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F.J. Muñoz-Delgado and J.M. Quesada
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Abstract

In this paper, we study some properties of Mastroianni operators [4] and gener-

alized Baskakov operators [3].

1 Introduction and Notation

In [4] Mastroianni introduced and studied a generalization of the classical Bernstein op-

erators consisting in replacing the functions (1 − x)n−k by more general ones satisfying

suitable relations. His work was motivated by the development of a general expression

that cover other Bernstein-type operators.

In this paper we study some properties of these Mastroianni operators. We obtain

some recursive properties of the derivatives of the operators, that allow us to give a

characterization of the Szász operators. Also, we consider the linear combination of

iterates I − (I − Ln)m of Mastroianni operators of fixed degree n for increasing order of

iteration m and prove that these Boolean sums have a good behaviour for polynomials.

In the same manner, we consider a generalization of the Baskakov operators [3] which

are related to certain functions. We study the convergence properties of the sequence of

these operators and give an asymptotic expansion for them.

We will use Stirling numbers, Si
j y σi

j, of first and second kind defined, respectively,

by: xj =
∑j

i=0 S
i
jx

i and xj =
∑j

i=0 σ
i
jx

i, with j ∈ N0. Here xj = x(x − 1) . . . (x− j + 1)

if j > 0 and x0 = 1.
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Throughout this paper we also use the following notation:

E2 = {f ∈ C[0,+∞) :
f(x)

1 + x2
is convergent as x → +∞},

Pr denotes the space of real polynomials of degree at most r and tr is the monomial

tr(x) = xr. For convenience, we define
∑0

i=1 =
∑−1

i=0 = 1.

Here we simply recall the Mastroianni operators. First we start with a sequence

{φn}n∈N of real functions on I = [0,∞) which are infinitely differentiable and strictly

monotone satisfying the following additional conditions:

A1) φn(0) = 1, for every n ∈ N = {1, 2, ...}.

A2) (−1)iφ
(i)
n (x) ≥ 0, for every n ∈ N, x ∈ I and i ∈ N0 = N ∪ {0}.

A3) For every (n, i) ∈ N×N0 there exists a positive integer p(n, i) ∈ N and a real function

αn,i : I → R such that

φ(i+k)
n (x) = (−1)iφ

(k)
p(n,i)(x)αn,i(x),

for every k ∈ N0 and x ∈ I and

lim
n→∞

n

p(n, i)
= lim

n→∞

αn,i(x)

ni
= 1.

For short, we will denote αn,i = αn,i(0).

By A3), (−1)i+kφ
(i+k)
n (x) = (−1)kφ

(k)
p(n,i)(x)αn,i(x) and by A2) we conclude that nec-

essarily αn,i(x) ≥ 0.

Also from A3), we deduce that (−1)iφ
(i)
n (x) = φp(n,i)(x)αn,i(x), and, in particular,

A1) implies that (−1)iφ
(i)
n (0) = αn,i.

To the above sequence Mastroianni [4] associates a sequence of positive linear operators

{Ln : E2 → C∞(I)}n∈N defined by

Lnf(x) =
∞∑

k=0

(−1)kf

(
k

n

)
xkφ

(k)
n (x)

k!
,

for every f ∈ E2 and x ∈ [0,∞). Ln can be represented in the form

Lnf(x) =
∞∑
i=0

(−1)iφ
(i)
n (0)

i!
∆i

1
n
f(0) xi. (1)

2 Derivatives.

It is straightforward to check the following relation of the derivatives.
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Proposition 1. For every k ∈ N0 and x ∈ [0,∞)

L(k)
n f(x) = αn,k

∞∑
i=0

(−1)i
φ

(i)
p(n,k)(0)

i!
∆i+k

1
n

f(0) xi. (2)

In the particular case, p(n, k) = n, then

L(k)
n f(x) = αn,kLn(∆k

1
n
f)(x). (3)

Proof.

L(k)
n f(x) =

∞∑
i=k

(−1)iφ
(i)
n (0)

i!
∆i

1
n
f(0)

i!

(i− k)!
xi−k

=
∞∑
i=0

(−1)i+kφ
(i+k)
n (0)

(i + k)!
∆i+k

1
n

f(0)
(i + k)!

i!
xi.

From property A3) we get (2). Then (3) follows from (1) and (2).

We will use this identity to compute the moments Ln(ts). Formula (3) is similar to

(Bnf)(k)(x) = nk Bn−k(∆
k
1
n

f)(x), which is valid for Bernstein polynomials. And it is also

similar to the identity

S(k)
n f(x) = nkSn(∆k

1
n
f)(x),

valid for Szász operators. In fact, the last one is a particular case of (2) and (3).

Ln operators have classical shape preserving properties. Recall the notion of higher

order convexity. Given k ∈ N0, a function f is said to be convex of order k (k-convex) if

for all h > 0 one has that ∆k
hf ≥ 0. A function f ∈ Ck[0,∞) is convex of order k if and

only if f (k) ≥ 0.

We can use (1) to deduce some properties of Ln, such as preservation of n-convexity.

In this way, the following result is immediate:

Proposition 2. For any n ∈ N and k ∈ N0 if f is convex of order k, then Lnf is convex

of order k.

Of course, Mastroianni’s operator Ln has the degree-preserving property

LnPr ⊂ Pr, (0 ≤ r ≤ n).

3 Moments and asymptotic expansion of Ln.

Now, we give explicit expressions for the moments Ln(ti) and central moments Ln ((t− x)i) (x),

for i ∈ N and x ∈ [0,∞).
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Lemma 3. For any n ∈ N, r ∈ N0, one has

Ln(tr) = n−r

r∑
i=1

αn,i σ
i
r ti. (4)

Proof. By (1) we have

Ln(tr) =
r∑

i=0

(−1)iφ
(i)
n (0)

i!
∆i

1
n
(tr)(0) ti.

On the other hand, it is known that ∆i
1
n

tr(0) = i!σi
rn

−r, (see [1, Section 24.1.4.II.C]).

Now, replacing this expression in the above formula we get

Ln(tr) =
r∑

i=0

(−1)iφ
(i)
n (0)

i!
i!σi

rn
−r ti =

r∑
i=0

(−1)iφ(i)
n (0) σi

rn
−r ti.

Finally, properties A3) and A1) are used.

We would like to remark that in the above Lemma in the special case r = 0, we have

Ln(1) = 1.

Lemma 4. For any n ∈ N, p ∈ N0, x ∈ [0,∞), one has

Ln ((t− x)p) (x) = n−p

p∑
j=0

(−1)j(j − nx)pG(j, n, x),

where G(j, n, x) =
∑p

i=j
φ

(i)
n (0)
i!

(
i
j

)
xi =

∑p
i=j(−1)i αn,i

i!

(
i
j

)
xi.

Proof. First by (1)

Ln ((t− x)p) (x) =
∞∑
i=0

(−1)iφ
(i)
n (0)

i!
∆i

1
n
((t− x)p)(0) xi.

From the definition of ∆

∆i
1
n
((t− x)p)(0) =

i∑
j=0

(
i

j

)
(−1)i+j((t− x)p)

(
j

n

)

=
i∑

j=0

(
i

j

)
(−1)i+j

(
j

n
− x

)p

= n−p

i∑
j=0

(
i

j

)
(−1)i+j(j − nx)p.

It is evident that ∆i
1
n

((t− x)p)(0) = 0 for i ≥ p. Replacing it in the above expression we

get

Ln ((t− x)p) (x) =

p∑
i=0

(−1)iφ
(i)
n (0)

i!
n−p

i∑
j=0

(
i

j

)
(−1)i+j(j − nx)p xi

= n−p

p∑
j=0

(−1)j(j − nx)p

p∑
i=j

φ
(i)
n (0)

i!

(
i

j

)
xi.
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Now, we give the asymptotic expansion of the sequence of Ln operators.

Theorem 5. Let f ∈ E2 r times differentiable at x ∈ [0,∞), then

Lnf(x) =
r∑

j=0

(−1)jG(j, n, x)
r∑

p=j

f (p)(x)

p!
(
j

n
− x)p + o(Ln((t − x)r)),

where G(j, n, x) is given as in Lemma 4.

Proof. The proof of Sikkema Theorem in [6] is valid to check that

Lnf(x) =
r∑

p=0

f (p)(x)

p!
Ln ((t− x)p) (x) + o(Ln((t− x)r)), (5)

for every x ∈ [0,∞). We finish the proof using Lemma 4.

4 Some Limiting Properties.

Mastroianni [4] proves that the sequence of iterations {I − (I −Ln)m}n∈N converges as m

tends to infinity under certain assumptions. More precisely, he showed that

lim
m→∞

(I − (I − Ln)m) (f)(x) = f(0) +
∞∑
i=1

(nx)i

ni
∆i−1

1
n

f(0) (6)

holds for all f ∈ C[0, b] and x ∈ [0, b] if and only if
∣∣∣φ

(i)
n (0)
n2

∣∣∣ < 2 for every i ≥ 2. In

the general case, such a convergence does not always hold but we are going to see that

at least we can obtain a good behavior for polynomials. For this purpose we employ a

modification of the technique used by Sevy [5] for Bernstein operators.

Theorem 6. Given n, r ∈ N, let us suppose that 0 <
αn,i

ni < 2 for every i ∈ {0, . . . , r}.
Then, for any p ∈ Pr we have

lim
m→∞

(I − (I − Ln)m) (p) = p

uniformly on compact sets.

Proof. From Lemma 3 it is straightforward that Ln is a linear map, Ln : Pr → Pr, whose

eigenvalues are λ
(n)
i =

αn,i

ni , i = 0 . . . , r. It is also clear that for every eigenvalue, λ
(n)
i ,

we can find an eigenvector p
(n)
i which is a polynomial with exact degree i and also that

p
(n)
0 = 1.

Take the operator V = I − Ln. It is not difficult to check that for all m,N ∈ N,

V m+N − V m = −(I − Ln)m

(
N−1∑
i=0

(I − Ln)i

)
Ln. (7)
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If λ
(n)
i = 1 then V m(p

(n)
i ) = 0 for every m ∈ N. If λ

(n)
i 
= 1 from (7) we have

V m+N(p
(n)
i ) − V m(p

(n)
i ) = −(1 − λ

(n)
i )mλ

(n)
i

1 − (λ
(n)
i )N

1 − λ
(n)
i

p
(n)
i .

Since 0 < λ
(n)
i < 2, one has |1−λ

(n)
i | < 1. In both cases, as p

(n)
i is continuous, taking into

account the preceding identity we can conclude that the sequence {Vm(p
(n)
i )}n∈N satisfies

the Cauchy condition on compact subsets from which we deduce that such a sequence

converges towards g ∈ C[0,∞). Furthermore, it is immediate that V m(p
(n)
i ) ∈ Pr for any

m ∈ N so that g ∈ Pr because C[0, a] is closed and the convergence is uniform in [0, a].

We know that the linear operator Ln : Pr → Pr is always continuous because Pr is a

finite dimensional space. Then, V (g) = limm→∞ V (V m(p
(n)
i )) = limm→∞ V m+1(p

(n)
i ) = g

from which g = V (g) = g−Ln(g) and then Ln(g) = 0, that is possible only when g( i
n
) = 0

for all i ∈ {0, . . . , r} (see Remark 8). Hence, g is a polynomial of degree at most r that

vanishes at r + 1 points which implies that g = 0 . Therefore

lim
m→∞

(I − (I − Ln)m) (p
(n)
i ) = lim

m→∞

(
p

(i)
i − V m(p

(n)
i )

)
= p

(n)
i .

If p ∈ Pr then we can write p =
∑r

i=0 Aip
(n)
i . Since I−(I−Ln)m is a linear and continuous

operators the results obtained for p
(n)
i also hold for p.

Corollary 7. Given r ∈ N and p ∈ Pr there exists n0 ∈ N such that for all n ≥ n0,

lim
m→∞

(I − (I − Ln)m) (p) = p.

Proof. From the definition of the Mastroianni operators, for every i ∈ N,

lim
n→∞

λ
(n)
i = lim

n→∞

αn,i

ni
= 1.

Therefore, we can find n0 large enough such that |1 − λ
(n)
i | < 1 for i ∈ {0, . . . , r} and

n ≥ n0.

Remark 8. From the hypotheses of Theorem 6 we know that 0 < αn,i so that φ
(i)
n (0) 
= 0,

i ∈ {0, . . . , r}. By means of (1), if Ln(g) = 0 we easily deduce that

(−1)iφ
(i)
n (0)

i!
∆i

1
n
g(0) = 0, ∀i ∈ N0

and hence ∆i
1
n

g(0) = 0 for i ∈ {0, . . . , r} (because the corresponding φ
(i)
n (0) does not

vanish) from which it is straightforward that g
(

i
n

)
= 0 for i ∈ {0, . . . , r}.

So, we can conclude that under the conditions of Theorem 6, given g ∈ C[0,∞) such

that Ln(g) = 0 we have that g
(

i
n

)
= 0, i ∈ {0, . . . , r}.
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5 Generalized Baskakov Operators.

For every f ∈ E2 and x ∈ [0,∞), Baskakov operators are defined by

Mnf(x) =
∞∑

k=0

(−1)kf

(
k

n

)
xkφ

(k)
n (x)

k!
,

(cf. Martini [3]) and they are generated by a sequence of analytic functions on [0,∞),

φn : R → R, n ∈ N, satisfying A1), A2) and

φ(k)
n (x) = −(n + l1)φ

(k−1)
n+l2

(x)

for all k ∈ N and x ∈ [0,∞), where l1, l2 ∈ N0 are independent of n, k and x.

By induction A3) is also verified for αn,i = αn,i(x) = (n+ l1)
(i,−l2) and p(n, i) = n+il2,

where x(0,l) = 1 and x(i,−l) = x(x + l)...(x + (i− 1)l), for i > 0.

Furthermore, from suitable choices of the sequences {φn}n∈N0 we obtain some well

known operators. For example, choosing l2 = 0, we have the Schurer-Szász-Mirakjan

operators [2] Sl1,n with

Sl1,nf(x) = e−(n+l1)x

∞∑
k=0

f

(
k

n

)
(n + l1)

k

k!
xk.

From (2) and (3) we get

Proposition 9. For every k ∈ N0 and x ∈ [0,∞)

M (k)
n f(x) = (n + l1)

(k,−l2)

∞∑
i=0

(−1)i
φ

(i)
n+kl2

(0)

i!
∆i+k

1
n

f(0) xi. (8)

In particular,

S
(k)
l1,nf(x) = (n + l1)

kSl1,n(∆k
1
n
f)(x). (9)

Lemma 3 allows us to state the moments of the operators.

Proposition 10. For any n ∈ N, r ∈ N0, one has

Mn(tr) =
r∑

β=0

n−β

min{r−1,β}∑
s=0

A(r − s, r − β) σr−s
r tr−s, (10)

where A(i, α) =
∑i

j=α

(
j
α

)
li−j
2 Sj

i (l1 + l2(i− 1))j−α.

Proof. Observe that

x(i,−l) = li
(x
l

+ i− 1
)i

= li
i∑

j=0

Sj
i

(x
l

+ i− 1
)j
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and in particular

(n + l1)
(i,−l2) = li2

i∑
j=0

Sj
i

(
n + l1
l2

+ i− 1

)j

=
i∑

j=0

li−j
2 Sj

i (n + l1 + l2(i− 1))j

=
i∑

j=0

li−j
2 Sj

i

j∑
α=0

(
j

α

)
nα (l1 + l2(i− 1))j−α

=
i∑

α=0

nα

i∑
j=α

(
j

α

)
li−j
2 Sj

i (l1 + l2(i− 1))j−α .

Lemma 3 yields

Mn(tr) = n−r

r∑
i=1

(n + l1)
(i,−l2) σi

r ti; (11)

i.e.,

Mn(tr) = n−r

r∑
i=1

i∑
α=0

nαA(i, α) σi
r ti =

r∑
α=0

nα−r

r∑
i=max{1,α}

A(i, α) σi
r ti.

Replacing α = r − β and i = r − s, the proof is concluded.

A characterization of Sl1,n operators is obtained using Proposition 10. (In fact we

use (11)). We show the operator Mn satisfies (9) if and only if Mn is the Schurer-Szász-

Mirakjan operator.

Corollary 11.

M (k)
n f = (n + l1)

kMn(∆k
1
n
f), for every k ∈ N0 ⇔ l2 = 0.

Proof. If we suppose that Mn satisfies (9), then in particular (9) holds for f = tk. Now,

(11) implies that (n + l1)
(k,−l2) = (n + l1)

k and so l2 = 0.

In order to give the asymptotic expansion for the Mn operators, we study their central

moments.

Proposition 12. Given p ∈ N0, n ∈ N and x ∈ [0,∞) the following identity holds:

Mn ((t− x)p) (x) =

p∑
β=0

n−β

p∑
r=β

(−1)p−r

(
p

r

)
min{r−1,β}∑

s=0

A(r − s, r − β) σr−s
r xp−s, (12)

where A( , ) is given in Proposition 10.
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Proof. From Proposition 10 we obtain

Mn ((t− x)p) (x) =

p∑
r=0

(
p

r

)
(−x)p−rMn (tr) (x)

=

p∑
r=0

(
p

r

)
(−1)p−r

r∑
β=0

n−β

min{r−1,β}∑
s=0

A(r − s, r − β) σr−s
r xp−s

=

p∑
β=0

n−β

p∑
r=β

(−1)p−r

(
p

r

)
min{r−1,β}∑

s=0

A(r − s, r − β) σr−s
r xp−s.

Remark 13. Using the same arguments as Sikkema [6] for Szász operators, we can deduce

that, in fact, in (12) β runs from [p+1
2

], the greatest integer less than or equal to p+1
2

, to

p.

The main result of this section is:

Theorem 14. Let f ∈ E2 r times differentiable at x ∈ [0,∞). Then

Mnf(x) = f(x) +
r∑

β=1

n−βa(β, r, f, x) + o(n−r), (13)

where

a(β, r, f, x) =
r∑

p=β

f (p)(x)

p!

p∑
r=β

(−1)p−r

(
p

r

)
min{r−1,β}∑

s=0

A(r − s, r − β) σr−s
r xp−s.

Proof. By (5), the proof follows from Proposition 12.

For the convenience of the reader we list the initial summands of the expansion (13),

for r = 3;

Mnf(x) = f(x) +
l1x

n
f ′(x) +

nx(1 + l2x) + x(l1 + l1(l1 + l2)x)

2n2
f ′′(x)

+

[
nx (1 + 3(l1 + l2)x + l2(3l1 + 2l2)x

2)

6n3

+
x(l1 + 3l1(l1 + l2)x + l1(l1 + l2)(l1 + 2l2)x

2)

6n3

]
f ′′′(x) + o(n−3),

as n → ∞.
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