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Abstract

Based on a generalized algorithm for the division with remainder of polynomials

in several variables, a method for the construction of standard bases for polyno-

mial ideals with respect to arbitrary grading structures is derived. In the case of

ideals with finite codimension, which can be viewed upon as a polynomial inter-

polation problem, an explicit representation for the interpolation space of reduced

polynomials can be given.

1 Introduction

We consider polynomial rings in several variables, equipped with a graded structure in-

duced by an arbitrary grading monoid. The goal is a construction method for ideal bases

which leads, depending on the underlying grading structure, to the H-bases introduced

by Macaulay [9] in 1916 as well as to the Gröbner bases which have been developed by

Buchberger [4] in 1965.

For that purpose, let

Π = K [x1, . . . , xd]

denote the ring of polynomials over the infinite field K. Let Γ be a monoid (i.e., a

semigroup with neutral element) and let “<” be a total order on Γ. The monoid Γ is

called a grading monoid for Π if there is a direct sum decomposition

Π =
⊕
γ∈Γ

Πγ

such that each Πγ is an abelian group with respect to addition and that

ΠγΠγ′ ⊂ Πγ+γ′ .
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Note that this implies that K ⊂ Π0. Indeed, suppose that there exist 0 �= K ∈ K and

0 < γ ∈ Γ such that K ∈ Πγ. Then 1/K ∈ Πγ′ for some γ′ ∈ Γ and, consequently, we

have 1 = K · 1/K ∈ Πκ, where κ = γ + γ′ ≥ γ > 0. But this also yields that 1 ∈ Πκ+κ

and since κ + κ > κ this contradicts the fact that the homogeneous spaces form a direct

sum decomposition.

The canonical examples for grading monoids are N0 and grading by total degree, i.e.,

Πk =




∑
|α|=n

cαx
α : cα ∈ K




and N
d
0 where

Πα = {cxα : c ∈ K} .

One can decompose any polynomial p ∈ Π into its homogeneous terms pγ, γ ∈ Γ, writing

it as

p =
∑
γ∈Γ

pγ,

where only finitely many terms of the above sum are not zero. A well–ordering “<” on Γ

naturally determines the notion of the degree δ : Π → Γ which is defined for a polynomial

p ∈ Π as

δ(p) = max
<

{γ : pγ �= 0} .

The leading term ΛΓ(p) of a polynomial p is its maximal homogeneous component; in

other words,

ΛΓ(p) = pδ(p).

For any set of polynomials P ⊂ Π, the ideal 〈P〉 generated by P is

〈P〉 =




∑
g∈P

qgg : qg ∈ Π


 .

If I ⊂ Π is any polynomial ideal, then Hilbert’s Basissatz tells us that there always exists

a finite basis BI ⊂ Π such that I = 〈BI〉. However, often one is interested in ideal bases

which have additional desirable properties and which are also computationally effective.

The probably best–known ones are the H–bases and the Gröbner bases which are, in this

notation, described by the requirement that any polynomial p ∈ 〈G〉 can be written as

p =
∑
g∈G

qgg, δ(p) ≥ δ (qgg) , g ∈ G, (1)

where Γ is either N0 together with ordering by total degree (in the case of H–bases) or

N
d
0 together with a term order (in the case of Gröbner bases). It is exactly the type of

basis, characterized by (1), which we want to construct in this paper for arbitrary grading
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monoids, but without having to refine the grading to a term order. This type of basis was

introduced and investigated under the name “standard basis” by Robbiano [11] for even

more abstract and axiomatically defined graded structures on commutative rings. For

our purpose here which deals with the ring of polynomials, we make the following formal

definition.

Definition 1 A (finite) set G ⊂ Π is called a Γ–basis (for the ideal 〈G〉), if any p ∈ 〈G〉
can be written as

p =
∑
g∈G

qgg, δ(p) ≥ δ (qgg) , g ∈ G. (2)

Since any ideal has a finite basis and since a Γ–basis is, in particular, a basis for the

ideal generated by its member polynomials, we can always assume that a Γ–basis is a

finite set. Moreover, we will simply say that “G is a Γ–basis” instead of “G is a Γ–basis

for 〈G〉”.

We also recall that an equivalent definition for a Γ–basis would be the requirement

that

{ΛΓ(p) : p ∈ 〈G〉} = 〈ΛΓ(g) : g ∈ G〉. (3)

2 A reduction algorithm

In order to formulate the reduction algorithm, we first have to introduce some more

notation. Throughout this section, let P denote a finite set of polynomials and write #P
for its cardinality. When writing (P) we want to view P as an ordered set in the sense

that there exists an increasing chain of subsets

∅ = P0 ⊂ P1 ⊂ P2 ⊂ · · · ⊂ P#P = P , #Pj = j, j = 1, . . . ,#P ,

where the order is arbitrary but fixed.

Also, let (·, ·) : Π × Π → K be the scalar product (i.e., the positive definite bilinear

form) given by

(p, q) = (p(D)q) (0) =
∑

α∈N
d

0

pαqα

α!
, (4)

provided that

p(x) =
∑

α∈N
d

0

pα
xα

α!
and q(x) =

∑
α∈N

d

0

qα
xα

α!
.

If K = C, one has to add complex conjugation and consider the respective sesquilinear

form instead; however, we will not dwell on this explicitly. Making use of this scalar

product, the Taylor expansion of a polynomial p at the origin becomes

p(x) =
∑

α∈N
d

0

(xα, p)
xα

α!
. (5)
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Though at various points in this paper, in particular in this section, an arbitrary scalar

product may be admissible, we want to restrict ourselves to the above “standard” scalar

product defined in (4).

For γ ∈ Γ we define the homogeneous subspace

Vγ(P) =




∑
p∈P

qpΛΓ(p) : qp ∈ Πγ−δ(p), p ∈ P

 ⊂ Πγ

with the convention that Πγ−δ(p) = {0} if γ − δ(p) �∈ Γ. Using the above order on P
and the Hilbert space structure which the scalar product (·, ·) defines on Π, we obtain an

orthogonal decomposition of Vγ(P) as

Vγ(P) =
#P⊕
j=1

Wγ (Pj) ,

where

Wγ (Pj) = Vγ (Pj) � Vγ (Pj−1) , j = 1, . . . ,#P ,

i.e.,

(Wγ(Pj), Vγ(Pj−1)) = 0.

The goal of the reduction algorithm is to decompose a given f ∈ Π into

f =
∑
p∈P

qpp + r, δ(p) ≥ δ(qpp), p ∈ P,

where the remainder r ∈ Π should be in a “normalized” or “reduced” form. In the well–

known context of Gröbner bases (Γ = N
d
0) this means that none of the (monomial) leading

terms of P divides any (monomial) term of r. However, when working with the grading

by total degree, for example, the above requirement has to be weakened. It will turn out

that orthogonality of any homogeneous term of r yields the “proper” generalization in

the sense that the respective reduction process leads to an “algorithmic” characterization

of Γ–bases.

Algorithm 2 Given: f ∈ Π and P ⊂ Π.

While f �= 0:

1. Set γ = δ(f).

2. For j = 1, . . . ,#P:

• (Orthogonal projections) Find

qγ
j ∈ Wγ (Pj) , qγ

j =
∑

p∈Pj

qγ
j,pΛΓ(p), (6)

such that 
ΛΓ(f) −

j∑
k=1

qγ
k ,Wγ(Pj)


 = 0. (7)
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3. Set

rγ := ΛΓ(f) −
#P∑
j=1

qγ
j . (8)

4. Set

f := f −
∑
p∈P


 ∑

{j:p∈Pj}
qγ
j,p


 p− rγ. (9)

Result: Decomposition

f =
∑
p∈P


∑

γ∈Γ

∑
{j:p∈Pj}

qγ
j,p


 p + r, (10)

where

(rγ, Vγ(P)) = 0, γ ∈ Γ. (11)

Motivated by equation (11) we call a polynomial q ∈ Π reduced or in normal form

with respect to a finite set P ⊂ Π if all the homogeneous terms of q are perpendicular to

the respective Vγ(P), i.e., if

(qγ, Vγ(P)) = 0, γ ∈ Γ, q =
∑
γ∈Γ

qγ.

Note, however, that this notion of being reduced depends on the underlying scalar product.

Nevertheless, the question whether a polynomial p is reduced with respect to P does not

depend on an ordering of P .

Proposition 3 Algorithm (2) finishes after finitely many steps and the remainder poly-

nomial r satisfies (11).

Proof: We first remark that the algorithm is well–determined since the orthogonal

projection qγ
j ∈ Wγ(Pj) is unique. For the termination of the algorithm, we only have to

notice that

rγ = ΛΓ(f) −
∑
p∈P

∑
{j:p∈Pj}

qj,pΛΓ(p),

hence the terms of degree γ on the right hand side of (9) are

Λ(f) −
∑
p∈P

∑
{j:p∈Pj}

qj,pΛΓ(p) − rγ = 0,

which shows that the degree of f is strictly reduced in each step. Therefore, the algorithm

terminates after a finite number of steps.

For the second claim, it is easily observed by induction that for j = 1, . . . ,#P we have


ΛΓ(f) −

j∑
k=1

qk, Vγ(Pj)


 = 0.
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Indeed, for j = 1 this is exactly the requirement in the construction of qγ
1 , while for j > 1

the induction hypothesis and

qj ∈ Wγ (Pj) ⊥ Vγ (Pj−1)

yield 
ΛΓ(f) −

j∑
k=1

qk, Vγ(Pj−1)


 = 0.

Equation (7) and

Vγ(Pj) = Vγ(Pj−1) ⊕Wγ (Pj)

finally advance the induction hypothesis. ✷

3 Reduction and Γ–bases

The first result shows that reduction with respect to a Γ–basis has a more “deterministic”

outcome than reduction by a general finite set of polynomials.

Theorem 4 Let G be a Γ–basis and suppose that p ∈ Π can be written as

p =
∑
g∈G

qgg + r,

where r is reduced with respect to G. Then

r = p→
(G)

Remark 5 In particular, the above theorem says that for Γ–bases the remainder of the

reduction algorithm does not depend on the ordering we impose on G. In this case we will

simply write →
G

.

Proof of Theorem (4): Let

p =
∑
g∈G

q̃gg + r̃, q̃g =
∑
γ∈Γ

qγ,g, r̃ = p→
(G)
,

be the decomposition obtained by Algorithm (2). Then

r − r̃ =
∑
g∈G

(q̃g − qg) g ∈ 〈G〉.

Now suppose that q := r− r̃ �= 0. Since each homogeneous term of r and r̃ of any degree γ

is orthogonal to the respective Vγ(G), the same holds true for qγ, γ ∈ Γ, and, in particular,

(
ΛΓ(q), Vδ(q)(G)

)
= 0. (12)
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On the other hand, since q ∈ 〈G〉 and since G is a Γ–basis, we also conclude from (3) that

ΛΓ(q) ∈ 〈ΛΓ(G)〉 ∩ Πδ(q) = Vδ(q)(G). (13)

But (12) and (13) are contradictory if q �= 0, hence we must have q = 0 or r = r̃ = p→
(G)

.

✷

Next, let us recall that, for a finite set P ⊂ Π of polynomials, a syzygy for P is a

vector of polynomials q ∈ ΠP such that

q · P =
∑
p∈P

qpp = 0.

The set of all syzygies for P forms a module, denoted by S(P). It is well–known (cf. [8])

that this module is finitely generated, i.e., there exists a finite basis S ⊂ S(P) such that

any syzygy q ∈ S(P) can be written as

q =
∑

s∈S(P)

qss, qs ∈ Π, s ∈ S(P).

We also remark that such a basis can be constructed explicitly making use of a reduced

Gröbner basis of 〈P〉. This has been pointed out by Buchberger in Method 6.17 of his

survey paper [5].

Now, there is a Γ–bases analogue of the classical characterization of Gröbner bases via

the reduction of the syzygies of leading terms. This result reads as follows.

Theorem 6 Let G ⊂ Π be a finite set of polynomials and let S be a basis of S (ΛΓ(G)).

Then G is a Γ–basis if and only if

s · G→
(G)

= 0, s ∈ S (ΛΓ(G)) . (14)

Proof: Since p→
(G)

is unique for a Γ–basis G by Theorem (4) and since s · G ∈ 〈G〉, the

direction “⇒” is clear.

The proof of “⇐” follows the argumentation in [10]. Pick any p ∈ 〈G〉 which can be

written as

p =
∑
g∈G

pgg. (15)

We have to show that the polynomials pg, g ∈ G, in (15) can be chosen such that δ(p) ≥
δ(pgg), g ∈ G. Assume that this is not the case in equation (15) and set

γ = max
<

{δ(pgg) : g ∈ G} ,

then there is a nonempty subset G ′ ⊂ G such that

G ′ = {g ∈ G : δ(pgg) = γ} and δ(pgg) > δ(p), g ∈ G ′.
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Consequently, the leading terms of these polynomials, which belong to Πγ, have to cancel,

i.e. ∑
g∈G′

ΛΓ(pgg) =
∑
g∈G′

ΛΓ(pg) ΛΓ(g) = 0

and therefore

q = (qg : g ∈ G) , qg =


 ΛΓ(pg) g ∈ G ′,

0 g ∈ G \ G ′,

belongs to S (ΛΓ(G)). By assumption,

q · G→
(G)

=
∑
s∈S

qs (s · G)→
(G)

= 0,

hence, there exist polynomials p̃g ∈ Π, g ∈ G, such that

∑
g∈G′

ΛΓ(pg) g = q · G =
∑
g∈G

p̃gg,

where δ(pgg) < γ, since δ(q · G) < γ. This yields that

p =
∑
g∈G′

(pg − ΛΓ(pg) + p̃g) g +
∑

g∈G\G′
(pg + p̃g) g =

∑
g∈G

p̂g g,

which is again a representation of the form (15), but now with the property that δ(p̂g g) <

γ, g ∈ G. Repeating this process, we arrive, after finitely many steps, at a “minimal”

representation of the form (15), where δ(pgg) ≤ δ(p), g ∈ G, which shows that G is a

Γ–basis. ✷

This allows us to finally formulate a crude version of Buchbergers algorithm for the

computation of a Γ–basis for the ideal 〈P〉, where P is any finite set of polynomials.

Algorithm 7 Given: Finite set P ⊂ Π.

1. Set G = P and G ′ = ∅.

2. While G ′ �= G:

(a) Set G ′ = G.

(b) Compute a basis S of S (ΛΓ(G)).

(c) For s ∈ S:

i. Compute h = s · G ′→
(G′)

.

ii. If h �= 0 then set G = G ∪ {h}.

Result: Γ–basis G.

Theorem 8 Algorithm (7) generates a Γ–basis after finitely many steps.
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Proof: The argument is identical with the one for termination of Buchberger’s algorithm

for Gröbner bases, cf. [6]. Let Gk, k ∈ N0, denote the set G after the kth step of the

algorithm. Then Gk ⊂ 〈P〉, k ∈ N0, and, by construction, as long as Gk ⊂ Gk+1 is a strict

inclusion, then the inclusion of homogeneous ideals 〈ΛΓ (Gk)〉 ⊂ 〈ΛΓ (Gk)〉 is also a strict

one. However, after finitely many steps the sequence of homogeneous ideal 〈ΛΓ (Gk)〉 must

stabilise which means that there exists k0 ∈ N such that Gk = Gk+1 for all k ≥ k0. But

then Γk0 is a Γ–basis since all syzygies reduce to zero. ✷

4 Least interpolation

In this section we will connect the technique of Γ–bases to multivariate polynomial interpo-

lation of (Γ–) minimal degree and of Γ–least interpolation which extends and generalizes

the approach from [12, 13]. To clarify these notions, we have to introduce some more

terminology.

Let Θ ⊂ Π′ be a finite set of linearly independent linear functionals defined on Π.

Following a terminology of G. Birkhoff [1], we say that Θ admits an ideal interpolation

scheme if

ker Θ = {p : Θ(p) = 0} ⊂ Π

is an ideal in Π.

It is well–known that θ ∈ Π′ can be identified with a formal power series fθ ∈
K[[x1, . . . , xd]] by the assignment

θ(p) = (p, fθ) ;

clearly, the scalar product (·, ·) can be extended to Π × K[[x1, . . . , xd]] since the sum of

coefficients still runs over a finite index set only. For example, to the point evaluation func-

tional θ = δx the power series of fθ(y) = ex·y is associated. The following characterization

of ideal interpolation schemes has been given by de Boor and Ron [3].

Theorem 9 A finite set Θ of linear functionals admits an ideal interpolation scheme if

and only if the subspace

fΘ = span K {fθ : θ ∈ Θ} ⊂ K[[x1, . . . , xd]]

is closed under formal differentiation.

Assume that Θ admits an ideal interpolation scheme. We say that a linear subspace

P ⊂ Π is an interpolation space with respect to Θ if for any y ∈ K
Θ there exists a unique

polynomial p ∈ P such that

Θ(p) = y.
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If P is an interpolation space with respect to Θ, then we denote by

L (P ; ·) : K
Θ → P

the interpolation operator (which is a clearly linear operator). Moreover, L (P ; Θ(·)) : Π →
P is a linear projection from Π → P . We say that P is a Γ–minimal degree interpolation

space with respect to Θ if P is an interpolation space and the projection L (P ; Θ(·)) is

degree reducing, i.e.,

δ (L (P ; Θ(p))) ≤ δ(p), p ∈ Π,

which is a desirable behaviour of polynomial projections.

The following result tells us that the normal forms (or, reduced polynomials) with

respect to a Γ–basis G for ker Θ are always a canonical minimal degree interpolation

space with respect to Θ.

Theorem 10 Suppose that Θ ⊂ Π′ admits an ideal interpolation scheme and let G be a

Γ–basis of ker Θ. Then PΘ = Π→
G

is a Γ–minimal degree interpolation space with respect

to Θ and

L (PΘ; Θ(p)) = p→
G
.

Proof: Since the functionals in Θ are linearly independent, there exist dual polynomials

pΘ ∈ ΠΘ such that

θ (pθ′) = δθ,θ′ , θ, θ′ ∈ Θ.

Since Θ
(
p− p→

G

)
= 0 for any p ∈ Π, the polynomials pΘ→G are also dual to Θ and

therefore also linearly independent. Consequently, for any data y ∈ K
Θ, the polynomial

py =
∑
θ∈Θ

yθpθ→G ∈ Π→
G

satisfies Θ(py) = y. In addition, all polynomials p ∈ Π which have the property that

Θ(p) = y, differ by an element of 〈G〉 and therefore the py above is the unique (because G
is a Γ–basis) reduced interpolant which proves that Π→

G
is an interpolation space where

the interpolation operator is given by reduction. Since the reduction process is also

degree–reducing, we finally find that Π→
G

is a Γ–minimal degree interpolation space. ✷

For a power series f ∈ K[[x1, . . . , xd]] we denote its Γ–least term by

λΓ(f) = min
γ

{fγ : fγ �= 0} ,

in other words, its homogeneous term of Γ–minimal degree. The vector space of the least

terms of a subspace F of K[[x1, . . . , xd]] will be denoted by λΓ(F ). The least space related

to Θ, λΓ (fΘ), has been discovered as very useful in interpolation by de Boor and Ron [2]

for the case of grading by total degree.
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Finally, we assume that the grading induced by Γ is a monomial grading which requires

that for γ ∈ Γ

Πγ = span K {xα : α ∈ Iγ} , Iγ ⊂ N
d
0, γ ∈ Γ.

In particular, each monomial xα, α ∈ N
d
0, belongs to some homogeneous space Πγ; we

denote the respective index γ by γ(α).

Then we have the following result.

Theorem 11 Suppose that Θ ⊂ Π′ admits an ideal interpolation scheme and let G be a

Γ–basis of ker Θ. Then

Π→
G

= λΓ (fΘ) .

Corollary 12 If Θ ⊂ Π′ admits an ideal interpolation scheme and Γ is a monomial

grading, then λΓ (fΘ) is a Γ–minimal degree interpolation space.

For the prove of the theorem we begin with collecting some auxiliary results. First we

remark that it follows directly from (4) that for f, g, p ∈ Π one has

(f, p(D)g) = (fp, g) . (16)

Next, we give a simple observation on monomial gradings.

Lemma 13 Suppose that Γ induces a monomial grading. If p, q ∈ Π satisfy δ(p) < δ(q),

then ΛΓ(q)(D)p = 0.

Proof: Pick any β ∈ N
d
0 such that γ(β) > δ(p). By (5) and (16) we obtain that

Dβp =
∑

α∈N
d

0

(
xα, Dβp

) xα

α!
=

∑
α∈N

d

0

(
xα+β, p

) xα

α!
.

On the other hand, equation (5) yields that
(
xα+β, p

)
is the coefficient of p with respect

to the monomial
xα+β

(α + β)!
∈ Πγ(α)+γ(β).

Since γ(α)+γ(β) ≥ γ(β) > δ(p) and since the grading yields a direct sum decomposition,

this coefficient has to be zero. Since

Λ(q) ∈ span K

{
xα : α ∈ Iδ(q)

}
,

the result follows. ✷

To prove the theorem, we make use of the following additional characterization of

reduced polynomials with respect to a Γ–basis G.
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Proposition 14 Let G be a Γ–basis for 〈G〉 and let Γ induce a monomial grading. Then

a polynomial p ∈ Π is reduced with respect to G if and only if

p ∈
⋂
g∈G

ker ΛΓ(g)(D). (17)

Proof: We first remark that

⋂
g∈G

ker ΛΓ(g)(D) =
⋂

g∈〈G〉
ker ΛΓ(g)(D). (18)

Indeed, the inclusion “⊃” is trivial since G ⊂ 〈G〉. For “⊂” we pick any q ∈ 〈G〉, and write

it as q =
∑

g qgg. Since G is a Γ–basis for 〈G〉, we know that δ (qgg) ≤ δ(q) and defining

the subset G ′ ⊂ G as

G ′ = {g ∈ G : δ (qgg) = δ(q)}

we have that

ΛΓ(q) = ΛΓ


 ∑

g∈G′
qgg


 =

∑
g∈G′

ΛΓ(qg)ΛΓ(g),

hence,

ΛΓ(q)(D)p =
∑
g∈G′

ΛΓ(qg)(D) (ΛΓ(g)(D)p)︸ ︷︷ ︸
=0

= 0.

Now, pick any homogeneous polynomial p ∈ Πγ for some γ ∈ Γ and q ∈ 〈G〉. If δ(p) < δ(q),

then ΛΓ(q)(D)p = 0 by Lemma (13). If, on the other hand, δ(p) ≥ δ(q), then

ΛΓ(q)(D)p =
∑

α)∈N
d

0

(xα,ΛΓ(q)(D)p)
xα

α!
=

∑
{α:δ(q)+γ(α)=γ}

(xαΛΓ(q), p)
xα

α!
.

Hence, ΛΓ(q)(D)p = 0 holds if and only if

(xαΛΓ(q), p) , γ(α) + δ(q) = γ.

However,

Vγ(G) =
⊕
g∈G

span K {xαg : γ(α) + δ(g) = γ}

and therefore ΛΓ(q)(D)p = 0, q ∈ 〈G〉 is equivalent to

(p, Vγ(G)) = 0.

This immediately yields the statement of the proposition. ✷

Hence, the proof of Proposition (14) also yields the following description of the joint

kernels of homogeneous differential operators, cf. [7].

Corollary 15 Suppose that Θ admits an ideal interpolation scheme and let G be a Γ–basis

of ker Θ. Then

Π→
G

=
⋂
g∈G

ker ΛΓ(g)(D)

108



Another immediate consequence is the following “algorithmic” description of the joint

kernels of homogeneous differential operators with constant coefficients.

Corollary 16 Let P ⊂ Π be a finite set of homogeneous polynomials and let G be a

Γ–basis for 〈P〉. Then ⋂
p∈P

ker p(D) = Π→
G
.

Proof of Theorem (11): By Corollary (15) it suffices to prove that

⋂
g∈〈G〉

ker ΛΓ(g)(D) = λΓ (fΘ) . (19)

To prove the inclusion “⊃”, we assume that there exists some f ∈ K[[x1, . . . , xd]], f =∑
θ cθfθ, and q ∈ 〈G〉 = ker Theta such that

ΛΓ(q)(D)λΓ(f) �= 0.

Hence, δ(q) = δ (λΓ(f)) and therefore, by Lemma (13) we have that

ΛΓ(q)(D)λΓ(f) = (q(D)f) (0) = (f, q) =
∑
θ∈Θ

cθ (fθ, q) =
∑
θ∈Θ

cθθ(q) = 0

since q ∈ ker Θ, which is a contradiction.

Conversely, since the functionals in Θ were assumed to be linearly independent and

therefore

λΓ


∑

θ∈Θ

cθfθ


 = 0 ⇔

∑
θ∈Θ

cθfθ = 0 ⇔ cθ = 0, θ ∈ Θ,

we conclude that

dimλΓ(fΘ) = dim fΘ = dim span K Θ = #Θ = dimPΘ.

Hence, λΓ (fΘ) is a linear subspace of PΘ which has the same dimension. Consequently,

the spaces are the same. ✷
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