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Abstract

This paper is concerned with the evaluation of methods for 3D scattered data

interpolation. In particular, we discuss the computational performances in 3D of

methods which give superior results for the two-dimensional case. The testing pro-

cess was carried out by considering the accuracy, the graphical behaviour of the

interpolant and the timing. In addition we have taken into account the compu-

tational efficiency and the sensitivity respect to the sample. Moreover, in order

to evaluate the graphical behaviour, we present an evolutive visualization of the

interpolant.

1 Introduction

The problem of constructing a smooth function g(x, y, z), g : Q ⊂ IR3 → IR which takes

on certain prescribed values

g(xi, yi, zi) = fi, i = 1, . . . , N, (xi, yi, zi) ∈ Q, (1)

arises in many applied fields. We mention some examples that can be useful for a com-

putational analysis:

• behaviour of the temperature in a furnace,

• concentrations of a mineral in the soil,

• behaviour of precipitations in a geographical area,

• electroencephalogram (EEG).
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In the literature there are methods which can be extended to any dimension d (for instance

the radial basis methods) and the theoretic properties of some of these have been studied

(see [17]), but little or nothing is known on the computational results for d = 3.

For the case d = 2, Franke has evaluated (see his well–known paper [8]) the numerical

performances of a wide class of methods. For d = 3, there is the paper [13] which gives a

first answer to the problem for data sets with a moderate dimension.

Our aim is to study the computational behaviour of methods to interpolate 3D scattered

data. Taking into account [8], we have analyzed those methods which have shown, at

least in two dimensions, the better performances.

In the testing process we have considered, as usual, the accuracy and, in addition, all those

aspects that in the 3D case can give more problems than in two dimensions. Namely we

have considered the stability and the computational costs. By the definition of two indices,

we provide the computational efficiency of the different methods. In addition we think

it was important to analyze the conditioning of the sample respect to the approximating

function. Finally we provide a new visualization method, useful for the comparison of

the graphical behaviour of the interpolants. For sake of brevity, we will report only a few

examples. The full experimentation can be found in [5].

2 The testing process

2.1 The methods considered

In [8] it is shown that the methods giving the superior performances (see table 1 of

[8]), belong to the classes of inverse distance weighted methods (the modified quadratic

Shepard Method), triangle based methods ( Nielson minimum norm network), radial basis

methods (thin-plate splines, multiquadrics).

The triangle based methods need a triangulation of the convex hull of the point set and, to

achieve a C1 function, they need also a scheme for estimating some derivatives at the data

points. The quality of the corresponding interpolating function (as measured in terms of

visual appearance, smoothness, and accuracy) depends critically on the “accuracy” of

the derivative estimates. Moreover, it is known that triangulations have to satisfy some

optimal conditions that, at the moment, do not exist for three dimensions.

For these reasons, we have considered only inverse distance weighted methods ( the mod-

ified quadratic Shepard method (MQSM)), and the standard radial basis functions
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φ(r) = r3, (2)

φ(r) = r2logr, (3)

φ(r) =
√
r2 + c2 (4)

φ(r) = (1 − r)4
+(1 + 4r). (5)

The reader can see the Appendix A for a short description of these methods.

2.2 Test functions

The methods have been tested on functions that exhibit a variety of behaviours. Namely,

we have considered the 3D extension of the functions used in [8]

F2(x, y, z) = (tanh(9z − 9x− 9y) + 1) /9

F3(x, y, z) = cos(6z) (1.25 + cos(5.4y)) /
(
6 + 6 (3x− 1)2)

F4(x, y, z) = exp

{
−81

16

[
(x− 0.5)2 + (y − 0.5)2 + (z − 0.5)2]} /3

F5(x, y, z) = exp

{
−81

4

[
(x− 0.5)2 + (y − 0.5)2 + (z − 0.5)2]} /3

F6(x, y, z) = 2

√
64 − 81

[
(x− 0.5)2 + (y − 0.5)2 + (z − 0.5)2]/9 − 0.5.

In addition we have considered some functions with particular behaviours. A “relative”

of the two-dimensional Franke’s function

F1(x, y, z) = .75 exp

[
−(9x− 2)2 + (9y − 2)2 + (9z − 2)2

4

]

+0.75 exp

[
−(9x+ 1)2

49
− (9y + 1)2

10
− (9z + 1)2

10

]

+0.5 exp

[
−(9x− 7)2 + (9y − 3)2 + (9z − 5)2

4

]

−0.2 exp
[
− (9x− 4)2 − (9y − 7)2 − (9z − 5)

]
,

an extension of the sigmoidal function

F7(x, y, z) = 1/

√
1 + 2exp(−3(

√
x2 + y2 + z2 − 6.7)),

and the peak function

F8(x, y, z) = 50exp(−200((x− 0.3)2 + (y − 0.3)2))

+ exp(−50((x− 0.5)2 + (y − 0.5)2)).

These functions have been considered in Q = [0, 1]3.
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2.3 Data configurations

The test functions have been sampled at N scattered points of Q. Let

SN = {Pi(xi, yi, zi) ∈ Q = [0, 1]3, i = 1, . . . , N}

be the point set.

The word ”scattered” may have different meanings.

In [8], scattered means that the points of SN are not assumed to satisfy any particular

condition as spacing or density. (In a simulation process, the point are obtained from the

generation of pseudo random numbers.)

In practice, many people use points that satisfy some condition. We can have

• equidistributed scattered points. For instance, they can be obtained by a pseudo

random number generation so that one point falls in each subcube of side 1/ 3
√
N .

• Perturbed grid points. If Gi are the points of a grid G, the points of SN are

Pi = Gi + ei,

where ei are random variables with mean E(ei) = 0 and variance (which measures

the distortion from the grid points) E(e2i ) = σ2.

We call all these point sets volumetric data.

In many applications, the data points are scattered but with some structure. For instance,

when we study mineral concentrations in the subsoil, we pick up the data by drillings. This

mean that the points Pi are scattered along some straight lines of Q. In other situations,

the points of SN can be scattered on certain number of planes or, more generally, on some

surfaces (for instance when we study the monthly or seasonal precipitations).

These kind of data (say structured scattered data) have been discussed in [6].

2.4 Comparison

It is now important to choose the characteristics on which the methods are to be evaluated

and compared.

In our opinion, two fundamental aspects are the accuracy and the graphical behavior.

In addition, we have also considered the computation times and the condition of the

interpolation matrices.

Accuracy. We measure the accuracy with the root mean square error e2 and the maxi-

mum error e∞:

e2 =

√∑nx

i=1

∑ny

j=1

∑nz

l=1(g(xi, yj, zl) − f(xi, yj, zl))2

nxnynz

, (6)

e∞ = max
(xi,yj ,zl)∈G

|g(xi, yj, zl) − f(xi, yj, zl)|, (7)
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where g(x, y, z) is the interpolant function, f(x, y, z) is the test function, and (xi, yj, zl)

are the points of a grid G of Q with size nx × ny × nz.

These indices provide a global information on the resulting approximation.

Graphical visualization. The interpolant graphic gives an immediate indication on

the approximation goodness. In fact, different methods could give the same accuracy but

some may reproduce the function behaviour more faithfully than the others.

Since trivariate function representations describe hypersurfaces in IR4, it is obvious that

we cannot render them directly. It is possible to visualize their behaviour by displaying

one or more projected surfaces in IR3. For example, we can work with isoparametric

surfaces which correspond to constant values of one variable x, y or z. Alternatively, we

can create contour plots of hypersurfaces which correspond to constant function values.

Surfaces of constant parameter values are considered in [12], [7], [1]. [15] and [14] suggest

using a combination of three isoparametric surfaces g(xi, y, z), g(x, yj, z) and g(x, y, zk),

associated with the value g(xi, yj, zk). This idea involves an axonometric view of the

domain with the planes x = xi, y = yj and z = zk, along with another copy of the

domain with the graphs of the three surfaces located on the faces of the cubical domain.

The paper [14] contains another example of visualization named slice viewer. A survey of

other techniques can be found in [11].

Although these techniques are very useful, they still provide a static representation which

do not allow to have a dynamic vision of the problem we are studying.

Usually, in a real problem, the variation of one independent variable represents the evo-

lution of some phenomenon. For instance, to study mineral concentrations in the subsoil

means to study how the concentration changes in relation to depth.

Therefore, we believe that the visualization should be connected to the problem features

and point out the evolution of the phenomenon with respect to the variable describing its

variation.

For this reason, we have considered an evolutive representation. We pick up the variable

describing the evolution (for instance z), we take some values of it (z1, . . . , zm), and we

consider the evolution of the surfaces g(x, y, zk), k = 1, . . . ,m. (See figs. 1–10 in the

Appendix).

3 Volumetric data

In this section we deal with the interpolant behavior when the sample dimension N

increases.

First we will compare the method performances both with respect to the accuracy (§3.1)

and to the graphical visualization (§3.2).

115



Then we will consider the condition numbers of the interpolation matrices and the com-

putational efficiency in relation to the sample size N . Finally, in §3.4 we will discuss the

sensitivity of the methods with respect to the point locations (for point sets SN with the

same size).

Here we have considered the case of scattered equidistributed data, because, for this case,

the theoretical results for radial basis functions surely hold. Examples for the other point

sets (scattered and perturbed grid points) can be found in [5].

3.1 Accuracy

The values of e2 and e∞ for N=343, 1000, 3375 are shown in tables 1, 2 and 3. These

indices have been computed using the points of a grid of size nx = ny = nz = 21.

The tables show that the methods give equivalent results. We can also say that, in general,

the radial basis function (2) provides the better accuracy.

Moreover, the error decreases, as N increases, according to the theory [18].

Remark. For the multiquadric, we know that the optimal choice of c is still an open

problem. There are some suggestions for the two–dimensional case, including methods

based only on the points distribution. [20] suggests a value that takes account of how the

points are dispersed in both the x and y directions

c =
√

1/10 max {max
i,j

|xi − xj|,max
i,j

|yi − yj|}. (8)

[10] uses

c = 0.851d, (9)

where d is the average distance of the points to their near neighbors. Franke replaced d

by D/
√
N , where D is the diameter of the minimal circle enclosing all data points and

suggests to use

c = 1.25D/
√
N. (10)

These techniques can be trivially extended to the 3D case and they provide more or less

the same results (both for the accuracy and the graphical behaviour [5]). We have not

considered techniques that take account of the function values fi (see, for instance, [16])

because we believe they are too expensive for our case.

In tables 1, 2, 3, the c parameter has been computed using (9).

3.2 Graphical visualization

Let us now compare the graphical performances. For sake of brevity, we will show only

the graphs related to the test functions F1 and F2 (which exhibit particular behaviors),
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Method e F1 F2 F3 F4 F5 F6 F7 F8

r3 e2 4.6e-3 8.5e-3 4.2e-3 5.1e-4 6.5e-4 5.4e-3 2.1e-2 2.6

e∞ 4.2e-2 7.8e-2 4.5e-2 5.6e-3 8.3e-3 1.3e-1 2.2e-1 42e

r2 log(r) e2 5.9e-3 9.1e-3 6.9e-3 1.1e-3 1.3e-3 8.7e-3 2.2e-2 2.6

e∞ 9.3e-2 7.5e-2 7.1e-2 1.4e-2 1.7e-2 1.8e-1 2.1e-1 42
√
r2 + c2 e2 6.6e-3 9.2e-3 8.2e-3 8.3e-4 1.2e-3 1.2e-2 2.3e-2 2.7

e∞ 1.5e-1 8.2e-2 8.2e-2 1.0e-2 1.5e-2 2.3e-1 2.2e-1 42

(1 − r)4
+(1 + 4r) e2 5.3e-3 8.5e-3 3.9e-3 7.3e-4 8.6e-4 1.2e-2 2.1e-2 2.8

e∞ 1.2e-1 7.3e-2 4.6e-2 8.7e-3 8.4e-3 2.3e-2 2.2e-1 43

MQSM e2 9.4e-3 9.7e-3 5.9e-3 2.2e-3 2.1e-3 4.5e-3 2.3e-2 3.5

e∞ 1.3e-1 9.1e-2 6.1e-2 1.4e-2 1.9e-02 1.2e-1 1.9e-1 46

Table 1: Errors for N = 343.

and to F5 (for which we get the better accuracy). In fig. 1 their evolutions respect to the

z–variable are shown.

We begin to consider the interpolants achieved with (2), which provides the better accu-

racy.

Figures 2, 3, 4 point out that, generally, samples of size N = 343 do not assure a good

phenomenon reproduction. Only for F5, we get adeguate results.

In this case, for N = 1000, we have a remarkable improvement at the boundary (see fig.

2).

This does not happen for F1 and F2. For F1, the interpolant does not reproduce the

correct behaviour near the boundary z = 1. The approximation in this zone becomes

better when we consider N = 3375. But on the boundary z = 1 the function behavior

has not yet been reproduced (fig. 3).

For F2 (fig. 4), we may observe an improvement from N = 343 to N = 1000, even if we

have many oscillations that are eliminated, only in part, considering N = 3375.

Let us now consider the other methods. As already said, the interpolants achieved from

the radial basis (3)–(5), provide, in mean, the same accuracy of (2), but their graphical

behaviors can be worse. See, for instance, fig. 5 where the F1 interpolants are shown

(N = 1000).

Finally, let us consider the modified quadratic Shepard method. The experimentation has

shown that, near the boundary, it can perform worse than the other methods. But for

samples with N > 1000, it provides approximations comparable to those given by (2) and

with lower computational costs (see §3.3). In fig. 6 we show the graphs of the F1 MQSM

interpolants (N = 343, 1000, 3375).
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Method e F1 F2 F3 F4 F5 F6 F7 F8

r3 e2 1.5e-3 4.7e-3 1.3e-3 1.5e-4 1.1e-4 3.3e-3 7.8e-3 1.4

e∞ 4.0e-2 7.3e-2 1.4e-2 1.8e-3 1.3e-3 9.6e-2 1.1e-1 34

r2 log(r) e2 2.2e-3 5.4e-3 2.2e-3 4.4e-4 2.4e-4 5.3e-3 1.0e-2 1.5

e∞ 5.3e-2 8.0e-2 2.0e-2 7.2e-3 3.5e-3 1.4e-1 1.3e-1 35
√
r2 + c2 e2 2.9e-3 5.6e-3 3.0e-3 4.0e-4 2.7e-4 7.9e-3 1.1e-2 1.6

e∞ 9.1e-2 8.3e-2 3.4e-2 6.7e-3 4.3e-3 1.8e-1 1.4e-1 35

(1 − r)4
+(1 + 4r) e2 1.8e-3 4.7e-3 9.7e-4 2.9e-4 2.5e-4 6.7e-3 8.4e-3 1.4

e∞ 5.8e-2 7.0e-2 1.2e-2 4.5e-3 2.6e-3 1.7e-1 1.2e-1 33

MQSM e2 2.7e-3 4.8e-3 2.1e-3 4.6e-4 7.9e-4 2.7e-3 1.0e-2 1.1

e∞ 3.9e-2 9.0e-2 2.7e-2 4.3e-3 8.7e-3 8.0e-2 1.0e-1 30

Table 2: Errors for N = 1000.

We can evaluate the graphical performances also considering the absolute error graphs.

We will see that this can be useful, but at the same, time misleading.

In fig. 7, the errors of the F1 interpolants are shown (N = 343, 1000, 3375, radial basis

(2)).

In each graph, we have used the scale given by the maximum error obtained for N = 343.

We can notice that the higher errors are at the extrema, while near the boundary z = 1,

the approximation seems to be accurate. But we have remarked that, just in this zone,

the interpolant does not reproduce the correct F1 behavior (see fig. 1 and 3).

3.3 Conditioning, computation times and efficiency

In this section we shall see how the condition number K2(A) of the interpolation matrix,

the computation times and the efficiency change with regard to the sample dimension N .

• Condition Number. For the global methods (2)–(5), K2(A) increases as shown in

table 4.

For the local method MQSM, we do not have this problem because we solve a linear

system of small dimension (n = 9).

• Computation times. For the methods (2)–(5), the increase of sample size leads to

a remarkable increase of computation times. This is due both to the solution of a linear

system with full matrix of order N , and to interpolant evaluation. But efficient methods

exist for the evaluation (see, for instance, [2]). Therefore, in table 51, we show only the

system solution times (radial bases (2)). For MQSM, the times include also the interpolant

1The computations have been performed on a PC with a AMD 800 Mhz processor and 256 Mb Ram.
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Method e F1 F2 F3 F4 F5 F6 F7 F8

r3 e2 3.7e-4 1.3e-3 5.2e-4 3.7e-5 2.2e-5 1.9e-3 2.4e-3 4.1e-1

e∞ 8.0e-3 2.7e-2 9.5e-3 4.5e-4 2.6e-4 6.6e-2 3.9e-2 13

r2 log(r) e2 8.3e-4 1.6e-3 1.1e-3 1.6e-4 4.6e-5 3.3e-3 3.7e-3 4.9e-1

e∞ 3.5e-2 3.4e-2 1.7e-2 3.5e-3 6.6e-4 9.8e-2 6.0e-2 15
√
r2 + c2 e2 1.8e-3 1.8e-3 1.7e-3 2.0e-4 7.6e-5 4.8e-3 4.6e-3 4.8e-1

e∞ 8.0e-2 3.7e-2 2.6e-2 4.3e-3 1.1e-3 1.4e-1 7.8e-2 16

(1 − r)4
+(1 + 4r) e2 7.4e-4 1.2e-3 3.9e-4 9.5e-5 7.3e-5 3.3e-3 2.6e-3 4.1e-1

e∞ 4.0e-2 2.7e-2 7.0e-3 2.1e-3 7.3e-4 1.1e-1 4.4e-2 13

MQSM e2 8.7e-4 1.6e-3 6.5e-4 1.4e-4 2.4e-4 1.5e-3 3.4e-3 5.6e-1

e∞ 1.5e-2 2.4e-2 1.2e-2 1.3e-3 2.5e-3 4.9e-2 5.3e-1 15

Table 3: Errors for N = 3375.

φ(r) N = 343 N = 1000 N = 3375

r3 3.9e+06 2.8e+07 9.5e+08

r2 log(r) 5.4e+04 3.4e+05 5.3e+06
√
r2 + c2 2.3e+05 9.0e+05 1.2e+07

(1 − r)4
+(1 + 4r) 7.7e+04 5.2e+05 1.7e+07

Table 4: Condition numbers for the radial basis interpolation matrices.

evaluation.

Le us notice that to solve the system with N = 3375, we need a computation time which

is approximately equal to 1000t343. MQSM is more advantageous: in fact t3375 ≈ 5t343.

N r3 MQSM

343 0.55 1.04

1000 14.94 1.96

3375 547.28 5.5

Table 5: Computation times.

• Computational efficiency. The computational efficiency can be evaluated by two

different indices.

1. Computational efficiency, defined as the inverse of the product between the compu-
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tation time tN and the relative error er∞(N)

EfN =
1

tNer∞(N)
, (11)

2. Ratio quality (maximum error e∞(N)) to cost (computation time tN)

RN =
e∞(N)

tN
. (12)

The values of (11) e (12) for the the radial basis (2) and MQSM are shown in table 6 (test

function F1).

When we use a radial basis function method, the increase of N leads to high computation

times not rewarded by an appreciable reduction of the error. This causes a considerable

loss of efficiency.

According to definition (11), to use a sample of size N = 1000 is ten times more efficient

than to use a sample with N = 3375. If we consider definition (12), using N = 1000 is

approximately one hundred and eighty times more efficient than using N = 3375.

MQSM is more efficient. In fact we have Ef3375 ≈ Ef1000, while, according to (12), to use

N = 1000 is five times more efficient than to use N = 3375.

Increasing the sample dimension is not always convenient. In fact, on one hand, the

interpolant may not reproduce anyway the correct behavior in some zones and on the

other we may have a considerable loss of efficiency.

Method Efficiency N = 343 N = 1000 N = 3375

r3 EfN 25.97 0.99 0.14

RN 7.6e-2 2.6e-3 1.5e-5

MQSM EfN 4.4 7.8 7.3

Rn 1.2e-1 1.2e-2 2.7e-3

Table 6: Computational efficiency.

3.4 Sensitivity respect to the point set

We conclude our analysis by considering the method sensitivity with regard to the point

sets SN . That is we want to see how the point locations influence the interpolant problem

solution.

Here, we report the results obtained for three different equidistributed point sets S1
N , S2

N

e S3
N , with N = 343, 1000, 3375 and show what we get for F1 and the radial basis (2).

In [5] we have considered also scattered points and distorted grid points.
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The error does not change very much: in fact it is a function of N . The graphs, indeed,

point out that the point locations condition the local behavior of the interpolants, espe-

cially for N = 343 and N = 1000 (figs. 8, 9). For N = 3375 the graphical behavior is

always the same (fig. 10). That is we have stability respect to the data set.

N e S1
N S2

N S3
N

343 e2 4.6e-3 4.0e-3 3.9e-3

e∞ 7.0e-2 5.5e-2 6.1e-2

1000 e2 9.5e-4 1.4e-3 1.4e-3

e∞ 1.2e-2 3.3e-2 3.8e-2

3375 e2 3.7e-4 2.5e-4 3.1e-4

e∞ 8.0e-3 5.3e-3 5.1e-3

Table 7: Sensitivity respect to point sets. Errors for the radial basis function (2).

This analysis has also pointed out that there can be data configurations of moderate

size which may provide an interpolant function with a good graphic behavior. See, for

instance, fig. 8. The interpolant obtained from S2
343 has a graph comparable to that of

S1000.

4 Conclusions

We have tested the computational performances of some methods for interpolating 3D

scattered data and we have measured the performances, considering the accuracy (e2,

e∞), the graphic behaviour, the computation times, and the computational efficiency.

In our opinion, the evaluation of the interpolant graphs is a fundamental aspect, even if

quite subjective. Ratings by different persons will give somewhat different results.

From our study it is came out that

• In general, the global methods(2)–(5) provide better results than MQSM.

Among the considered radial basis functions, (2) gives the better results in terms of

accuracy and graphic behavior (even if it has the worst condition number).

• The disadvantage of global methods is that an increase of N leads to high condition

numbers and high computation times.

• Increasing the sample dimension is not always convenient. In fact, on one hand, the

interpolant may not reproduce anyway the correct behavior in some zones and, on the

other, we may have a considerable loss of efficiency.
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• MQSM usually reproduces the qualitative features of test functions quite well. Near the

boundary, it may perform worse than the methods (2)–(5). The interpolant is only C1.

But for samples of size N > 1000, it gives a graphic quality comparable to that provided

by (2), with the advantage of being more and more efficient.

• For samples with moderate dimension, the interpolation problem solution is strongly

influenced by the point locations. There can be data configurations of moderate size

which may provide an interpolant with a good behavior.

This remark suggests a possible way to get a satisfactory solution with low costs. When

we have large samples of size N , we can extract from it a subsample of dimension N̄ << N

which allows a correct reproduction of the unknown function.

On this subject, there are some techniques for one and two dimensions. (see [3], [4]). For

three dimensions, the problem is still open.
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[12] D. Lasser. Bernstein–Bézier representation of volumes. Comput. Aided Geom. Design,

2:145–150, 1985.

[13] G. M. Nielson. Scattered data modeling. IEEE Computer Graphics & Applications,

1:60–70, 1993.

[14] G.M. Nielson and al. Visualizing and modeling scattered multivariate data. IEEE

Computer Graphics & Applications, 11:47–55, (1991).

[15] G.M. Nielson and B. Hamann. Techniques for the visualization of volumetric data.

In A. Kaufman, editor, Visualization’90, pages 45–50. IEEE Computer Society Press,

1990.

[16] S. Rippa. An algorithm for selecting a good value for the parameter c in radial basis

function interpolation. Adv. Comput. Math, 11(vol. 2–3):193–210, (1999).

[17] R. Schaback. Error estimates and condition numbers for radial basis function inter-

polation. Advances in Computational Mathematics, 3:251–264, 1995.

[18] R. Schaback. Improved error bounds for scattered data interpolation by radial basis

functions. Mathematics of Computation, 68:201–216, 1999.

[19] R. Schaback and H. Wendland. Characterization and construction of radial basis

functions. In N. Dyn, D. Leviatan, and D Levin, editors, Eilat proceedings. Cambridge

University Press, 2000.

[20] S. E. Stead. Estimation of gradients from scattered data. Rocky Mountain J. Math.,

14:265–279, (1984).

A Description of the methods

A.1 Radial basis function interpolation

Let Ω ⊂ IRd be a compact set, and let us denote the space of d-variate polynomials of

order not exceeding m by IP d
m. We consider multivariate interpolation by conditionally

positive definite radial functions

φ : IR≥0 → IR

of order m ≥ 0. This means that for all possible choices of sets

X = {X1, . . . , XN} ⊂ Ω
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of N distinct points the quadratic form induced by the N ×N matrix

A = (φ(‖Xj −Xk‖2))1≤j,k≤N (13)

is positive definite on the subspace

V :=

{
α ∈ IRN :

N∑
j=1

αjp(Xj) = 0 for all p ∈ IP d
m

}
.

Note that m = 0 implies V = IRd because of IP d
m = {0}, and then the matrix A in (13)

is positive definite. The most prominent examples of conditional positive definite radial

basis functions of order m on IRd are

φ(r) = (−1)�β/2�rβ, β > 0, β �∈ 2IN0 m ≥ �β/2�
φ(r) = (−1)k+1r2k log(r), k ∈ IN m ≥ k + 1

φ(r) = (c2 + r2)β/2, β < 0 m ≥ 0

φ(r) = (−1)�β/2�(c2 + r2)β/2, β > 0, β �∈ 2IN0 m ≥ �β/2�
φ(r) = e−αr2

, α > 0 m ≥ 0

φ(r) = (1 − r)4
+(1 + 4r) m ≥ 0, d ≤ 3.

See e.g. [19] for a comprehensive derivation of the properties of these functions. Interpo-

lation of real values f1, . . . , fN on a set X = {X1, . . . , XN} of N distinct scattered points

of Ω by such a function φ(·) is done by solving the (N + q) × (N + q) system

Aα + Pβ = f

P Tα + 0 = 0

where Q = dim IP d
m and

P = (pi(Xj))1≤j≤N,1≤i≤q

for a basis p1, . . . , pq of IP d
m. In fact, if the additional assumption

rank (P ) = Q ≤ N

holds, then the system is uniquely solvable. The resulting interpolant has the form

s(x) =
N∑

j=1

αjφ(‖Xj − x‖2) +

q∑
i=1

βipi(x)

with the additional condition α ∈ V .
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A.2 The modified quadratic Shepard Method

The ideas of the bivariate modified quadratic Shepard method extend directly to the

trivariate case (see for instance [9] and [13]). This method has the general form

s(X) =

∑N
k=1

Qk(X)

ρ2
k(X)∑N

k=1
1

ρ2
k(X)

, (14)

where

1

ρk(X)
=

(Rw − ||X −Xk||2)+

Rw||X −Xk||2
(15)

for some constant Rw. Qk(X) are the quadratic polynomials, obtained by a weighted

least squares fit and constrained to take on the value fi at the trivariate points Xi. The

weights in the least squares process are the same form as the weight functions (15), but

with a different constant Rq.

We select two values Nq and Nw and define

Rw =
D

2

√
Nw

N
, Rq =

D

2

√
Nq

N
,

where D = maxXi,Xj∈X ||Xi −Xj||2.
We consider the weight functions

1

ρk(X)
=

(Rw − ||X −Xk||2)+

Rw||X −Xk||2
1

νi(X)
=

(Rq − ||X −Xk||2)+

Rq||X −Xk||2
.

We define the local basis

Qk(x, y, z) = fk + ak2(x− xk) + ak3(y − yk) + ak4(z − zk)

+ ak5(x− xk)
2 + ak6(y − yk)2 + ak7(z − zk)2

+ ak8(x− xk)(y − yk) + ak9(x− xk)(z − zk)

+ ak10(y − yk)(z − zk)

solving the following least squares problem

min
akj j=2,...,10

N∑
i=1

1

ν2
i (xk, yk, zk)

{fk + ak2(xi − xk) + ak3(yi − yk)

+ ak4(zi − zk) + ak5(xi − xk)
2

+ ak6(yi − yk)2 + ak7(zi − zk)2

+ ak8(xi − xk)(yi − yk)

+ ak9(xi − xk)(zi − zk)

+ ak10(yi − yk)(zi − zk) − fi}2.
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The interpolant is locally determined, the influence of any point not extending further

than a distance Rw +Rq from each data point.

Assuming that the data are equidistributed, constant values for Rq and Rw (that is con-

stant values for Nq and Nw)are appropriate. A good choice (suggested in the literature,

see [13]) is Nq = 54, Nw = 27. If the data density is not reasonably uniform, we might

want to let the radii Rq and Rw depend on i.

B Figures

For the graphs, we have chosen the evolutive representation described in §2. In the

examples, the evolution variable is z. We have evaluated the interpolant g(x, y, z) in

the points of a grid of size 21 × 21 × 21. In the pictures, we show the evolutions of

some surfaces g(x, y, zk). Namely, we have considered zk = (k − 1)/20 with k ∈ K,

K = {1, 3, 6, 9, 13, 16, 19, 21} for F1, F5 and with k ∈ K \ {11} for F2. In all the figures,

except fig. 7 (in which the errors are shown), the surfaces are represented using a gray

scale.

Figure 1: Exact functions. Left: F1, center: F2, right: F5
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Figure 2: Test function F5. Interpolation with r3. Left: N = 343, right: N = 1000
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Figure 3: Test function F1. Interpolation with r3. Left: N = 343, center: N = 1000,

right: N = 3375
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Figure 4: Test function F2. Interpolation with r3. Left: N = 343, center: N = 1000,

right: N = 3375
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Figure 5: Test function F2. Interpolation with r3. Left: N = 343, center: N = 1000,

right: N = 3375
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Figure 6: Test function F1. Interpolation with MQSM. Left: N = 343, center: N = 1000,

right: N = 3375
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Figure 7: Test function F1. Absolute errors for the interpolants obtained with r3. Left:

N = 343, center: N = 1000, right: N = 3375
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Figure 8: Test function F1. Interpolants on different sets. Left: S1
343, center: S2

343, right:

S3
343
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Figure 9: Test function F1. Interpolants on different data sets. Left: S1
1000, center: S2

1000,

right: S3
1000
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Figure 10: Test function F1. Interpolants on different data sets. Left: S1
3375, center:

S2
3375, right: S3

3375
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