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Abstract

It is well known that Kepler’s equation can be solved by means of an iterative

method defined, in a natural way, from the equation itself. This method yields to

the unique solution if the eccentricity is in the range of the elliptic orbits. However,

if we allow the eccentricity to take values greater than one or even in the complex

plane, we discover a rich dynamics where period doubling bifurcations cascades are

found, as well as fractal structures.

1 Introduction

May be Kepler’s equation is the most studied nonlinear equation. In fact, a large number

of papers are devoted to its solution in numerical or analytical form. Moulton [6] referred

123 papers on Kepler’s equation in January 1900, and the list was incomplete. Nowadays,

papers on Kepler’s equation and its solution are still of scientific interest (see e.g. [7, 8])

and it shall be in the future. Thus, it is not infrequent to find Kepler’s equation in the

text books as an example to test different numerical methods. In this way, we found the

following heading in a sheet of problems on numerical solutions of nonlinear equations

Use Newton’s method to solve the Kepler’s equation: E − e sin E = M , for

different values of M and e and different starting points.

It is surprising that no restriction on the values of the eccentricity is considered. Indeed,

from the point of view of Celestial Mechanics, Kepler’s equation has no sense for e /∈ [0, 1).

Nevertheless, as it is said in [1], the equation can be presented as a purely algebraic

equation without any reference to an ellipse or an orbit. From this perspective, we are

interested on the algebraic equation and the iterative processes to solve it from the point
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of view of discrete dynamical systems. In particular, we will focus on the iterative process

defined by the equation itself

En+1 = M + e sin En. (1)

Let the function F (x) defined as

F (x) = M + e sin x. (2)

Solving Kepler’s equation is equivalent to find the fixed points of F (x).

It is well known that Kepler’s equation has a unique real root in the interval [nπ, (n+

1)π] for M ∈ [nπ, (n + 1)π] and 0 ≤ e < 1 [2]. Even more, the solution is unique for

−1 < e < 1. It is an attracting solution if the absolute value of the first derivative

DF (x) = e cos x, (3)

is less than one. This is the case when |e| < 1. Thus, in the elliptic case the unique solution

of the Kepler’s equation is attractive and, moreover, the basin of attraction extends to

±∞ (any initial guess will converge to the solution). However, when the eccentricity is

out of the range |e| < 1 different behavior is expected.

The function F (x) can be considered as a shifted version of the sine map

G(x) = a sin x, (4)

studied by Feigenbaum in his celebrated work about the universal behavior in nonlinear

systems [3]. There, it is shown that the mapping (4) behaves as the logistic map (L(x) =

κx(1 − x)) as the parameter a ranges from 0 to π. Even more, this behavior is universal

for the class of unimodal maps with negative Schwarzian derivative [5], that is defined,

for a map φ, as

Sφ =
D3φ

Dφ
− 3

2

(
D2φ

Dφ

)2

. (5)

For the case of the Kepler map (2) we obtain

SF = −1 − 3

2
tan2 x,

that is always negative it does not matter the values of the mean anomaly and the eccen-

tricity.

Despite the dynamics of Kepler’s equation is, to a certain extent, predictable, some

interesting questions deserve a further insight: the influence of the shift produced by M

in the pure sine map (4) and the behavior when the eccentricity is complex.
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Figure 1: Born of a period three cycle for M = 2 as a consequence of a tangent bifurcation.

Solid gray line is for e = 2.2, before the bifurcation. The dashed curve is for e = 2.31922,

the bifurcation value. The black solid line is for e = 2.4, after the bifurcation. Six new

period 3 points have appeared, arranged as two cycles, each of period 3, one stable and

one unstable.

2 Bifurcations for real eccentricity

When |e| ≥ 1 the absolute value of the derivative of F (x) can exceed one and two kind

of bifurcations are possible (see [4] pgs. 22–24)

(a) A period doubling (pitchfork) bifurcation if F ′(x) = −1 at a fixed point.

(b) A tangent bifurcation if F ′(x) = 1 at a fixed point.

The first one implies the loss of the attractive property of the fixed point while an at-

tractive period two orbit appears. The second one implies the appearance of new fixed

points and the lost of the attractive property of the fixed point. These two basic kinds of

bifurcation processes can be extended to the k-iterate of the function F (x) whose fixed

points are cycles of period k.

It is worth to note that cycles of odd period only appear as a consequence of a tangent

bifurcation and they do it in pairs (one stable, one unstable) as the graph of F k(x) moves

to intercept the line L(x) = x (see Figure 1).

If we consider the case M = 0, the first bifurcation takes place for e = 1. It is a tangent

bifurcation and, as the value of e increases, a cascade of period doubling bifurcations is

observed until a critical value of e is reached. If e continues increasing, cycles of odd

period appear, the last one to do it the period three cycle (see Figure 2.a). A similar

situation is observed for M 	= 0, but now, there is not a tangent bifurcation and the

first period doubling bifurcation takes place for smaller values of the eccentricity, as it

is shown in Figure 2.b. The extreme case is M = π for which the first period doubling
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Figure 2: (a) Cascade of period doubling bifurcation for the pure sine map F (x) = e sin x.

(b) The displacement of the first period doubling bifurcation as M increases. The curves

stand for the values M = 0 in black, M = 0.25 in dark gray and M = 0.5.

bifurcation appears just at e = 1. Beyond M = π the situation reverses and the first

pitchfork bifurcation takes place for bigger values of e, in a symmetric way.

Proposition 1. Let be 0 ≤ α ≤ π and let (eα, Eα) be the values of e and E at the first

pitchfork bifurcation for M = π − α, then (eα, 2π − Eα) are the values of e and E at the

first pitchfork bifurcation for M = π + α.

Note that (eα, Eα) solve the nonlinear system

π − α + eα sin Eα = Eα,

eα cos Eα = −1.
(6)

The second equation is invariant if Eα is replaced by 2π − Eα. On the other hand, if

π is added to the right and left hand members of the first equation we obtain, after

arrangement,

π + α − eα sin Eα = 2π − Eα. (7)

Taking into account that sinEα = − sin(2π − Eα) we finally arrive to

π + α + eα sin(2π − Eα) = 2π − Eα. (8)

Thus, (eα, 2π − Eα) is a solution of the system (6) for M = π + α and then they are the

values at the first pitchfork bifurcation.

A nice graphical description of both the symmetry and the displacement of the cascade

of period doubling bifurcations, as M is tuned, may be obtained by means of a density

plot of the k-iterate of the Kepler map for an initial starting point, we choose E0 = 0. At

the beginning, all the points in the plane (M, e) are the same color. As the function F

is nested, the color of a point changes according to the value of F k(0). For the very first

iterations, colors are distributed in a smooth way, so that small changes in the election of

the pair (M, e) turns in small changes in the value of F k(0). However, if we iterate the

function F a bit more, we observe color mixed areas whereas smooth regions of uniform
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Figure 3: The iteration of F for E0 = 0 in the plane (M, e). It can be viewed as the

contours of the function z = F k(M, e; 0).

color are confined, in the most part, to the band −1 < e < 1 as it is shown in Figure

3. The mixing process is a direct consequence of the shift in the cascade of bifurcations

produced by the variation of M . Worth noting is the symmetry respect to the line M = π,

as it was pointed out in proposition 1. However, there is not symmetry respect to the line

e = 0 (except for the first iteration) even in the case of the pure sine map (M = 0).

As much the map F is nested, the plots never reach a fixed image, nor a cyclic loop

of images, unless the range of the eccentricity goes down the smallest accumulation point

of period doubling of period 2n. Nevertheless, even in such case, color mixed areas are

found as a consequence of the shift produced by the variation of M .

3 Complex eccentricity

The Kepler map F can be extended to a complex map if we consider the parameters and

the variable to be complex. In this way, we have the family of biparametric complex maps

F (M, e; z) = M + e sin z, e, M, z ∈ C. (9)

It is clear that the sequence generated by iteration of the function F from a real starting

point is bounded if M and e are real too. However, this is not the case for the complex

map. In this way, it is enough that one of M , e, z0 be complex to produce an unbounded

sequence.

Taking this into account, we can generate a family of fractal sets defined in a similar
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way as it is the well known Mandelbrot set:

K(M ; z0) = {e ∈ C | {F n(M, e; z0)}n∈N bounded} . (10)

We also define the family of Julia sets associated to each pair (M, e)

J (M, e) = {z ∈ C | {F n(M, e; z)}n∈N bounded} . (11)

Some properties of these sets are derived from the fact that the map (9) is symmetric

respect to conjugation. Indeed, taking into account that sin z̄ = sin z, we get

F (M, e; z) = F (M̄, ē; z̄). (12)

As a consequence, the set K(M ; z0) is symmetric respect to the real axis if both M and

z0 are real. In a similar way, J (M, e) is also symmetric respect to the real axis if both M

and e are real.

In the case of the pure sine map, we have two additional symmetries

F n(0, e : z) = (−1)nF n(0,−e; z), F n(0, e; z) = −F n(0, e;−z). (13)

Then, the sets K(0; z0) and J (0, e) are symmetric respect to the origin.

Finally, as F (M, e; z) = F (M, e; z +2kπ), k ∈ Z, the Julia set J (M, e) is, to a certain

extent, periodic and it spread infinitely along the real axis. All these properties can be

observed in Figure 4, where some fractal and Julia sets are shown.

4 Final remarks

1. It has be shown that Kepler’s equation gives rise to an interesting dynamics if it is

considered as a simple algebraic equation. Here, only one of the iterative processes

to solve it has been studied. However, how is the dynamics if different iterative

processes are considered? what happens if they are taken as circle maps (mod 2π)?.

2. The fractal sets K(M ; z0), defined in section 3, are clearly unbounded if M, z0 ∈ R,

because they contain the real axis. However, it seems (see Figure 4) that they are

confined to a band in the imaginary axis. Is this the case? and, what happens for

K(M ; z0) if M or z0 are not real? are these sets bounded or unbounded?

3. A similar question stands for Julia sets. Are they confined to a band in the imaginary

axis?.

These questions and some other more make Kepler’s equation attractive from a dif-

ferent point of view.
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Figure 4: Different fractal and Julia sets for the Kepler complex map. The role of the

symmetries, as the parameters change, is clearly visible.
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