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Abstract

We consider the motion of an infinitesimal particle under the gravitational field

of (n + 1) bodies in ring configuration, that consist of n primaries of equal mass m

placed at the vertices of a regular polygon, plus another primary of mass m0 = βm

located at the geometric center of the polygon.By analyzing the phase flow, we

determine the equilibria of the system, their linear stability and the bifurcations

depending on the mass of the central primary (parameter β).

1 Introduction

Let us consider the motion of an infinitesimal particle under by the gravitational field of

(n+ 1) primaries. These bodies are arranged in a planar ring configuration ([1, 4]), that

consists of n primaries of equal mass m located at the vertices of a regular polygon that

is rotating on its own plane about its center of mass with a constant angular velocity w.

Another primary of mass m0 = βm with the parameter (β ≥ 0) is placed at the center of

the ring.

This kind of configuration is considered as a model of observed phenomenon as plan-

etary rings, some stellar formations, asteroids, the motion of an artificial satellite about

a ring, etc..

Scheeres [4] investigated this configuration including Hill stability, invariant transfor-

mations, equilibrium points, periodic orbits, etc.. Recently, Kalvouridis [1, 2, 3] studied

the stationary solutions and the zero-velocity curves and surfaces. Besides, he investigated

symmetric periodic motions for the particular cases n = 4, 5.

Kalvouridis [1] pointed out that the number of equilibria, for a fixed n, was different

for some values of the parameter β. In this Note, we show that this is the case, there are

parametric bifurcations, and we give the values of β at which the bifurcations take place.

As illustration, we give here the values for the cases n = 6, 7, 8, but there is no difficulty

in extending our analysis to other numbers.
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2 Equations of motion

To describe the motion of the infinitesimal particle we choose a planar reference frame

that is rotating at an angular velocity w; the origin coincides with the centre of masses

of the central body; the x-axis coincides with the line joining the central body with one

of the primaries on the ring.

With a suitable choice of units of time and length, the equations of motion in this

synodic frame can be expressed as (see [1] for details)

ẍ− 2ẏ = −∂U
∂x

, ÿ + 2ẋ = −∂U
∂y

,

where the effective potential is

U(x, y) = −1

2
(x2 + y2) − 1

∆

(
β

r0
+

n∑
i=1

1

ri

)
; (1)

r0 is the distance of the particle to the central body; ri the distance to the mass mi, given

by

r0 =
√
x2 + y2, ri =

√
(x− xi)2 + (y − yi)2, i = 1, . . . , n

with (xi, yi) the coordinates of the peripheral i-th body:

xi =
cos 2π(i− 1)/n√
2(1 − cos 2π/n)

, yi =
sin 2π(i− 1)/n√
2(1 − cos 2π/n)

,

and ∆ = M(Λ + βM2) is a constant depending on the parameter β and the number n of

primaries though the relations

M =
√

(2(1 − cos2θ)), Λ =
n∑

i=2

sin2 θ cos(n/2 + 1 − i)θ

sin2(n+ 1 − i)θ
and θ =

π

n
.

3 Equilibrium solutions and their stability

As is well known, the equilibrium points are obtained by solving the algebraic system

∂U

∂x
= 0,

∂U

∂y
= 0

and their linear stability depends on the roots of the characteristic equation:

λ4 + (4 + Uxx + Uyy)λ
2 + (UxxUyy − U2

xy) = 0

Due to the complexity of the expressions involved in the partial derivatives, we do not

try to obtain the solution analytically; rather, we proceed numerically for some specific

values of n and see the evolution of the equilibria in terms of the parameter β. But prior

to find the equilibria, and in order to have some information about the problem we are
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Figure 1: The effective potential and contour level curves for n = 6 and β = 0.0

dealing with, we made some plots of the effective potential (1) for several values of n and

β. Some of the surfaces and contour plots appear in Figures 1,2 and 3.

In these graphics we can observe a lot of symmetries. Indeed, it is easy to see that the

potential is invariant by rotations of angle 2π/n, thus, we limit our study to the angular

sector 0 ≤ ψ < 2π/n, and in this sector, it is not difficult to prove that the equilibria are

located along two lines passing through the origin, namely

1. The x+ axis.

2. The bisector between two primaries.

Just to avoid loss of digits in the numerical calculation, the latter will be chosen as

2. a) x− axis, if n is odd.

2. b) y+ axis, if n is even and not multiple of 4 .

2. c) Bisector (x = r cos π/n, y = r sin π/n), otherwise.

By doing so, we have determined the equilibria for different values of n and β, and

analyzed their stability. We have chosen a sample for each case, i. e., we have consider

the values for n = 6, 7, 8.

In Figure 4 we can observe the evolution in the position of the equilibrium points

for n = 6. On the left hand the evolution with respect to the parameter β of the two

equilibrium points located on the x+ axis. When β increases the points approaches to
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Figure 2: The effective potential and contour level curves for n = 7 and β = 0.8

the external primary on the ring. The two equilibria are unstable. On the right hand

of the same figure, we present the evolution of the three unstable critical points located

along the bisector (in this case the y+ axis). However, at β = 1.6049060055, two of them

disappear and only one remains, namely, the one placed outside the ring. We have, thus,

found a bifurcation.

The situation for n = 7 and n = 8 is analogous. We find two equilibria along the x+

axis and both are unstable. When we seek for equilibrium solutions along the bisector (x−

for n = 7 and the bisector for n = 8), and different values of the parameter β, starting

in β = 0 we find three points that are unstable, but at a certain value of the parameter,

two of them coalesce and disappear. The bifurcations take place at β = 3.0951324748 for

n = 7, and at β = 5.26863687811 for n = 8. In Figures 5 and 6 we represent the location

of these points with respect to the parameter β.
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Figure 3: The effective potential and contour level curves for n = 8 and β = 5.8
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Figure 4: Case n = 6. Position of the equilibria versus β. Left, points on the x-axis;

right, points on the bisector. There is a bifurcation at β = 1.6049060055.
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Figure 5: Case n = 7. Position of the equilibria versus β. Left, points on the x-axis;

right, points on the bisector (y−-axis). There is a bifurcation at β = 3.0951324748.
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Figure 6: Case n = 8. Position of the equilibria versus β. Left, points on the x-axis;

right, points on the bisector. There is a bifurcation at β = 5.26863687811.
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