Some Properties of Linear Positive Operators Defined in Terms of Finite Differences *

A.J. López-Moreno, J. Martínez-Moreno, F.J. Muñoz-Delgado and J.M. Quesada

Departamento de Matemáticas. Universidad de Jaén. Spain

Abstract

In this paper, we study some properties of Mastroianni operators [4] and generalized Baskakov operators [3].

1 Introduction and Notation

In [4] Mastroianni introduced and studied a generalization of the classical Bernstein operators consisting in replacing the functions $(1-x)^{n-k}$ by more general ones satisfying suitable relations. His work was motivated by the development of a general expression that cover other Bernstein-type operators.

In this paper we study some properties of these Mastroianni operators. We obtain some recursive properties of the derivatives of the operators, that allow us to give a characterization of the Szász operators. Also, we consider the linear combination of iterates $I-\left(I-L_{n}\right)^{m}$ of Mastroianni operators of fixed degree n for increasing order of iteration m and prove that these Boolean sums have a good behaviour for polynomials.

In the same manner, we consider a generalization of the Baskakov operators [3] which are related to certain functions. We study the convergence properties of the sequence of these operators and give an asymptotic expansion for them.

We will use Stirling numbers, S_{j}^{i} y σ_{j}^{i}, of first and second kind defined, respectively, by: $x^{j}=\sum_{i=0}^{j} S_{j}^{i} x^{i}$ and $x^{j}=\sum_{i=0}^{j} \sigma_{j}^{i} x^{i}$, with $j \in \mathbb{N}_{0}$. Here $x^{j}=x(x-1) \ldots(x-j+1)$ if $j>0$ and $x^{0}=1$.

[^0]Throughout this paper we also use the following notation:

$$
E_{2}=\left\{f \in C[0,+\infty): \frac{f(x)}{1+x^{2}} \text { is convergent as } x \rightarrow+\infty\right\},
$$

\mathbb{P}_{r} denotes the space of real polynomials of degree at most r and t^{r} is the monomial $t^{r}(x)=x^{r}$. For convenience, we define $\sum_{i=1}^{0}=\sum_{i=0}^{-1}=1$.

Here we simply recall the Mastroianni operators. First we start with a sequence $\left\{\phi_{n}\right\}_{n \in \mathbb{N}}$ of real functions on $I=[0, \infty)$ which are infinitely differentiable and strictly monotone satisfying the following additional conditions:

A1) $\phi_{n}(0)=1$, for every $n \in \mathbb{N}=\{1,2, \ldots\}$.
A2) $(-1)^{i} \phi_{n}^{(i)}(x) \geq 0$, for every $n \in \mathbb{N}, x \in I$ and $i \in \mathbb{N}_{0}=\mathbb{N} \cup\{0\}$.
A3) For every $(n, i) \in \mathbb{N} \times \mathbb{N}_{0}$ there exists a positive integer $p(n, i) \in \mathbb{N}$ and a real function $\alpha_{n, i}: I \rightarrow \mathbb{R}$ such that

$$
\phi_{n}^{(i+k)}(x)=(-1)^{i} \phi_{p(n, i)}^{(k)}(x) \alpha_{n, i}(x),
$$

for every $k \in \mathbb{N}_{0}$ and $x \in I$ and

$$
\lim _{n \rightarrow \infty} \frac{n}{p(n, i)}=\lim _{n \rightarrow \infty} \frac{\alpha_{n, i}(x)}{n^{i}}=1
$$

For short, we will denote $\alpha_{n, i}=\alpha_{n, i}(0)$.
By A3), $(-1)^{i+k} \phi_{n}^{(i+k)}(x)=(-1)^{k} \phi_{p(n, i)}^{(k)}(x) \alpha_{n, i}(x)$ and by A2) we conclude that necessarily $\alpha_{n, i}(x) \geq 0$.

Also from A3), we deduce that $(-1)^{i} \phi_{n}^{(i)}(x)=\phi_{p(n, i)}(x) \alpha_{n, i}(x)$, and, in particular, A1) implies that $(-1)^{i} \phi_{n}^{(i)}(0)=\alpha_{n, i}$.

To the above sequence Mastroianni [4] associates a sequence of positive linear operators $\left\{L_{n}: E_{2} \rightarrow C^{\infty}(I)\right\}_{n \in \mathbb{N}}$ defined by

$$
L_{n} f(x)=\sum_{k=0}^{\infty}(-1)^{k} f\left(\frac{k}{n}\right) x^{k} \frac{\phi_{n}^{(k)}(x)}{k!},
$$

for every $f \in E_{2}$ and $x \in[0, \infty) . L_{n}$ can be represented in the form

$$
\begin{equation*}
L_{n} f(x)=\sum_{i=0}^{\infty}(-1)^{i} \frac{\phi_{n}^{(i)}(0)}{i!} \Delta_{\frac{1}{n}}^{i} f(0) x^{i} . \tag{1}
\end{equation*}
$$

2 Derivatives.

It is straightforward to check the following relation of the derivatives.

Proposition 1. For every $k \in \mathbb{N}_{0}$ and $x \in[0, \infty)$

$$
\begin{equation*}
L_{n}^{(k)} f(x)=\alpha_{n, k} \sum_{i=0}^{\infty}(-1)^{i} \frac{\phi_{p(n, k)}^{(i)}(0)}{i!} \Delta_{\frac{1}{n}}^{i+k} f(0) x^{i} . \tag{2}
\end{equation*}
$$

In the particular case, $p(n, k)=n$, then

$$
\begin{equation*}
L_{n}^{(k)} f(x)=\alpha_{n, k} L_{n}\left(\Delta_{\frac{1}{n}}^{k} f\right)(x) . \tag{3}
\end{equation*}
$$

Proof.

$$
\begin{aligned}
L_{n}^{(k)} f(x)=\sum_{i=k}^{\infty}(-1)^{i} \frac{\phi_{n}^{(i)}(0)}{i!} \Delta_{\frac{1}{n}}^{i} f(0) \frac{i!}{(i-k)!} & x^{i-k} \\
& =\sum_{i=0}^{\infty}(-1)^{i+k} \frac{\phi_{n}^{(i+k)}(0)}{(i+k)!} \Delta_{\frac{1}{n}}^{i+k} f(0) \frac{(i+k)!}{i!} x^{i} .
\end{aligned}
$$

From property A3) we get (2). Then (3) follows from (1) and (2).
We will use this identity to compute the moments $L_{n}\left(t^{s}\right)$. Formula (3) is similar to $\left(B_{n} f\right)^{(k)}(x)=n^{\underline{k}} B_{n-k}\left(\Delta_{\frac{1}{n}}^{k} f\right)(x)$, which is valid for Bernstein polynomials. And it is also similar to the identity

$$
S_{n}^{(k)} f(x)=n^{k} S_{n}\left(\Delta_{\frac{1}{n}}^{k} f\right)(x),
$$

valid for Szász operators. In fact, the last one is a particular case of (2) and (3).
L_{n} operators have classical shape preserving properties. Recall the notion of higher order convexity. Given $k \in \mathbb{N}_{0}$, a function f is said to be convex of order k (k-convex) if for all $h>0$ one has that $\Delta_{h}^{k} f \geq 0$. A function $f \in C^{k}[0, \infty)$ is convex of order k if and only if $f^{(k)} \geq 0$.

We can use (1) to deduce some properties of L_{n}, such as preservation of n-convexity. In this way, the following result is immediate:

Proposition 2. For any $n \in \mathbb{N}$ and $k \in \mathbb{N}_{0}$ if f is convex of order k, then $L_{n} f$ is convex of order k.

Of course, Mastroianni's operator L_{n} has the degree-preserving property

$$
L_{n} \mathbb{P}_{r} \subset \mathbb{P}_{r}, \quad(0 \leq r \leq n) .
$$

3 Moments and asymptotic expansion of L_{n}.

Now, we give explicit expressions for the moments $L_{n}\left(t^{i}\right)$ and central moments $L_{n}\left((t-x)^{i}\right)(x)$, for $i \in \mathbb{N}$ and $x \in[0, \infty)$.

Lemma 3. For any $n \in \mathbb{N}, r \in \mathbb{N}_{0}$, one has

$$
\begin{equation*}
L_{n}\left(t^{r}\right)=n^{-r} \sum_{i=1}^{r} \alpha_{n, i} \sigma_{r}^{i} t^{i} \tag{4}
\end{equation*}
$$

Proof. By (1) we have

$$
L_{n}\left(t^{r}\right)=\sum_{i=0}^{r}(-1)^{i} \frac{\phi_{n}^{(i)}(0)}{i!} \Delta_{\frac{1}{n}}^{i}\left(t^{r}\right)(0) t^{i}
$$

On the other hand, it is known that $\Delta_{\frac{1}{n}}^{i} t^{r}(0)=i!\sigma_{r}^{i} n^{-r}$, (see [1, Section 24.1.4.II.C]). Now, replacing this expression in the above formula we get

$$
L_{n}\left(t^{r}\right)=\sum_{i=0}^{r}(-1)^{i} \frac{\phi_{n}^{(i)}(0)}{i!} i!\sigma_{r}^{i} n^{-r} t^{i}=\sum_{i=0}^{r}(-1)^{i} \phi_{n}^{(i)}(0) \sigma_{r}^{i} n^{-r} t^{i}
$$

Finally, properties A3) and A1) are used.
We would like to remark that in the above Lemma in the special case $r=0$, we have $L_{n}(1)=1$.

Lemma 4. For any $n \in \mathbb{N}, p \in \mathbb{N}_{0}, x \in[0, \infty)$, one has

$$
L_{n}\left((t-x)^{p}\right)(x)=n^{-p} \sum_{j=0}^{p}(-1)^{j}(j-n x)^{p} G(j, n, x),
$$

where $G(j, n, x)=\sum_{i=j}^{p} \frac{\phi_{n}^{(i)}(0)}{i!}\binom{i}{j} x^{i}=\sum_{i=j}^{p}(-1)^{i} \frac{\alpha_{n, i}}{i!}\binom{i}{j} x^{i}$.
Proof. First by (1)

$$
L_{n}\left((t-x)^{p}\right)(x)=\sum_{i=0}^{\infty}(-1)^{i} \frac{\phi_{n}^{(i)}(0)}{i!} \Delta_{\frac{1}{n}}^{i}\left((t-x)^{p}\right)(0) x^{i}
$$

From the definition of Δ

$$
\begin{aligned}
\Delta_{\frac{1}{n}}^{i}\left((t-x)^{p}\right)(0)=\sum_{j=0}^{i} & \binom{i}{j}(-1)^{i+j}\left((t-x)^{p}\right)\left(\frac{j}{n}\right) \\
& =\sum_{j=0}^{i}\binom{i}{j}(-1)^{i+j}\left(\frac{j}{n}-x\right)^{p}=n^{-p} \sum_{j=0}^{i}\binom{i}{j}(-1)^{i+j}(j-n x)^{p} .
\end{aligned}
$$

It is evident that $\Delta_{\frac{1}{n}}^{i}\left((t-x)^{p}\right)(0)=0$ for $i \geq p$. Replacing it in the above expression we get

$$
\begin{aligned}
L_{n}\left((t-x)^{p}\right)(x)=\sum_{i=0}^{p}(-1)^{i} \frac{\phi_{n}^{(i)}(0)}{i!} n^{-p} \sum_{j=0}^{i} & \binom{i}{j}(-1)^{i+j}(j-n x)^{p} x^{i} \\
& =n^{-p} \sum_{j=0}^{p}(-1)^{j}(j-n x)^{p} \sum_{i=j}^{p} \frac{\phi_{n}^{(i)}(0)}{i!}\binom{i}{j} x^{i} .
\end{aligned}
$$

Now, we give the asymptotic expansion of the sequence of L_{n} operators.
Theorem 5. Let $f \in E_{2} r$ times differentiable at $x \in[0, \infty)$, then

$$
L_{n} f(x)=\sum_{j=0}^{r}(-1)^{j} G(j, n, x) \sum_{p=j}^{r} \frac{f^{(p)}(x)}{p!}\left(\frac{j}{n}-x\right)^{p}+o\left(L_{n}\left((t-x)^{r}\right)\right),
$$

where $G(j, n, x)$ is given as in Lemma 4.
Proof. The proof of Sikkema Theorem in [6] is valid to check that

$$
\begin{equation*}
L_{n} f(x)=\sum_{p=0}^{r} \frac{f^{(p)}(x)}{p!} L_{n}\left((t-x)^{p}\right)(x)+o\left(L_{n}\left((t-x)^{r}\right)\right) \tag{5}
\end{equation*}
$$

for every $x \in[0, \infty)$. We finish the proof using Lemma 4.

4 Some Limiting Properties.

Mastroianni [4] proves that the sequence of iterations $\left\{I-\left(I-L_{n}\right)^{m}\right\}_{n \in \mathbb{N}}$ converges as m tends to infinity under certain assumptions. More precisely, he showed that

$$
\begin{equation*}
\lim _{m \rightarrow \infty}\left(I-\left(I-L_{n}\right)^{m}\right)(f)(x)=f(0)+\sum_{i=1}^{\infty} \frac{(n x)^{\underline{i}}}{n^{i}} \Delta_{\frac{1}{n}}^{i-1} f(0) \tag{6}
\end{equation*}
$$

holds for all $f \in C[0, b]$ and $x \in[0, b]$ if and only if $\left|\frac{\phi_{n}^{(i)}(0)}{n^{2}}\right|<2$ for every $i \geq 2$. In the general case, such a convergence does not always hold but we are going to see that at least we can obtain a good behavior for polynomials. For this purpose we employ a modification of the technique used by Sevy [5] for Bernstein operators.

Theorem 6. Given $n, r \in \mathbb{N}$, let us suppose that $0<\frac{\alpha_{n, i}}{n^{i}}<2$ for every $i \in\{0, \ldots, r\}$. Then, for any $p \in \mathbb{P}_{r}$ we have

$$
\lim _{m \rightarrow \infty}\left(I-\left(I-L_{n}\right)^{m}\right)(p)=p
$$

uniformly on compact sets.
Proof. From Lemma 3 it is straightforward that L_{n} is a linear map, $L_{n}: \mathbb{P}_{r} \rightarrow \mathbb{P}_{r}$, whose eigenvalues are $\lambda_{i}^{(n)}=\frac{\alpha_{n, i}}{n^{2}}, i=0 \ldots, r$. It is also clear that for every eigenvalue, $\lambda_{i}^{(n)}$, we can find an eigenvector $p_{i}^{(n)}$ which is a polynomial with exact degree i and also that $p_{0}^{(n)}=1$.

Take the operator $V=I-L_{n}$. It is not difficult to check that for all $m, N \in \mathbb{N}$,

$$
\begin{equation*}
V^{m+N}-V^{m}=-\left(I-L_{n}\right)^{m}\left(\sum_{i=0}^{N-1}\left(I-L_{n}\right)^{i}\right) L_{n} . \tag{7}
\end{equation*}
$$

If $\lambda_{i}^{(n)}=1$ then $V^{m}\left(p_{i}^{(n)}\right)=0$ for every $m \in \mathbb{N}$. If $\lambda_{i}^{(n)} \neq 1$ from (7) we have

$$
V^{m+N}\left(p_{i}^{(n)}\right)-V^{m}\left(p_{i}^{(n)}\right)=-\left(1-\lambda_{i}^{(n)}\right)^{m} \lambda_{i}^{(n)} \frac{1-\left(\lambda_{i}^{(n)}\right)^{N}}{1-\lambda_{i}^{(n)}} p_{i}^{(n)} .
$$

Since $0<\lambda_{i}^{(n)}<2$, one has $\left|1-\lambda_{i}^{(n)}\right|<1$. In both cases, as $p_{i}^{(n)}$ is continuous, taking into account the preceding identity we can conclude that the sequence $\left\{V_{m}\left(p_{i}^{(n)}\right)\right\}_{n \in \mathbb{N}}$ satisfies the Cauchy condition on compact subsets from which we deduce that such a sequence converges towards $g \in C[0, \infty)$. Furthermore, it is immediate that $V^{m}\left(p_{i}^{(n)}\right) \in \mathbb{P}_{r}$ for any $m \in \mathbb{N}$ so that $g \in \mathbb{P}_{r}$ because $C[0, a]$ is closed and the convergence is uniform in $[0, a]$.

We know that the linear operator $L_{n}: \mathbb{P}_{r} \rightarrow \mathbb{P}_{r}$ is always continuous because \mathbb{P}_{r} is a finite dimensional space. Then, $V(g)=\lim _{m \rightarrow \infty} V\left(V^{m}\left(p_{i}^{(n)}\right)\right)=\lim _{m \rightarrow \infty} V^{m+1}\left(p_{i}^{(n)}\right)=g$ from which $g=V(g)=g-L_{n}(g)$ and then $L_{n}(g)=0$, that is possible only when $g\left(\frac{i}{n}\right)=0$ for all $i \in\{0, \ldots, r\}$ (see Remark 8). Hence, g is a polynomial of degree at most r that vanishes at $r+1$ points which implies that $g=0$. Therefore

$$
\lim _{m \rightarrow \infty}\left(I-\left(I-L_{n}\right)^{m}\right)\left(p_{i}^{(n)}\right)=\lim _{m \rightarrow \infty}\left(p_{i}^{(i)}-V^{m}\left(p_{i}^{(n)}\right)\right)=p_{i}^{(n)} .
$$

If $p \in \mathbb{P}_{r}$ then we can write $p=\sum_{i=0}^{r} A_{i} p_{i}^{(n)}$. Since $I-\left(I-L_{n}\right)^{m}$ is a linear and continuous operators the results obtained for $p_{i}^{(n)}$ also hold for p.

Corollary 7. Given $r \in \mathbb{N}$ and $p \in \mathbb{P}_{r}$ there exists $n_{0} \in \mathbb{N}$ such that for all $n \geq n_{0}$,

$$
\lim _{m \rightarrow \infty}\left(I-\left(I-L_{n}\right)^{m}\right)(p)=p .
$$

Proof. From the definition of the Mastroianni operators, for every $i \in \mathbb{N}$,

$$
\lim _{n \rightarrow \infty} \lambda_{i}^{(n)}=\lim _{n \rightarrow \infty} \frac{\alpha_{n, i}}{n^{i}}=1
$$

Therefore, we can find n_{0} large enough such that $\left|1-\lambda_{i}^{(n)}\right|<1$ for $i \in\{0, \ldots, r\}$ and $n \geq n_{0}$.

Remark 8. From the hypotheses of Theorem 6 we know that $0<\alpha_{n, i}$ so that $\phi_{n}^{(i)}(0) \neq 0$, $i \in\{0, \ldots, r\}$. By means of (1), if $L_{n}(g)=0$ we easily deduce that

$$
(-1)^{i} \frac{\phi_{n}^{(i)}(0)}{i!} \Delta_{\frac{1}{n}}^{i} g(0)=0, \forall i \in \mathbb{N}_{0}
$$

and hence $\Delta_{\frac{1}{n}}^{i} g(0)=0$ for $i \in\{0, \ldots, r\}$ (because the corresponding $\phi_{n}^{(i)}(0)$ does not vanish) from which it is straightforward that $g\left(\frac{i}{n}\right)=0$ for $i \in\{0, \ldots, r\}$.

So, we can conclude that under the conditions of Theorem 6 , given $g \in C[0, \infty)$ such that $L_{n}(g)=0$ we have that $g\left(\frac{i}{n}\right)=0, i \in\{0, \ldots, r\}$.

5 Generalized Baskakov Operators.

For every $f \in E_{2}$ and $x \in[0, \infty)$, Baskakov operators are defined by

$$
M_{n} f(x)=\sum_{k=0}^{\infty}(-1)^{k} f\left(\frac{k}{n}\right) x^{k} \frac{\phi_{n}^{(k)}(x)}{k!},
$$

(cf. Martini [3]) and they are generated by a sequence of analytic functions on $[0, \infty$), $\phi_{n}: \mathbb{R} \rightarrow \mathbb{R}, n \in \mathbb{N}$, satisfying A1), A2) and

$$
\phi_{n}^{(k)}(x)=-\left(n+l_{1}\right) \phi_{n+l_{2}}^{(k-1)}(x)
$$

for all $k \in \mathbb{N}$ and $x \in[0, \infty)$, where $l_{1}, l_{2} \in \mathbb{N}_{0}$ are independent of n, k and x.
By induction A3) is also verified for $\alpha_{n, i}=\alpha_{n, i}(x)=\left(n+l_{1}\right)^{\left(i,-l_{2}\right)}$ and $p(n, i)=n+i l_{2}$, where $x^{(0, l)}=1$ and $x^{(i,-l)}=x(x+l) \ldots(x+(i-1) l)$, for $i>0$.

Furthermore, from suitable choices of the sequences $\left\{\phi_{n}\right\}_{n \in \mathbb{N}_{0}}$ we obtain some well known operators. For example, choosing $l_{2}=0$, we have the Schurer-Szász-Mirakjan operators [2] $S_{l_{1}, n}$ with

$$
S_{l_{1}, n} f(x)=e^{-\left(n+l_{1}\right) x} \sum_{k=0}^{\infty} f\left(\frac{k}{n}\right) \frac{\left(n+l_{1}\right)^{k}}{k!} x^{k} .
$$

From (2) and (3) we get
Proposition 9. For every $k \in \mathbb{N}_{0}$ and $x \in[0, \infty)$

$$
\begin{equation*}
M_{n}^{(k)} f(x)=\left(n+l_{1}\right)^{\left(k,-l_{2}\right)} \sum_{i=0}^{\infty}(-1)^{i} \frac{\phi_{n+k l_{2}}^{(i)}(0)}{i!} \Delta_{\frac{1}{n}}^{i+k} f(0) x^{i} . \tag{8}
\end{equation*}
$$

In particular,

$$
\begin{equation*}
S_{l_{1, n}}^{(k)} f(x)=\left(n+l_{1}\right)^{k} S_{l_{1}, n}\left(\Delta_{\frac{1}{n}}^{k} f\right)(x) . \tag{9}
\end{equation*}
$$

Lemma 3 allows us to state the moments of the operators.
Proposition 10. For any $n \in \mathbb{N}, r \in \mathbb{N}_{0}$, one has

$$
\begin{equation*}
M_{n}\left(t^{r}\right)=\sum_{\beta=0}^{r} n^{-\beta} \sum_{s=0}^{\min \{r-1, \beta\}} A(r-s, r-\beta) \sigma_{r}^{r-s} t^{r-s}, \tag{10}
\end{equation*}
$$

where $A(i, \alpha)=\sum_{j=\alpha}^{i}\binom{j}{\alpha} l_{2}^{i-j} S_{i}^{j}\left(l_{1}+l_{2}(i-1)\right)^{j-\alpha}$.
Proof. Observe that

$$
x^{(i,-l)}=l^{i}\left(\frac{x}{l}+i-1\right)^{\underline{i}}=l^{i} \sum_{j=0}^{i} S_{i}^{j}\left(\frac{x}{l}+i-1\right)^{j}
$$

and in particular

$$
\begin{aligned}
&\left(n+l_{1}\right)^{\left(i,-l_{2}\right)}=l_{2}^{i} \sum_{j=0}^{i} S_{i}^{j}\left(\frac{n+l_{1}}{l_{2}}+i-1\right)^{j}=\sum_{j=0}^{i} l_{2}^{i-j} S_{i}^{j}\left(n+l_{1}+l_{2}(i-1)\right)^{j} \\
&=\sum_{j=0}^{i} l_{2}^{i-j} S_{i}^{j} \sum_{\alpha=0}^{j}\binom{j}{\alpha} n^{\alpha}\left(l_{1}+l_{2}(i-1)\right)^{j-\alpha} \\
&=\sum_{\alpha=0}^{i} n^{\alpha} \sum_{j=\alpha}^{i}\binom{j}{\alpha} l_{2}^{i-j} S_{i}^{j}\left(l_{1}+l_{2}(i-1)\right)^{j-\alpha} .
\end{aligned}
$$

Lemma 3 yields

$$
\begin{equation*}
M_{n}\left(t^{r}\right)=n^{-r} \sum_{i=1}^{r}\left(n+l_{1}\right)^{\left(i,-l_{2}\right)} \sigma_{r}^{i} t^{i} ; \tag{11}
\end{equation*}
$$

i.e.,

$$
M_{n}\left(t^{r}\right)=n^{-r} \sum_{i=1}^{r} \sum_{\alpha=0}^{i} n^{\alpha} A(i, \alpha) \quad \sigma_{r}^{i} \quad t^{i}=\sum_{\alpha=0}^{r} n^{\alpha-r} \sum_{i=\max \{1, \alpha\}}^{r} A(i, \alpha) \sigma_{r}^{i} t^{i} .
$$

Replacing $\alpha=r-\beta$ and $i=r-s$, the proof is concluded.
A characterization of $S_{l_{1}, n}$ operators is obtained using Proposition 10. (In fact we use (11)). We show the operator M_{n} satisfies (9) if and only if M_{n} is the Schurer-SzászMirakjan operator.

Corollary 11.

$$
M_{n}^{(k)} f=\left(n+l_{1}\right)^{k} M_{n}\left(\Delta_{\frac{1}{n}}^{k} f\right), \text { for every } k \in \mathbb{N}_{0} \Leftrightarrow l_{2}=0 .
$$

Proof. If we suppose that M_{n} satisfies (9), then in particular (9) holds for $f=t^{k}$. Now, (11) implies that $\left(n+l_{1}\right)^{\left(k,-l_{2}\right)}=\left(n+l_{1}\right)^{k}$ and so $l_{2}=0$.

In order to give the asymptotic expansion for the M_{n} operators, we study their central moments.

Proposition 12. Given $p \in \mathbb{N}_{0}, n \in \mathbb{N}$ and $x \in[0, \infty)$ the following identity holds:

$$
\begin{equation*}
M_{n}\left((t-x)^{p}\right)(x)=\sum_{\beta=0}^{p} n^{-\beta} \sum_{r=\beta}^{p}(-1)^{p-r}\binom{p}{r} \sum_{s=0}^{\min \{r-1, \beta\}} A(r-s, r-\beta) \sigma_{r}^{r-s} x^{p-s}, \tag{12}
\end{equation*}
$$

where $A($,$) is given in Proposition 10$.

Proof. From Proposition 10 we obtain

$$
\begin{aligned}
& M_{n}\left((t-x)^{p}\right)(x)=\sum_{r=0}^{p}\binom{p}{r}(-x)^{p-r} M_{n}\left(t^{r}\right)(x) \\
& =\sum_{r=0}^{p}\binom{p}{r}(-1)^{p-r} \sum_{\beta=0}^{r} n^{-\beta} \sum_{s=0}^{\min \{r-1, \beta\}} A(r-s, r-\beta) \sigma_{r}^{r-s} x^{p-s} \\
& \\
& =\sum_{\beta=0}^{p} n^{-\beta} \sum_{r=\beta}^{p}(-1)^{p-r}\binom{p}{r} \sum_{s=0}^{\min \{r-1, \beta\}} A(r-s, r-\beta) \sigma_{r}^{r-s} x^{p-s} .
\end{aligned}
$$

Remark 13. Using the same arguments as Sikkema [6] for Szász operators, we can deduce that, in fact, in (12) β runs from $\left[\frac{p+1}{2}\right]$, the greatest integer less than or equal to $\frac{p+1}{2}$, to p.

The main result of this section is:
Theorem 14. Let $f \in E_{2} r$ times differentiable at $x \in[0, \infty)$. Then

$$
\begin{equation*}
M_{n} f(x)=f(x)+\sum_{\beta=1}^{r} n^{-\beta} a(\beta, r, f, x)+o\left(n^{-r}\right) \tag{13}
\end{equation*}
$$

where

$$
a(\beta, r, f, x)=\sum_{p=\beta}^{r} \frac{f^{(p)}(x)}{p!} \sum_{r=\beta}^{p}(-1)^{p-r}\binom{p}{r} \sum_{s=0}^{\min \{r-1, \beta\}} A(r-s, r-\beta) \sigma_{r}^{r-s} x^{p-s} .
$$

Proof. By (5), the proof follows from Proposition 12.
For the convenience of the reader we list the initial summands of the expansion (13), for $r=3$;

$$
\begin{aligned}
M_{n} f(x)=f(x)+\frac{l_{1} x}{n} & f^{\prime}(x)+\frac{n x\left(1+l_{2} x\right)+x\left(l_{1}+l_{1}\left(l_{1}+l_{2}\right) x\right)}{2 n^{2}} f^{\prime \prime}(x) \\
& +\left[\frac{n x\left(1+3\left(l_{1}+l_{2}\right) x+l_{2}\left(3 l_{1}+2 l_{2}\right) x^{2}\right)}{6 n^{3}}\right. \\
& \left.+\frac{x\left(l_{1}+3 l_{1}\left(l_{1}+l_{2}\right) x+l_{1}\left(l_{1}+l_{2}\right)\left(l_{1}+2 l_{2}\right) x^{2}\right)}{6 n^{3}}\right] f^{\prime \prime \prime}(x)+o\left(n^{-3}\right),
\end{aligned}
$$

as $n \rightarrow \infty$.

References

[1] Abramowitz, M. and A. Stegun, "Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables", Dover Publications, Inc. New York, (1972).
[2] Altomare, F. and M. Campiti, "Korovkin-type Approximation Theory and its Applications", De Gruyter Studies in Mathematics, 17, Walter de Gruyter, Berlin-New York, (1994).
[3] Martini, R., On the Approximation of Functions together with their derivatives by Certain Linear Positive Operators, Indag. Math. 31, (1969), 473-481.
[4] Mastroianni, G., Su un operatore lineare e positivo, Rend. Accad. Sci. Fis. Mat. Napoli (4) 46 (1979), 161-176 (1980).
[5] Sevy, J.C., Lagrange and least-squares polynomials as limits of linear combinations of iterates of Bernstein and Durrmeyer polynomials, J. Approx. Theory 80 (5), (1995), 267-271.
[6] Sikkema, P. C., On some linear positive operators, Indag. Math., 32, (1970), 327-337.

[^0]: *This work is partially supported by Junta de Andalucía, Research Groups FQM178 and FQM268 and by Ministerio de Ciencia y Tecnología, Project BFM2000-0911.

