_{0} is the distance of the pericentre; t_{P} is the time of a pericentre passage.
As a conclusion, taking $-\mu=p_{4}$ leads to the introduction of the eccentric anomaly E as a variable related to the canonical coordinate x_{4}, conjugate to p_{4}.

The above considerations can be made universal, that is, uniformly valid for any kind of conic-section orbit, if principles of the nature of those presented, e.g., in Stiefel \& Scheifele (1971, §11), Battin (1987, §4.5, §4.6), or Floría (2000), are applied. With this aim in view, the expressions in Eq. (23) are replaced by

$$
\begin{equation*}
2 P_{0}=-P_{4}(1-e) / q, \quad P_{\psi}^{2}=-P_{4} q(1+e)=-P_{4} p, \tag{26}
\end{equation*}
$$

the distance of the pericentre q playing a role similar to (although more general than) the one taken by the semi-major axis in derivations concerning elliptic or hyperbolic motion.

4 On Canonical Sets of Orbital Elements for Quasi-Keplerian Systems

Starting from polar nodal variables, previous results due to Soudan (1953, 1955), concerning quasi-Keplerian systems, were generalized by Cid \& Calvo (1973/1975). Proceeding along the same basic guide-lines as Soudan, Palacios (1973/1977) derived the corresponding sets of canonical variables in the case of hyperbolic-type orbital motion.

Examining and amending some developments due to Andoyer (1913), Soudan (1953, 1955) devised a systematic procedure to obtain six canonical sets of orbital variables that are elements for elliptic-type motion acted upon by a certain central potential of the form $V(r)=-\mu / r-\mu^{\prime} / r^{2}$, which is linked to the so-called quasi-Keplerian systems. Five of these canonical sets generalize the classical ones usually known after Delaunay, Levi-Civita, Hill, de Sitter and Jekhovsky in the case of pure, unperturbed Keplerian motion, while a new set was uncovered by Soudan. As in the Andoyer (1913) proposal, this unified procedure was based on a thorough analysis of the Hamilton-Jacobi equation in spherical polar variables and certain parameters; different special choices of parameters (playing the role of dynamical variables -canonical momenta- or absolute constants) in a generating function lead to the said sets of canonical variables.

In terms of polar nodal variables, $\left(r, \theta, \nu ; p_{r}, p_{\theta}, p_{\nu}\right)$, the study of orbital motion in a central force field with potential $V(r)$ hinges on the analysis of the Hamiltonian

$$
\begin{equation*}
\mathcal{H}=(1 / 2)\left[p_{r}^{2}+\left(p_{\theta}^{2} / r^{2}\right)\right]+V(r) \tag{27}
\end{equation*}
$$

Subsequent developments will be related to the specific type of quasi-Keplerian potential

$$
\begin{equation*}
V(r)=-\mu / r-\mu^{\prime} / r^{2}, \quad \text { where } \mu \text { and } \mu^{\prime} \text { are parameters } \tag{28}
\end{equation*}
$$

(Cid \& Calvo 1973/1975). Here the meaning of $\left(\theta, p_{\theta}\right)$ is not the same as in our Section 3. Let \mathcal{E} be the constant energy of the solution. The Hamilton-Jacobi equation is

$$
\begin{equation*}
(1 / 2)\left[(\partial S / \partial r)^{2}+\left(1 / r^{2}\right)(\partial S / \partial \theta)^{2}\right]-(\mu / r)-\left(\mu^{\prime} / r^{2}\right)=\mathcal{E} \tag{29}
\end{equation*}
$$

to which a solution by separation of variables is found under the form

$$
\begin{equation*}
S=S\left(r, \theta, \nu ; H, G, \mathcal{E}, \mu, \mu^{\prime}\right)=\theta G+\nu H+\int_{r_{0}}^{r} \sqrt{2 \mathcal{E}+\frac{2 \mu}{r}+\frac{2 \mu^{\prime}-G^{2}}{r^{2}}} d r \tag{30}
\end{equation*}
$$

that is, a function depending on the variables (r, θ, ν) and five parameters, where G and H are separation constants. As for r_{0}, it is usually taken as the lowest zero of the function of r under the radical sign. This solution contains the quantities ($G, H, \mathcal{E}, \mu, \mu^{\prime}$); in the case of pure Keplerian systems, G is the (constant) norm of the angular momentum vector, H represents the (constant) vertical component of the angular momentum, \mathcal{E} is the energy constant, $\mu^{\prime}=0$, and the gravity parameter μ is an absolute constant. Nevertheless, in
what follows these quantities $\left(G, H, \mathcal{E}, \mu, \mu^{\prime}\right)$ are contemplated as parameters, and three of them can be taken as the new momenta. Replacing μ^{\prime} with a new parameter η,

$$
\begin{align*}
\mu^{\prime} & \longrightarrow \eta: \quad 2 \mu^{\prime}-G^{2}=-G^{2} /(1+\eta), \quad 2 \mu^{\prime}=[\eta /(1+\eta)] G^{2} \tag{31}\\
S & =S(r, \theta, \nu ; H, G, \mathcal{E}, \mu, \eta)=\theta G+\nu H+\int_{r_{0}}^{r} \sqrt{2 \mathcal{E}+\frac{2 \mu}{r}-\frac{G^{2}}{(1+\eta) r^{2}}} d r \tag{32}\\
p_{r} & \equiv \dot{r}=\frac{\partial S}{\partial r}=\sqrt{2 \mathcal{E}+\frac{2 \mu}{r}-\frac{G^{2}}{(1+\eta) r^{2}}}, \quad p_{\theta}=\frac{\partial S}{\partial \theta}=G \tag{33}
\end{align*}
$$

while $\nu=Q_{H}=h$ and $p_{\nu}=H$ remain unchanged. To complete the system of transformation equations implicitly defined by S, according to the standard procedure in dealing with the Kepler problem, introduce a true-like anomaly f by means of a differential relation $r^{2} d f=G d t$, such that $f_{0}=0 \rightarrow r\left(f_{0}\right)=r_{0}$. Notice also that $\eta=0$ when $\mu^{\prime}=0$.

The five parameters $(G, H, \mathcal{E}, \mu, \eta)$ are still available, and different choices of new canonical momenta created by the transformation generated by S are possible, while the remaining quantities would act as parameters or absolute constants in the transformation. Some illustrative cases are presented, in which μ is introduced as a canonical variable.

- Take \mathcal{E} and η as constants, and consider the new canonical set $\left(\mu, G, H ; Q_{\mu}, Q_{G}, h\right)$. The remaining, non-trivial transformation equations are

$$
\begin{equation*}
Q_{G}=\frac{\partial S}{\partial G}=\theta-\int_{r_{0}}^{r} \frac{G d r}{(1+\eta) r^{2} \dot{r}}=\theta-\frac{f}{1+\eta}, Q_{\mu}=\frac{\partial S}{\partial \mu}=\int_{r_{0}}^{r} \frac{d r}{r \dot{r}}=\int_{T}^{t} \frac{d t}{r}=s \tag{34}
\end{equation*}
$$

where s is a regularizing variable, an eccentric-like anomaly, as introduced by means of this last integral, and T is a value of t corresponding to $r_{0}: r(T)=r_{0}=\left.r\right|_{\left(s_{0}=0\right)}$. The preceding expression for Q_{G} would become somewhat simpler in terms of another true-like anomaly φ given as $r^{2}(1+\eta) d \varphi=G d t$, with $r_{0}=\left.r\right|_{\left(\varphi_{0}=0\right)}$.

- Take G and η as constants; the new set is $\left(\mu, \mathcal{E}, H ; Q_{\mu}, Q_{\mathcal{E}}, h\right)$. The significant transformation equations are now

$$
\begin{equation*}
Q_{\mathcal{E}}=\frac{\partial S}{\partial \mathcal{E}}=\int_{r_{0}}^{r} \frac{d r}{\dot{r}}=\int_{T}^{t} d t=t-T, \quad Q_{\mu}=\frac{\partial S}{\partial \mu}=\int_{r_{0}}^{r} \frac{d r}{r \dot{r}}=\int_{T}^{t} \frac{d t}{r}=s \tag{35}
\end{equation*}
$$

The preceding variable s in (34) and (35), coinciding with Q_{μ} (the coordinate conjugate to μ), satisfies formally the same differential relation (15) as the fictitious time τ in Section 2, and can be expressed as a universal variable -in terms of universal functions- thanks to an adequate modification of Sundman's transformation (Stiefel \& Scheifele 1971, §11, Eqs. [54] and [60]), suitably adapted to the case of perturbed Kepler problems.

More involved considerations are to be taken into account when η is not an absolute constant, in which case lengthy reckoning work is required (see Cid \& Calvo 1973/1975).

Acknowledgements

This work has been partially supported by DGES of Spain (Project PB. 98-1576), and Junta de Castilla y León (Referen. VA014/02).

References

[1] Andoyer, H.: 1913, 'Sur l'anomalie excentrique et l'anomalie vraie comme éléments canoniques du mouvement elliptique, d'près MM. T. Levi-Civita et G.-W. Hill'. Bulletin astronomique, 30, 425-429.
[2] Battin, R. H.: 1987, An Introduction to the Mathematics and Methods of Astrodynamics. AIAA Education Series. New York.
[3] Baumgarte, J.: 1980, 'Eine Lie-Algebra, die Delaunay-similar-Elemente in der exzentrischen Anomalie erzeugt'. Journal of Physics A, 13, 1145-1158.
[4] Cid, R., and Calvo, M.: 1973/1975, 'Sistemas canónicos en Mecánica Celeste’. Revista de la Academia de Ciencias de Zaragoza (2 2^{a} Serie), 30, 43-51. [Oral Presentation: II Jornadas Matemáticas Hispano-Lusitanas, Madrid, April 1973].
[5] Floría, L.: 2000, 'Reduction of Algebraic Integrands Involving Universal Functions. Application to Sundman-Type Transformations in Orbital Motion'. Mechanics Research Communicactions, 27, 511-517.
[6] Hagihara, Y.: 1970, Celestial Mechanics (vol. 1:"Dynamical Principles and Transformation Theory"). The MIT Press. Cambridge (Massachusetts).
[7] Levi-Civita, T.: 1913, 'Nuovo sistema canonico di elementi ellittici'. Annali di Matematica Pura ed Applicata (Serie III), 20, 153-169.
[8] Palacios, M. P.: 1973/1977, 'Sistemas de variables canónicas en el caso de movimientos hiperbólicos'. Actas de las II Jornadas Matemáticas Hispano-Lusitanas (Madrid, April 1973), 489-501. [Publication: Madrid, 1977].
[9] Soudan, A.: 1953, 'Sur de nouveaux éléments canoniques du mouvement elliptique'. Comptes rendus de l'Académie des Sciences de Paris 236, 1533-1535.
[10] Soudan, A.: 1955, 'Sur des systèmes de variables canoniques'. Bulletin astronomique (Ser. 2), 19, 225-286, 287-323.
[11] Stiefel, E. L. \& Scheifele, G.: 1971, Linear and Regular Celestial Mechanics. Springer. Berlin-Heidelberg-New York.

[^0]: *lfloria@posta.unizar.es

