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Abstract

In this paper, we study some properties of Mastroianni operators [4] and gener-

alized Baskakov operators [3].

1 Introduction and Notation

In [4] Mastroianni introduced and studied a generalization of the classical Bernstein op-
erators consisting in replacing the functions (1 — 2)"~* by more general ones satisfying
suitable relations. His work was motivated by the development of a general expression
that cover other Bernstein-type operators.

In this paper we study some properties of these Mastroianni operators. We obtain
some recursive properties of the derivatives of the operators, that allow us to give a
characterization of the Szdsz operators. Also, we consider the linear combination of
iterates I — (I — L,)™ of Mastroianni operators of fixed degree n for increasing order of
iteration m and prove that these Boolean sums have a good behaviour for polynomials.

In the same manner, we consider a generalization of the Baskakov operators [3] which
are related to certain functions. We study the convergence properties of the sequence of
these operators and give an asymptotic expansion for them.

We will use Stirling numbers, S} y o?, of first and second kind defined, respectively,
by: @l =3 Six' and 27 = S, ohat, with j € No. Here 2 = z(z —1)...(x — j+ 1)
if j >0 and 2% = 1.

*This work is partially supported by Junta de Andalucia, Research Groups FQM178 and FQM268
and by Ministerio de Ciencia y Tecnologia, Project BEM2000-0911.
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Throughout this paper we also use the following notation:

f(z)
14 a2

E,={fe€C[0,+0c0) : is convergent as x — 400},

P, denotes the space of real polynomials of degree at most r and t" is the monomial

t"(z) = z". For convenience, we define Z?Zl = Zi_:lo =1.

Here we simply recall the Mastroianni operators. First we start with a sequence

{dn}nen of real functions on I = [0,00) which are infinitely differentiable and strictly

monotone satisfying the following additional conditions:
Al) ¢,(0) =1, for every n € N={1,2,...}.
A2) (—1)igz5$f)(x) >0, for every n € N, z € I and i € Ny = NU {0}

A3) For every (n,i) € NxNj there exists a positive integer p(n, i) € N and a real function
oy, + I — R such that

O (@) = (—1)') | (@)ami(x),

for every k € Ny and « € I and

For short, we will denote a,; = a,,;(0).

By A3), (—1)+¢\ ) (z) = (—1)’“¢;’217i) (x)ani(x) and by A2) we conclude that nec-
essarily ay,;(z) > 0.

Also from A3), we deduce that (—1)i¢{(z) = Pp(n,i) (%) (), and, in particular,
A1) implies that (—1)ig{(0) = Qi

To the above sequence Mastroianni [4] associates a sequence of positive linear operators
{L,, : By — C>=(I) },en defined by

Lot = s (£) )

k=0

for every f € Fy and z € [0,00). L,, can be represented in the form

oo (%)
Laf@) = S -1 2 Al (o) o 0

2 Derivatives.

It is straightforward to check the following relation of the derivatives.
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Proposition 1. For every k£ € Ny and x € [0, 00)

0 (b(l)n
L) = o 3 (-1 ;’7” ) AYRF(0) o (2)

Proof.

£ f@) = 30 a0y

i=k

From property A3) we get (2). Then (3) follows from (1) and (2). O

We will use this identity to compute the moments L, (¢*). Formula (3) is similar to
(Bnf)®(z) = nk B, (A% f)(x), which is valid for Bernstein polynomials. And it is also

similar to the identity
S\ f () = n*Su(AL f)(),

valid for Szdsz operators. In fact, the last one is a particular case of (2) and (3).

L, operators have classical shape preserving properties. Recall the notion of higher
order convexity. Given k € Ny, a function f is said to be convex of order k (k-convex) if
for all h > 0 one has that A¥f > 0. A function f € C*[0,00) is convex of order k if and
only if f*) > 0.

We can use (1) to deduce some properties of L,,, such as preservation of n-convexity.

In this way, the following result is immediate:

Proposition 2. For any n € N and k € Ny if f is convex of order k, then L, f is convex
of order k.

Of course, Mastroianni’s operator L,, has the degree-preserving property

L,P. CP,, (0<r<n).

3 Moments and asymptotic expansion of L,.

Now, we give explicit expressions for the moments L, (') and central moments L,, ((t — z)?) (z),

for i € N and z € [0, 00).
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Lemma 3. For anyn € N, r € Ny, one has
L,(t")=n" Z Qi ot (4)
i=1

Proof. By (1) we have

L) = S iy ¢
& T ‘
On the other hand, it is known that A% ¢"(0) = ile’n™", (see [1, Section 24.1.4.11.C]).

Now, replacing this expression in the above formula we get

! S0 . - o
L,(t") = Z(—WT iloin™ ' = (=1)'¢{)(0) oin™" t'.
i=0 i=0
Finally, properties A3) and A1) are used. O

We would like to remark that in the above Lemma in the special case r = 0, we have
L,(1)=1.

Lemma 4. For anyn € N, p € Ny, x € [0,00), one has

Ly ((t = 2)7) (x) = n"" Z(—l)j(j —nx)’'G(j,n, ),
where G(j,n,x) => ¢ m(’) gt =3P (—1)emi(l) ot

i=j il J 1=j il \j

Proof. First by (1)

Lo ((t=2)) ) = 3~ 2D A (= ) (0) o'

2!
i=0

From the definition of A

AL ((t — 2))(0) = i (l) (—1)™((t — 2)7) <l>
_ 'io (v (L-2) =am :0 (}) - nay

It is evident that A% ((t — z)?)(0) = 0 for 7+ > p. Replacing it in the above expression we
get

90



Now, we give the asymptotic expansion of the sequence of L,, operators.

Theorem 5. Let f € Ey r times differentiable at x € [0, 00), then

r . r (p)l' .
Li@ = Y 0 E e e~ a)

where G(j,n,x) is given as in Lemma 4.

Proof. The proof of Sikkema Theorem in [6] is valid to check that

" fp)
Lf@) =32 p.("”)Ln (t = ) (@) + o La((t — 2)")), (5)
p=0 ’
for every x € [0,00). We finish the proof using Lemma 4. O

4 Some Limiting Properties.

Mastroianni [4] proves that the sequence of iterations {I — (I — L,,)" }en converges as m

tends to infinity under certain assumptions. More precisely, he showed that

\ .

A’ '£(0) (6)

Jim (1= (I = La)™) (f)(x ) + Z

n’L

holds for all f € C0,b] and = € [0,b] if and only if

the general case, such a convergence does not always hold but we are going to see that

(%)
%H—Q(O)‘ < 2 for every ¢ > 2. In

at least we can obtain a good behavior for polynomials. For this purpose we employ a

modification of the technique used by Sevy [5] for Bernstein operators.

an'L

Theorem 6. Given n,r € N, let us suppose that 0 < < 2 for every i € {0,...,r}.

Then, for any p € P, we have

lim (I'— (I = L,)")(p) =p

m—00

uniformly on compact sets.

Proof. From Lemma 3 it is straightforward that L, is a linear map, L, : P, — P, whose

eigenvalues are )\En) = 22 4 = 0...,r. It is also clear that for every eigenvalue, /\En),

nt ?
. n
we can find an eigenvector p(- )

p(()n) =1.

Take the operator V =1 — L,,. It is not difficult to check that for all m, N € N,

which is a polynomial with exact degree ¢ and also that

YN _ym — ([ - L,)™ (Z([ - Ln)i) L,. (7)

1=0
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If )\En) =1 then Vm(pE")) = 0 for every m € N. If )\l(-n) # 1 from (7) we have

n n n n 1- A(n) N
V) - V) = (1 - XA TR

9
1—A\m '

)

(n)

)

Since 0 < /\En) < 2, one has |1 — /\En)| < 1. In both cases, as p;’ is continuous, taking into
account the preceding identity we can conclude that the sequence {V,, (pgn))}neN satisfies
the Cauchy condition on compact subsets from which we deduce that such a sequence
(n)

converges towards g € C[0,00). Furthermore, it is immediate that V™ (p,"’) € P, for any
m € N so that g € P, because C[0, a] is closed and the convergence is uniform in [0, a].
We know that the linear operator L, : P, — P, is always continuous because P, is a
finite dimensional space. Then, V(g) = lim,, .« V(Vm(pgn))) = lim,,, oo Vm“(pz(")) =g
from which g = V(g) = g— L, (g) and then L,(g) = 0, that is possible only when g() =0
for all ¢ € {0,...,r} (see Remark 8). Hence, g is a polynomial of degree at most r that
vanishes at r + 1 points which implies that g = 0 . Therefore
Tim (1= (1= Ly)™) (") = Tim_ (p" = v (™)) =p™.

If p € P, then we can writep =37, Aipz(”). Since [ — (I — L,)™ is a linear and continuous

operators the results obtained for pgn) also hold for p. O

Corollary 7. Given r € N and p € P, there exists ng € N such that for all n > ng,

lim (1= (I = L,)") (p) = p-

m—0o0
Proof. From the definition of the Mastroianni operators, for every i € N,

lim A" = lim 2% =1,

n— oo n—oo Nt

Therefore, we can find ng large enough such that |1 — )\En)| < 1 fori € {0,...,7} and
n > ng. ]

Remark 8. From the hypotheses of Theorem 6 we know that 0 < «,; so that ¢§f) (0) #0,
i €{0,...,7}. By means of (1), if L,(g) = 0 we easily deduce that
B0 .
(—1)'———= A% g(0) =0, Vi e N

Z! n

and hence A% g(0) = 0 for i € {0,...,7} (because the corresponding ¢4 (0) does not
vanish) from which it is straightforward that g ( ) =0forie{0,...,7}.

So, we can conclude that under the conditions of Theorem 6, given g € C|0, 00) such
that L,(g) = 0 we have that g (£) =0, i€ {0,...,7}.

i
n
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5 Generalized Baskakov Operators.

For every f € Fy and z € [0, 00), Baskakov operators are defined by
> E\ o0 (x
Mf) = 3ot (5 2
k=0 )

(cf. Martini [3]) and they are generated by a sequence of analytic functions on [0, c0),
¢n: R — R, n €N, satisfying A1), A2) and

o () = —(n + L)) (x)

for all £ € N and x € [0,00), where [y, s € Ny are independent of n, k and .

By induction A3) is also verified for a, ; = ai(z) = (n+1)® ) and p(n,i) = n-+ily,
where 2% = 1 and 270 = 2(x +1)...(x + (i — 1)I), for i > 0.

Furthermore, from suitable choices of the sequences {¢,},en, We obtain some well
known operators. For example, choosing [, = 0, we have the Schurer-Szasz-Mirakjan

operators [2] S, ,, with

Shnf( _ ,—(n+h) xf:f( ) Lll)xk
k=0

From (2) and (3) we get

Proposition 9. For every k € Ny and « € [0, 00)

00 ( )
M® f(x) = (n+1)® (-1 ”*’912(0) ATF(0) . (8)
=0 "
In particular,
I F(@) = (n+ )" S (A% £)(2). (9)

Lemma 3 allows us to state the moments of the operators.

Proposition 10. For any n € N, r € Ny, one has

min{r—1,6}

(t") = in—ﬁ > Alr—sr—pB) ot (10)
p=0 =0

where A(i,a) = Z] o O)EISI (41— 1))

Proof. Observe that

(u—z):i({ -_1)221'1 J(f '—1>j
x ! l—l—z l;SZ l+7,
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and in particular

j=0

. LN I P2 .
(n+1)0 =153 57 (”Z Ly 1) =S IS (A 1y 4 la(i — 1))
=0

I
o~
N =
4
n
Y
M-
N\
o .
~_
3
Q
—~
o~~~
=
+
o~
no
—~
~
|
—_
SN—
SN—
<
Q

7 %

=> "> (i)z;fsg (I + (i — 1)) 7.

a=0 j=a

Lemma 3 yields

<

M,y =n""Y (n4 1) o ¢ (11)
i=1
ie.,
My(t) = n"Y > nA(i,a) on £ = Y n*" > A(i,a) ol t.
i=1 a=0 a=0 i=mazx{l,a}
Replacing « = r — 8 and ¢« = r — s, the proof is concluded. O

A characterization of S, ,, operators is obtained using Proposition 10. (In fact we
use (11)). We show the operator M,, satisfies (9) if and only if M,, is the Schurer-Szdsz-

Mirakjan operator.

Corollary 11.
M® f = (n+ 1) M, (A% f), for every k € Ny < 1y = 0.

Proof. If we suppose that M,, satisfies (9), then in particular (9) holds for f = t*. Now,
(11) implies that (n + 1;)*~%2) = (n 4 1;)* and so I, = 0. O

In order to give the asymptotic expansion for the M,, operators, we study their central

moments.

Proposition 12. Given p € Ny, n € N and x € [0, 00) the following identity holds:

min{r—1,8}

M, ((t=2)) (x) =Y n Py (=1 (p> Y Alr—s,r—8) o 2P, (12)
3=0 =8 r s=0

where A( , ) is given in Proposition 10.
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Proof. From Proposition 10 we obtain
— (P
M, ((t = 2)") (x) = ( ) (—2)"" M, () (z)
P D r min{r—1,8}
( ) (—1)P" Zn_ﬁ Z A(r —s,r—0) o, % 2P
r=0 \” £=0 5=0

P ; D D min{r—1,6}
_ - _1\p—T o . r—s ,.p—s
Zn Z( 1) (7“) ; A(r —s,r— ) o, % 2P7°.

U

Remark 13. Using the same arguments as Sikkema [6] for Szasz operators, we can deduce
p+1

that, in fact, in (12) (§ runs from [%], the greatest integer less than or equal to =-, to
P.

The main result of this section is:

Theorem 14. Let f € Ey r times differentiable at x € [0,00). Then

M f(x) = f(2) + ) _nPa(B,r, fa) +o(n™), (13)
p=1
where
r (») p min{r—1,5}
Cl(ﬁ,?”, f,.??) = f ‘(x) (_1)p77‘ (p) Z A(T—S,T—ﬁ) O':is aPe,
— p: — T —
p=0 r=03 5=0
Proof. By (5), the proof follows from Proposition 12. O

For the convenience of the reader we list the initial summands of the expansion (13),

for r = 3;
Lz , nr(l+lbz)+z(ly + L(L + )x) ,,
M, f ) = 1) + 02 gy 4 PO ED T AO T RO ERID) po,
6n3
2
+£L‘(ll + 3[1(11 + ZQ)ZE + l1(l1 + lz)(ll + 2[2)$ ) f”/(:L’) + o(n_3),
6n3
as n — o0.
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