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Benemérita Universidad Autónoma de Puebla. Puebla, México.
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Abstract

Let (E, ‖.‖E) and (F, ‖.‖F ) , F ⊂ E, be Banach spaces. Assume that ‖.‖F :=

‖.‖E + θ (.), where θ is a seminorm. It is proved that sequences in F that converge

in ‖.‖E and whose elements satisfy certain equicontinuous behavior, also converge in

‖.‖F to the same limit points. Quantitative estimates of the degree of convergence

are obtained. Examples of applications to different function spaces are presented.
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1 Introduction

Let X be either the real interval [0,1] or the multiplicative group T = {z ∈ C : |z| = 1} .
Let Lipα

∞X (Lipα
∞ for short) , 0 < α < 1, be the Hölder space of continuous real (or

complex) functions f ∈ C (X), which satisfy the Hölder (also called Lipschitz) condition

θα
∞ (f) := sup

δ>0
θα
∞ (f, δ) < ∞, (1)

where

θα
∞ (f, δ) := sup {|f (x) − f (y)| /d (x, y)α : 0 < d (x, y) ≤ δ} . (2)

Here d (x, y) := |x− y| if X = [0, 1] or equal to the length of the shortest arc which

joins x and y if X = T. In the last case, if functions on T are identified with 2π-periodic

functions on R, d should be the semidistance between elements of R, given by

d (x + 2jπ, y + 2kπ) := min {|x− y| , 2π − |x− y| : x, y ∈ [0, 2π[; j, k ∈ Z} . (3)
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Setting

‖f‖α,∞ := ‖f‖∞ + θα
∞ (f) (4)

or another equivalent norm, the linear space Lipα
∞ becomes a Banach space. Further,

denote by lipα
∞X (lipα

∞ for short) , 0 < α < 1, the Banach subspace of those functions

f ∈ Lipα
∞, for which

θα
∞ (f, δ) −→ 0 as δ −→ 0. (5)

Basic results on Hölder spaces can be found in [4] and [5]. A recent survey of approx-

imation in these spaces is given in [3].

From (4) , a sequence that converges in Lipα
∞ also converges in the sup-norm ‖.‖∞ ,

with the same limit. The converse is false, of course. However, there is a certain tauberian

condition (*) which lets us to prove the following assertion:

(fn) ⊂ lipα
p , ‖fn − f‖p −→ 0 and (*) =⇒ ‖fn − f‖α,p −→ 0. (6)

In fact, in 1985, Leindler, Meir and Totik proved a first result of type (6) for X

being the group T and (fn) defined by a convolution process Kn ∗ f, f ∈ lipα
∞ (see

[8]). They also estimated the degree of convergence. Later, Bustamante-Jiménez [2]

introduced the following tauberian condition: A sequence (fn) ⊂ lipα
∞X, 0 < α < 1, is

called equilipschitzian if (5) holds uniformly in n, i.e. if

sup { θα
∞ (fn, δ) : n ∈ N} −→ 0 as δ −→ 0. (7)

The main theorem in [2] states that any equilipschitzian sequence (fn) in lipα
p converges

in this space whenever it converges in the sup-norm, i.e. (6). Since sequences defined by

convolution processes (Kn ∗ f) , f ∈ lipα
p (T ) and (Kn) bounded in L1 (T ) , are equilips-

chitzian, we get another view of the qualitative part of paper [8].

When 1 ≤ p < ∞, one defines Lipα
p and lipα

p in Lp, through standard procedures.

Leindler, Meir and Totik announced the possibility of extending their results to lipα
p (T ).

Further, in [7], Jiménez-Mart́ınez extended most of results in [2] to these spaces.

With these antecedents at hand, one should expect a more general theorem that covers

and unifies these particular results. In fact, in the next section, using a concept similar to

(7) , we establish and prove such a theorem. Estimates of the degree of convergence will

also be obtained. The last section is devoted to applications in different function spaces.
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2 Definitions and results

In order to follow the ideas of this section, let us keep our mind on the examples given

by lipα
p .

Set R+ := {t ∈ R: t � 0} , R
∗
+ := {t ∈ R: t > 0} and denote by I the real open

interval ]0,b[ (or semi-open ]0,b]) where I = R
∗
+ is possible. Let E be a real or complex

linear space and

θ : E × I −→ R+ ∪ {∞} , (8)

a family θ (., δ) , δ ∈ I, of quasi-seminorms on E, i.e. the subadditivity of usual semi-

norms is substituted by the most general assertion that there exists a constant C ≥ 1

(that here we assume is independent of δ), such that for every pair of elements f, g ∈ E,

one has θ (f + g, δ) ≤ C (θ (f, δ) + θ (g, δ)). Without loss of generality it is also assumed

that for every fixed f ∈ E, θ (f, .) is an increasing function (in the large sense) of δ. Set

θ (f) := sup {θ (f, δ) : δ ∈ I} . (9)

Consider

F : = {f ∈ E : θ (f) < ∞ } (10)

F : = {f ∈ F : θ (f, δ) −→ 0 as δ −→ 0} (11)

Then, F and F are linear subspaces of E, that are quasi-seminormed by (9) and that,

eventually, could coincide .

We remark that F is a closed subspace of (F, θ). In fact, let (fn) ⊂ F be a sequence

that converges to f ∈ F. Fix ε > 0. First, take n such that θ (fn − f) ≤ ε and then δ0 > 0

such that θ (fn, δ) ≤ ε, for every δ ≤ δ0 Thus θ (f, δ) ≤ C (θ (fn − f) + θ (fn, δ)) ≤ 2Cε .

Definition 1 A set G ⊂ F is called 0-equicontinuous if

θ (G, δ) := sup { θ (g, δ) : g ∈ G} −→ 0 as δ −→ 0. (12)

A sequence (fn) is called 0-equicontinuous if the set {fn : n ∈ N} is. In that case we

simplify the notation by writing

θ ((fn) , δ) : =θ ({fn : n ∈ N} , δ) .

Of course, equilipschitzian sets in our introductory section not only are examples of

0-equicontinuous sets but also the starting point of the present definition.
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Proposition 2 Let (fn) be a convergent sequence in the quasi-seminormed space (F, θ).

Then such a sequence is 0-equicontinuous.

Proof: Suppose θ (fn − f) −→ 0 for some f ∈ F. Fix ε > 0 and choose N such that

θ (fn − f) ≤ ε whenever n > N . Also choose δ0 ∈ I, such that θ (f, δ0) ≤ ε. Then, for

any 0< τ ≤ δ0 and n > N,

θ (fn, τ) ≤ C (θ (fn − f, τ) + θ (f, τ)) ≤ C (θ (fn − f) + θ (f, δ0)) ≤ 2C ε.

For i = 1, 2, ..., N , choose δi such that θ (fi, δi) ≤ ε. Set δ := min {δi : 0 ≤ i ≤ N} . Thus

sup { θ (fn, δ) : n ∈ N} ≤ 2C ε. �

In the remainder of this section we assume E to be a topological vector space whose

topology is defined by a distance dE, which is complete and translation invariant. We

define another distance or quasi-distance in F by setting

dF (f, g) := dE (f, g) + θ (f − g) . (13)

Write dΞ (f) instead of dΞ (f, 0), where Ξ could be either E or F. Then, dΞ (f − g) =

dΞ (f, g) .

From (13) , a sequence that converges in (F, dF) also converges in (E, dE) and to the

same limit. The converse assertion is false in general. However, as we have already

pointed out, we shall prove a certain converse result. In order to establish it we need a

link between dE and θ.

Definition 3 The family of quasi-seminorms θ (., δ) , δ ∈ I, defined above, is said to be

admissible with respect to the distance dE if the following conditions are satisfied:

i) (F, dF) is complete

ii) There exists a constant K > 0 and a function Ψ : I × R+ −→ R+ such that for

each δ ∈ I,

lim
t→0

Ψ (δ, t) = Ψ (δ, 0) := 0

and for every f ∈ F ,

θ (f) ≤ K θ (f, δ) + Ψ (δ, dE (f)) . (14)

With respect to condition i), since F is a closed subspace of (F, θ), it follows from (13)

that F is also a closed subspace of (F, dF). Then, if (F, dF) is complete, so is (F, dF) .
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Theorem 4 (tauberian) Suppose that (F, dF) has been defined by a family of admissible

quasi-seminorms θ (., δ) , δ ∈ I, on (E, dE). Let (fn) ⊂ F be a convergent sequence in

(E, dE) , to an element f . If (fn) is 0-equicontinuous , then f ∈ F and (fn) converges to

f in (F, dF) . Moreover, if for each δ ∈ I, Ψ (δ, .) is continuous in R+, then

θ (fn − f) ≤ 2C K θ ((fn) , δ) + Ψ (δ, dE (fn − f)) . (15)

Proof: Assume we have already proved that (θ (fn)) is a real Cauchy sequence. Since

the hypothesis of the theorem include that (fn) is a Cauchy sequence in E, it would

follow from (13) that (fn) is a Cauchy sequence in (F, dF). But F is a complete metric

space, then there exits g ∈ F such that dF (fn − g) −→ 0 as n → ∞. Also by (13),

dE (fn − g) ≤ dF (fn − g) , then dE (fn − g) → 0. But dE (fn − f) −→ 0 as n → ∞. That

forces f = g. In order to prove that (θ (fn)) is a Cauchy sequence, fix ε > 0. For every

δ ∈ I, we use (14) to obtain,

θ (fn − fm) ≤ K θ (fn − fm, δ) + Ψ (δ, dE (fn − fm)) . (16)

Take δ such that θ ((fn) , δ) ≤ ε. Further, take N such that for every n > N and

m > N, Ψ (δ, dE (fn − fm)) ≤ ε. By substituting into (16),

θ (fn − fm) ≤ (2CK + 1) ε.

The qualitative part of the theorem has been proved. In particular θ (fn − fm) −→
θ (fn − f) as m −→ ∞. Then, using (16) and the continuity of Ψ (δ, .) we deduce (15) . �

Equivalent distances to (13) are given by

dF (f) := (dE (f)p + θ (f)p)
1/p

, 1 < p < ∞, (17)

dF (f) := max {dE (f) , θ (f) } , p = ∞. (18)

In those cases, using (15) , we remark that

dF (fn − f) ≤ (dE (fn − f)p + [2CK θ ((fn) , δ) + Ψ (δ, dE (fn − f))]p)
1/p

, (19)

if 1 ≤ p < ∞; or

dF (fn − f) ≤ max { dE (fn − f) , 2C K θ ((fn) , δ) + Ψ (δ, dE (fn − f))} , (20)

if p = ∞.

Also we remark that formula (15) is a general one. Therefore its accuracy could be

improved in particular problems. In the same way, optimal values for δ depend on the

problem on hand.
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Theorem 5 Suppose that (F, dF) has been defined from (E, dE) by a family of admissible

quasi-seminorms θ (., δ) , δ ∈ I. Then a set A ⊂ F is compact with respect to the topology

induced by dF if and only if A is compact in (E, dE) and 0-equicontinuous.

Proof. Let (fn) ⊂ A. If A is a compact set of (E, dE) , there exists a subsequence

(fnk
) that converges to an element f ∈ A with respect to dE. If A is a 0-equicontinuous

set, then (fnk
) converges to f with respect to dF. Reciprocally, if A is a compact set of

(F, dF) , there exists a subsequence (fnk
) that converges to an element f ∈ A with respect

to dF Then (fnk
) converges to the same limit with respect to dE.

3 Examples and Applications

In this section we show that well known function spaces are included in the class of spaces

defined above . Of course, it is impossible to examine here the great variety of important

function spaces not even to examine only a few of them in their general setting (see Triebel

[9], for instance). Thus the particular examples below are conceived just to conform an

illustrative sample of applications.

Example 6 Set E := C (X). Taking θ (f, δ) := θα
∞ (f, δ), defined in (2) , we obtain F =

Lipα
∞ and F = lipα

∞. Set K := 1. Thus , with Ψ (δ, t) := 2t/δα, the family of seminorms

is admissible. An application of (15) leads to

‖fn − f‖α,∞ ≤ (1+2/δα) ‖fn − f‖∞ + 2θ ((fn) , δ) (21)

The qualitative part of this application is the main theorem in Bustamante-Jiménez

[2]. In particular, the sequence of Bernstein polynomials (Bnf) , f ∈ lipα
∞ ([0, 1]) is

0-equicontinuous . In fact, Bustamante-Jiménez proved that (Bnf) converges to f in

lipα
p [0, 1], i.e. in the norm (4) which implies convergence in the seminorm (1). Then

Proposition 2 asserts that (Bnf) is 0-equicontinuous. On the other hand, theorem 5

characterizes the compact sets in lipα
∞ in the same way that it was done in [2].

Example 7 In the last example, take X := T and change (2) by

θ (f, δ) : = sup {ζ (f, t) : 0 < t ≤ δ} ,

ζ (f, t) : = sup {|f (x + t) − f (x)| /ϕ (t) : x ∈ T} ,

where ϕ : R
∗
+ → R

∗
+, is an increasing function. For f ∈ F , define the sequence fn := Kn ∗

f, where Kn ∈ L1 (T ) and M := sup {‖Kn‖1 : n ∈ N} < ∞. Then (fn) is 0-equicontinuous

with θ ((fn) , δ) ≤ M θ (f, δ) . Assume that fn −→ f in uniform norm. Set K := 1 and

Ψ (δ, t) := 2t/ϕ (δ) . In this situation (21) is transformed into

‖fn − f‖
F
≤ (1+2/ϕ (δ)) ‖fn − f‖∞ + 2 M θ (f, δ) .
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This is the estimate given by Leindler, Meir and Totik, from which several implications

to Fourier series follow ([8])

Example 8 We can use modulus of smoothness of higher order r. For instance, set

X := T and E := Lp (T ), 1≤ p < ∞. Define

θ (f, δ) : = sup {ζ (f, t) : 0 < t ≤ δ} ,

ζ (f, t) : =

{(
1

2π

∫ 2π

0

|∆r
tf (x)|p d (x)

)1/p

/tα

}
.

Here ∆tf := ∆1
tf := f (. + t) − f, ∆r

tf := ∆t

(
∆r−1

t f
)
. Set K := 1. Then, with the

function Ψ (δ, t) := 2rt/δα, the family of semi-norms is admissible in definition 3.

Example 9 Set E := Lp (T ), 1≤ p < ∞. In [6] , the author has defined homogeneous

Hölder spaces Bα
p , α > 0, which are equivalent in norm to certain Besov spaces. A function

f ∈ Lp (T ) is in Bα
p , if Fα (x, y) := (f (x) − f (y)) /d (x, y)α ∈ Lp (T 2) . A crucial point

here is that d is given by (3) and then Fα has period 2π in each variable. Set

θ (f) :=

(
1

4π2

∫ 2π

0

( ∫ 2π

0

|Fα (x, y)|p dx

)
dy

)1/p

.

Then Bα
p becomes a homogeneous Banach (Hilbert if p = 2) space under the norm

‖f‖α,p :=
(
‖f‖p

Lp(T ) + ‖Fα‖p
Lp(T 2)

)1/p

.

Taking

θ (f, δ) :=

(
1

2π2

∫ δ

0

( ∫ 2π

0

|∆tf (x) /tα|p dx

)
dt

)1/p

,

we can show that θ (f) = θ (f, π) .

Thus F = F = Bα
p . Set K := 1. Therefore, with the function

Ψ (δ, t) :=

(
2

π

∫ π

δ

dx

xαp

)1/p

t,

the family of seminorms is admissible.

With the following two examples, we show the connection of section 2 with the theory

of Measure and Integration and also the convenience of considering the general scope in

which the tauberian theorem above has been established.

Example 10 Let E be the complex linear space of all bounded complex functions f on R

that are continuous to the right and such that f (x) −→ 0 as x → −∞. For all δ > 0, set

(22) θ (f, δ) := sup

{ ∑
1≤i≤m |f (yi) − f (xi)| : x1 < y1 ≤ x2 < ... < ym;

m = 1, 2, ..;
∑

1≤i≤m yi − xi ≤ δ

}
.

83



Thus θ (f) stands for the total variation of f in R; (F, θ) is defined to be the Banach space

of functions of bounded variation and F is its closed subspace of absolutely continuous

functions.

We remark that for a given function f, it could happen that θ (f, δ) −→ 0 as δ → 0,

but θ (f) = ∞. For instance, f (x) := sin (x) /x. However such a function is not in F by

[10] and [11] .

On the other hand, since (22) is equal to

sup

{∫
A

|f ′ (x)| d (x) : meas (A) = δ

}
, f ∈ F,

this example is connected with the next one, for which the theoretical background can

be found in chapter 4 of [1]. However, to avoid technical difficulties that are not any

objective at present, we restrict ourself to a set of finite measure.

Example 11 Let E be the complex linear space of all measurable complex functions f

on [0, 1] . We identify functions that are equal Lebesgue almost everywhere and consider

any complete and translation invariant distance dE which characterize the convergence in

measure. .

For any f ∈ E, 0 < p < ∞ and 0 < δ ≤ 1, define

θ (f, δ) := sup

{(∫
A

|f |p d (x)

)1/p

: meas (A) = δ

}
.

Then F = F = Lp [0, 1] . A sequence (fn) is 0-equicontinuous if and only if it is equi-

integrable and it is known that convergence of (fn) in Lp [0, 1], occurs if and only if (fn)

is a Cauchy sequence in measure and equi-integrable. In this example, the function Ψ

depends on the particular distance dE at hands. In fact, for a given function f ∈ F and

0 < δ ≤ 1, fix a measurable set A, with meas(A) = δ, such that for any pair x ∈ A and

y ∈ Ac, f (y) ≤ f (x) . Using typical procedures, we obtain

θ (f) =

[∫ 1

0

|f |p d (x)

]1/p

≤ K

[
θ (f, δ) +

[∫
Ac

|f |p d (x)

]1/p
]
,

with K := C = 1 if 1 ≤ p < ∞ or K := C = 21/p if 0 < p < 1. Then, in terms of the

sequence (fn) and its limit in measure f,

θ (fn − f) ≤ 2K2 θ ((fn) , δ) + K βn (1 − δ)1/p ,

where the sequence βn, that converges to 0 when n → ∞, can be expressed in terms of

dE (fn − f).
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Aportaciones Matemáticas, Serie Comunicaciones 29 (2001), 55-60.

[8] Leindler, L., Meir A., and Totik, V., On approximation of continuous functions in

Lipschitz norms, Acta Math. Hung., 45 (3-4) (1985), 441-443.

[9] Triebel, H. Theory of Function spaces, Birkhaüser Verlag, Basel, Vol. 1 (1983), Vol. 2
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