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Abstract

In this paper we study a variable order formulation of the Taylor method for the

numerical solution of ODE when a very high precision of the solution is required.

Finally, simulations on a parallel computer Sun UltraSPARC-II with 4 processors

are shown.

1 Introduction

The Taylor method is one of the oldest numerical methods for solving ordinary differential

equations (it was already used by Newton and Euler). The formulation is quite simple.

Let us consider the initial value problem:

dy(t)

dt
= f(t,y(t)), y(t0) = y0, y ∈ IRs, t ∈ IR .

Now, the value of the solution at ti (that is, y(ti)) is approximated from the n-th degree

Taylor series of y(t) at t = ti (obviously the function f need to be a smooth function, in

this paper we consider that f is analytic). So, denoting hi = ti − ti−1,

y(t0) = y0,

y(ti) � yi = yi−1 +
dy(ti−1)

dt
hi +

1

2!

d2y(ti−1)

dt2
h2

i + . . .+
1

n!

dny(ti−1)

dtn
hn

i .

Therefore, the problem is reduced to the determination of the Taylor coefficients

{djy(ti−1)/dt
j}. In this paper we follow the method used in [13] of recurrent power

series.
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2 Variable-order variable-stepsize formulation of Taylor methods

The Taylor method presents several peculiarities. One of them is the easy formulation as a

variable-step and variable-order method. In the literature the variable-order formulation

has been only used in very few codes due to the difficulties of changing the order in Runge-

Kutta methods. In this paper we analyse the VSVO formulation of Taylor methods.

Another interesting property of Taylor methods is that it gives us directly a dense output,

that is, the solution is an approximation of the function that we can evaluate everywhere,

as in collocation methods [3].

Besides, when it is interesting to calculate with hundreds of digits, as in the determi-

nation of initial conditions for periodic problems [12], determination of physical constants,

etc, Taylor methods, just by increasing the degree n, permits high-precision integrations.

Obviously, when we look for high-precision results we also need to use a multiple-precision

software.

In the practical implementation of a numerical method for the solution of ODEs the

use of variable stepsizes is a crucial point because it permits to automatise the control

of the error. Several formulations of variable-stepsize Taylor methods can be found in

[4, 8, 11, 13] where the radius of convergence of the power series is calculated by means

of different methods. Here we use the approach given in [4].

Once we have obtained the solution of the ODE as a power series we need to calculate

the interval into which our approximation to the solution is within the allowed tolerance

ε. If we denote Yj = 1/j! djy(ti−1)/dt
j and by defining k(ε, n) = ε1/(n+1), we obtain the

new stepsize h as

h = fac · min
{
k(ε, n) ‖Yn‖−1/n

∞ , k(ε, n+ 1) ‖Yn+1‖−1/(n+1)
∞

}
, (1)

being fac a safety factor.

In a variable order implementation of the Taylor’s method, it is necessary to know “a

priori” an estimation of both, the computational time and the stepsize for a fixed error

tolerance ε, for the different orders. On our own, we fixed the order increment to p, that

is, our possibilities are: n−p, n or n+p, being n the order of the last step in the numerical

integration. In this paper we use the variable-order formulation given in [4] (another VO

formulation is presented in [11]).

3 Numerical tests

In this section we present several numerical tests done on a Sun UltraSPARC-II. All the

numerical tests have been done using the multiple-precision library mpf90 [2].
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Figure 1: Evolution of the coordinates x, y of the Arenstorf orbits and the errors in the x-

coordinate by considering different precision levels and using fixed and variable-order (VO)

formulations.
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• Arenstorf orbits [1] is a particular case of the restricted three body problem. One

consider two bodies of masses 1−µ and µ in circular rotation in a plane and a third

body of negligible mass moving around in the same plane. The equations are [15]

x′′ = x+ 2y′ − µ′ x+ µ

D1

− µ
x− µ′

D2

,

y′′ = y − 2x′ − µ′ y

D1

− µ
y

D2

,




D1 = ((x+ µ)2 + y2)3/2, D2 = ((x− µ′)2 + y2)3/2,

x0 = 0.994, y0 = 0, x′0 = 0, y′0 = −2.0015851063790825,

µ = 0.012277471, µ′ = 1 − µ.

In the figure 1 we present the evolution of the coordinates x and y for t ∈ [0, 30].

The orbit is periodic of period 17.065216560157962. On the figures on the bottom

we show the differences between fixed and variable-order formulations. The fixed

order simulations have been done with n = 40 and n = 80 for different tolerance

levels. From the tests we observe the correct behaviour of the VO formulation.
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Figure 2: Evolution of the position coordinates q1, q2, q3 of the Galactic problem and the errors

in the energy by considering different precision levels.

• A galactic dynamics model [6]. This problem is a Hamiltonian problem with coor-

dinates q1, q2, q3 and momenta p1, p2, p3. The Hamiltonian function for this problem

and the initial conditions have been fixed to obtain H = 2) are
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H =
1

2
(p2

1 + p2
2 + p2

3) + Ω (p1 q2 − p2 q1) + A ln

(
C +

q2
1

a2
+
q2
2

b2
+
q2
3

c2

)
,




a = 1.25, b = 1, c = 0.75 A = 1, C = 1, Ω = 0.25,

q1(0) = 2.5, q2(0) = q3(0) = 0,

p1(0) = 0, p2(0) =
1

40

(
25 +

√
6961 − 3200 ln 5

)
, p3(0) = 0.2.

In the figure 2 we present the spatial evolution of the coordinates q1, q2, q3 for t ∈
[0, 10000]. On the figures on the bottom we show the errors in the energy for different

tolerance levels. In all the tests we have used the VO formulation.
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Figure 3: Evolution of the cylindrical coordinates ρ, z of the main problem problem and the

errors in the ρ coordinate by considering different precision levels.

• The main problem in artificial satellite theory. Due to the axial symmetry, the prob-

lem accepts the polar component Λ of the angular momentum as integral. Other

parameters of the problem are the gravitational constant µ of the planet, the oblate-

ness coefficient J2 and the scaling factor α that is the equatorial radius of the planet.

The Hamiltonian function in cylindrical coordinates is

H =
1

2
(P 2 +

Λ2

ρ2
+ Z2) − µ

r
+
α2 J2 µP2(u)

r3

where u = z/r, r =
√
ρ2 + z2 and P2(x) = (3x2 − 1)/2 is the Legendre polynomial
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of degree 2. In the simulations we have used the initial values

ρ(0) = 0.3 z(0) = 2.

P (0) = 0. Z(0) = −1.

In the figure 3 we present the evolution of the cylindrical coordinates ρ, z of the

main problem problem and in the figure on the bottom the errors in the ρ coordinate

by considering different precision levels. As above, in all the tests we have used the VO

formulation and the final error are in the tolerance level.

4 Parallel implementation

It is important to remark that high-precision methods will need high-precision computa-

tions and, therefore, the computational effort is quite large. In this situation a parallel

implementation can be very useful. In the generation of the Taylor series it is possible in

some problems to group some subseries in a form suitable for parallel computers. In order

to validate the results we have done several numerical tests on a Sun UltraSPARC-II with

4 processors of 480 MHz using Message Passing Interface (MPI) as parallel environment

and using Fortran90.

Table 1: Time, speed-up Sp and efficiency Ep in the parallel solution of the Pleiades

problem.

Time (seconds) bits=16 32 64 128

1 processor 31.84 40.74 142.87 741.51

2 processors 20.02 24.98 80.09 406.39

4 processors 14.86 18.29 45.89 217.84

Speed-up (Sp) bits=16 32 64 128

2 processors 1.59 1.63 1.78 1.82

4 processors 2.14 2.23 3.11 3.40

Efficiency (Ep) bits=16 32 64 128

2 processors 0.78 0.82 0.89 0.91

4 processors 0.54 0.56 0.78 0.85

The parallel implementation of Taylor series is not an easy task. Moreover, in most of

the situations it is not possible because for an efficient implementation we have to divide
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the Taylor series in almost equal independent parts. The number of communications

among processors is high, we need, for a n degree Taylor method, n+ 1 communications

in each integration step, one per each degree, in order to compute all the series. Therefore,

this parallel alternative will only be interesting for high-precision demands.

In the Table 1 we present the running time with p processors (Tp), the speed-up

Sp = T1/Tp and the efficiency Ep = T1/(p · Tp) for a 4-star case of the Pleiades problem.

Note that the efficiency tends to 1.
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