On saturation in conservative approximation*

D. Cárdenas-Morales ${ }^{\dagger}$ and P. Garrancho ${ }^{\ddagger}$
† Departamento de Matemáticas. Universidad de Jaén. 23071 Jaén. Spain.
email: cardenas@ujaen.es
\ddagger Departamento de Matemáticas. I.E.S. Martín Halaja. Jaén. Spain.

Abstract

In this paper we state a pointwise saturation result for sequences of linear operators that preserve the sign of the k-th derivative of the functions. We apply it to some well known sequences of operators.

1. Notation and introduction

Let $A \subset \mathbb{R}, i \in \mathbb{N}_{0}=\mathbb{N} \cup\{0\}$. As usual, we denote by $C^{i}(A)$ the space of all real-valued i-times continuously differentiable functions defined on A and by D^{i} the i-th differential operator. $C_{B}^{i}(A)$ denotes the subspace formed by the functions of $C^{i}(A)$ which are bounded on A, and we write e_{i} for the polynomial $e_{i}(t)=t^{i}$. A function $f \in C^{i}(A)$ is said to be i-convex if $D^{i} f \geq 0$ on A and a linear operator is said to be i-convex if it maps i-convex functions onto i-convex functions.

Now let I be a closed real interval, let $k \in \mathbb{N}_{0}$ and let $L_{n}: C^{k}(I) \longrightarrow C^{k}(I)$ be a sequence of linear operators satisfying the following asymptotic condition:
A) there exist a sequence λ_{n} of real positive numbers, and a function $p \in C^{k}(I)$ strictly positive on $\operatorname{Int}(I)$ such that for all $g \in C_{B}^{k}(I), k+2$-times differentiable in some neighborhood of a point $x \in \operatorname{Int}(I)$,

$$
\begin{equation*}
\lim _{n \rightarrow+\infty} \lambda_{n}\left(D^{k} L_{n} g(x)-D^{k} g(x)\right)=D^{k}\left(p D^{2} g\right)(x) \tag{1}
\end{equation*}
$$

[^0]Some recent papers have proved that this formula is satisfied for many known operators (see [1], [4], [7]). It informs that the speed of convergence of $D^{k} L_{n} g(x)-D^{k} g(x)$ to 0 cannot overcome in general the one of λ_{n}^{-1}. Those functions f that satisfy $D^{k} L_{n} f(x)-D^{k} f(x)=$ $o\left(\lambda_{n}^{-1}\right)$ for $x \in(a, b)$ with $a, b \in \operatorname{Int}(I)$ form the trivial class for the local saturation problem of $D^{k} L_{n}$, while the functions that satisfy $D^{k} L_{n} f(x)-D^{k} f(x)=O\left(\lambda_{n}^{-1}\right)$ for $x \in(a, b)$ form the so-called saturation class. Recently, in [5] the authors have found these classes assuming also the following shape preserving property:
B) for all $n \in \mathbb{N}, L_{n}$ is k-convex.

They have extended the results obtained by Mühlbach [11] for the case $k=0$, taking into account the outstanding work by Lorent and Schumaker [9] in 1972. Simultaneously, Berens [3] dealt with this matter from a more general point of view but also just for $k=0$. Here the basic tools were convexity arguments through the use of the theory of extended complete Tchebycheff systems (ECT-Systems) and a generalization of the parabola technique introduced by Bajsanski and Bojanić [2].

In the present paper we assume A) and B) and prove a pointwise saturation result for $D^{k} L_{n}$ that extends this last one in the sense of considering $k>0$. We will also apply it in the last section to the well-known operators of Bernstein and Szász-Mirakjan. Firstly, we prove the general formulation of the parabola technique we shall use here.

Lemma 1 Let $0=L y:=D^{2} y+a_{1}(t) D^{1} y+a_{2}(t) y=0$ be a second-order linear differential equation with $a_{1}, a_{2} \in C(I)$ and assume that it has a unique solution taking any two given real values at any two given points within $\operatorname{Int}(I)$. Let $g \in C(I)$ and $t_{1}, t_{2} \in \operatorname{Int}(I)$. If $f \in C(I)$ verifies that $f\left(t_{1}\right)=f\left(t_{2}\right)=0$ and $f\left(t_{0}\right)>0$ for some $t_{0} \in\left(t_{1}, t_{2}\right)$, then there exist a real constant $\alpha<0$ and a solution of the previous differential equation, \tilde{y}, such that for all $t \in\left[t_{1}, t_{2}\right], \alpha g(t)+\tilde{y}(t)>f(t)$ and for some $s \in(a, b), \alpha g(s)+\tilde{y}(s)=f(s)$.

Proof Let L_{g} be the unique solution of $L y=0$ satisfying $L_{g}\left(t_{i}\right)=g\left(t_{i}\right), i=1,2$, let y_{0} be a solution of $L y=0$ satisfying $y_{0}(t)>0 \forall t \in\left[t_{1}, t_{2}\right]$ (whose existence is garanteed taking into account that $\left.t_{1}, t_{2} \in \operatorname{Int}(I)\right)$, and let $\epsilon>0$ be sufficiently small so that $f\left(t_{0}\right)-\epsilon\left(L_{g}\left(t_{0}\right)-g\left(t_{0}\right)\right)>0$. Then the function

$$
\frac{f-\epsilon\left(L_{g}-g\right)}{y_{0}}
$$

is continuous in $\left[t_{1}, t_{2}\right]$, it vanishes at the end points of this interval and it is strictly positive at the point t_{0}, so it reaches a maximum value, say M, at a point $s \in\left(t_{1}, t_{2}\right)$. Consequently, for all $t \in\left[t_{1}, t_{2}\right]$

$$
\epsilon\left(L_{g}(t)-g(t)\right)+M y_{0}(t) \geq f(t)
$$

and

$$
\epsilon\left(L_{g}(s)-g(s)\right)+M y_{0}(s)=f(s) .
$$

Now the proof is over taking $\alpha=-\epsilon$ and $\tilde{y}=\epsilon L_{g}+M y_{0}$.

2. The results

Along this section we assume that the operators L_{n} defined in Section 1. satisfy A) and B). In [5] we proved the following result

Lemma 2 a) For $k \in \mathbb{N}$ the ordinary linear differential equation

$$
\begin{equation*}
D^{k}\left(p D^{2} y\right) \equiv 0 \tag{2}
\end{equation*}
$$

has a fundamental system of solutions of the form $\left\{e_{0}, \ldots, e_{k-1}, y_{0}, y_{1}\right\}$, and using the change of variable $z=D^{k} y$ it can be reduced to

$$
\begin{equation*}
D^{2} z+\frac{k D^{1} p}{p} D^{1} z+\frac{k(k-1) D^{2} p}{2 p} z \equiv 0 \tag{3}
\end{equation*}
$$

(p is necessarily a polynomial of degree less than or equal to 2).
b) If $f \in C_{B}^{k}(I)$ is a solution of (2) on some neighborhood of a point $x \in \operatorname{Int}(I)$, then

$$
D^{k} L_{n} f(x)-D^{k} f(x)=o\left(\lambda_{n}^{-1}\right)
$$

c) Let $f, g \in C_{B}^{k}(I)$. If $D^{k} f \leq D^{k} g$ on some neighborhood of a point $x \in \operatorname{Int}(I)$, then

$$
D^{k} L_{n} f(x) \leq D^{k} L_{n} g(x)+o\left(\lambda_{n}^{-1}\right)
$$

In the sequel, if not specified in other sense, solutions of equation (2) and (3) are understood on $\operatorname{Int}(I)$.

Take $a, b \in \operatorname{Int}(I)$ with $a<b$ and assume that (3) has a fundamental system of solutions, say $\left\{z_{0}, z_{1}\right\}$, which form an ECT-System on (a, b). We write it as in [6], from the functions w_{0} and w_{1} :

$$
\begin{equation*}
z_{0}(t)=w_{0}(t), \quad z_{1}(t)=w_{0}(t) \int_{a}^{t} w_{1}(s) d s \tag{4}
\end{equation*}
$$

The next lemma shows the relation between convexity respect to this ECT-System and approximation by $D^{k} L_{n}$.

Lemma 3 Let $f \in C^{k}(I)$. If

$$
\lim \sup _{n \rightarrow \infty} \lambda_{n}\left(D^{k} L_{n} f(t)-D^{k} f(t)\right) \geq 0, t \in(a, b)
$$

then $D^{k} f$ is convex on (a, b) with respect to z_{0}, z_{1}.

Proof Assuming the contrary, there exist $a<t_{1}<t_{0}<t_{2}<b$ such that $D^{k} f\left(t_{0}\right)>z\left(t_{0}\right)$, being $z=z(t)$ the unique solution of (3) satisfying $z\left(t_{i}\right)=D^{k} f\left(t_{i}\right), i=1,2$. Let us apply Lemma 1 to (3) and $D^{k} f-z$, with $g=D^{k} w$, being $w \in C^{k}(I)$ such that $D^{2} w(t)=e_{k}(t) / p(t)$ for all $t \in\left[t_{1}, t_{2}\right]$. Then there exist a solution of (3), say \tilde{z}, and a constant $\alpha<0$ verifying that for all $t \in\left[t_{1}, t_{2}\right]$

$$
D^{k} f(t)-z(t) \leq \alpha D^{k} w(t)+\tilde{z}(t)
$$

and for some $s \in\left(t_{1}, t_{2}\right)$

$$
D^{k} f(s)-z(s)=\alpha D^{k} w(s)+\tilde{z}(s) .
$$

Now if we take $y, \tilde{y} \in C_{B}^{k}(I)$, solutions of (2) on $\left(t_{1}, t_{2}\right)$ such that $D^{k} y(t)=z(t)$ and $D^{k} \tilde{y}(t)=\tilde{z}(t)$, then using c), Lemma 2,

$$
\begin{gathered}
\lambda_{n}\left(D^{k} L_{n} f(s)-D^{k} f(s)\right) \leq \alpha \lambda_{n}\left(D^{k} L_{n} w(s)-D^{k} w(s)\right) \\
+\lambda_{n}\left(D^{k} L_{n} \tilde{y}(s)-D^{k} \tilde{y}(s)\right)+\lambda_{n}\left(D^{k} L_{n} y(s)-D^{k} y(s)\right)+o(1) .
\end{gathered}
$$

Using b), Lemma 2 for y and \tilde{y} and the asymptotic condition A) for w we obtain

$$
\lambda_{n}\left(D^{k} L_{n} f(s)-D^{k} f(s)\right) \leq \alpha k!+o(1)
$$

what is a contradiction that ends the proof.

Now we prove the main result. We shall obtain some information about functions f that verify $D^{k} L_{n} f(x)-D^{k} f(x)=o\left(\lambda_{n}^{-1}\right)$ and $D^{k} L_{n} f(x)-D^{k} f(x)=O\left(\lambda_{n}^{-1}\right)$ for $x \in(a, b)$, though we shall consider a more general framework. For this purpose we define $\varphi_{x}(t):=$ $(t-x)^{k+2} /(k+2)$! and $\mu_{n}(x):=D^{k} L_{n} \varphi_{x}(x)$. Notice that from A) $\mu_{n}(x)=O\left(\lambda_{n}^{-1}\right)$, specifically

$$
\begin{equation*}
\lambda_{n} \mu_{n}(x)=p(x)+o(1) \tag{5}
\end{equation*}
$$

Firstly we prove the following technical lemma which shall be used in the proof of Theorem 1. In both of them we use the functions $w_{2}:=1 / w_{0} w_{1}$ and $W_{2}(t):=\int_{a}^{t} w_{2}(s) d s$.

Lemma 4 Let $h \in C[a, b]$ and $H \in C^{k}(I)$ be such that for all $t \in(a, b), D^{k} H(t)=$ $w_{0}(t) \int_{a}^{t} h(s) w_{1}(s) d s$. Then, for $x \in(a, b)$,

$$
\lim \sup _{n \rightarrow \infty} \frac{D^{k} L_{n} H(x)-D^{k} H(x)}{\mu_{n}(x)} \leq \lim \sup _{t \rightarrow x} \frac{h(t)-h(x)}{W_{2}(t)-W_{2}(x)}
$$

and

$$
\lim \inf _{t \rightarrow x} \frac{h(t)-h(x)}{W_{2}(t)-W_{2}(x)} \leq \lim \inf _{n \rightarrow \infty} \frac{D^{k} L_{n} H(x)-D^{k} H(x)}{\mu_{n}(x)} .
$$

Proof We shall only prove the first inequality; the other one works similarly. Let $x \in$ (a, b). We assume that there exists a real number m such that

$$
\lim \sup _{t \rightarrow x} \frac{h(t)-h(x)}{W_{2}(t)-W_{2}(x)}<m
$$

because if this is not the case there is nothing to prove. Then for some $\delta>0$ whenever $|t-x|<\delta$,

$$
\frac{h(t)-h(x)}{W_{2}(t)-W_{2}(x)}<m .
$$

So for a sufficiently small δ we have

$$
\frac{h(t)-h(x)}{(t-x) w_{2}(x)}<m
$$

Multiplying by $w_{1}(t)$ and integrating we have

$$
\int_{x}^{t}(h(s)-h(x)) w_{1}(s) d s<m w_{2}(x) \int_{x}^{t}(s-x) w_{1}(s) d s
$$

which, taking into account that

$$
\frac{D^{k} H(t)}{w_{0}(t)}-\frac{D^{k} H(x)}{w_{0}(x)}=\int_{x}^{t} h(s) w_{1}(s) d s
$$

provides

$$
\frac{D^{k} H(t)}{w_{0}(t)}-\frac{D^{k} H(x)}{w_{0}(x)}-h(x) \int_{x}^{t} w_{1}(s) d s<m w_{2}(x) \int_{x}^{t}(s-x) w_{1}(s) d s
$$

Multiplying now by $w_{0}(t)$ and considering $W_{1}(t):=\int_{a}^{t} w_{1}(s) d s$ we obtain

$$
\begin{aligned}
D^{k} H(t) & -\frac{D^{k} H(x) w_{0}(t)}{w_{0}(x)}-h(x)\left(z_{1}(t)-W_{1}(x) w_{0}(t)\right) \\
& <m w_{2}(x) w_{0}(t) \int_{x}^{t}(s-x) w_{1}(s) d s
\end{aligned}
$$

Equivalently, taking $y_{0}, y_{1}, Y \in C^{k}(I)$ such that their k-th derivatives coincide respectively with z_{0}, z_{1} and $w_{2}(x) w_{0}(t) \int_{x}^{t}(s-x) w_{1}(s) d s$ in the neighborhood of the point x we are dealing with,

$$
D^{k} H(t)-\frac{D^{k} H(x) D^{k} y_{0}(t)}{w_{0}(x)}-h(x)\left(D^{k} y_{1}(t)-W_{1}(x) D^{k} y_{0}(t)\right)<m D^{k} Y(t)
$$

Applying c), Lemma 2

$$
\begin{gathered}
D^{k} L_{n} H(x)-\frac{D^{k} H(x) D^{k} L_{n} y_{0}(x)}{w_{0}(x)}-h(x)\left(D^{k} L_{n} y_{1}(x)-W_{1}(x) D^{k} L_{n} y_{0}(x)\right) \\
\leq m D^{k} L_{n} Y(x)+o\left(\lambda_{n}^{-1}\right)
\end{gathered}
$$

Introducing the zero terms $-D^{k} H(x)+\frac{D^{k} H(x)}{z_{0}(x)} D^{k} y_{0}(x)$ and $-D^{k} y_{1}(x)+D^{k} y_{0}(x) W_{1}(x)$ (notice that $z_{1}(x)=z_{0}(x) W_{1}(x)$), and regrouping,

$$
\begin{gathered}
D^{k} L_{n} H(x)-D^{k} H(x)-\frac{D^{k} H(x)}{z_{0}(x)}\left(D^{k} L_{n} y_{0}(x)-D^{k} y_{0}(x)\right) \\
-h(x)\left(D^{k} L_{n} y_{1}(x)-D^{k} y_{1}(x)-W_{1}(x)\left(D^{k} L_{n} y_{0}(x)-D^{k} y_{0}(x)\right)\right) \\
\leq m D^{k} L_{n} Y(x)+o\left(\lambda_{n}^{-1}\right) .
\end{gathered}
$$

Applying b), Lemma 2 to the functions y_{0} and y_{1}, and hypothesis A) to Y,

$$
\begin{gathered}
\lambda_{n}\left(D^{k} L_{n} H(x)-D^{k} H(x)\right) \leq m D^{k}\left(p D^{2} Y\right)(x)+o(1) \\
\quad=m p(x) w_{2}(x) w_{0}(x) w_{1}(x)+o(1)=m p(x)+o(1)
\end{gathered}
$$

where for the last equalities we have done some calculations taking into account the definitions of Y, w_{2} and that p is a polynomial of degree less than or equal to 2. Finally, using (5) and taking limsup $\operatorname{sum}_{n \rightarrow \infty}$ we obtained

$$
\lim \sup _{n \rightarrow \infty} \frac{D^{k} L_{n} H(x)-D^{k} H(x)}{\mu_{n}(x)} \leq m
$$

and the proof is over.
Theorem 1 Let $f \in C^{k}(I)$ and suppose that ψ is a finitely valued function in $L_{1}[a, b]$ for which

$$
\lim _{\inf _{n \rightarrow \infty}} \frac{D^{k} L_{n} f(x)-D^{k} f(x)}{\mu_{n}(x)} \leq \psi(x) \leq \lim \sup _{n \rightarrow \infty} \frac{D^{k} L_{n} f(x)-D^{k} f(x)}{\mu_{n}(x)}
$$

Then there exist two constants α_{0} and α_{1} such that for all $t \in(a, b)$,

$$
D^{k} f(t)=\alpha_{0} z_{0}(t)+\alpha_{1} z_{1}(t)+w_{0}(t) \int_{a}^{t} w_{1}(s) \int_{a}^{s} \psi(v) w_{2}(v) d v d s
$$

Proof Let $G \in C^{k}(I)$ such that for all $t \in(a, b)$

$$
D^{k} G(t)=D^{k} f(t)-w_{0}(t) \int_{a}^{t} w_{1}(s) \int_{a}^{s} \psi(v) w_{2}(v) d v d s
$$

We shall prove that $D^{k} G$ is convex and concave in (a, b) with respect to z_{0} and z_{1}.
For $q \in \mathbb{N}$ let m_{q} and M_{q} be respectively the minor and major functions of ψ with respect to w_{2}, such that

$$
\begin{aligned}
& \left|m_{q}(t)-\int_{a}^{t} \psi(s) w_{2}(s) d s\right|<\frac{1}{q}, t \in(a, b), \\
& \left|M_{q}(t)-\int_{a}^{t} \psi(s) w_{2}(s) d s\right|<\frac{1}{q}, t \in(a, b)
\end{aligned}
$$

whose existence is well known from the theory of Lebesgue integration (see for instance [12]). In particular it follows that

$$
\lim \sup _{t \rightarrow x} \frac{m_{q}(t)-m_{q}(x)}{W_{2}(t)-W_{2}(x)} \leq \psi(x) \leq \lim \inf _{t \rightarrow x} \frac{M_{q}(t)-M_{q}(x)}{W_{2}(t)-W_{2}(x)}
$$

From Lemma 4 and the hypothesis, if we consider $\tilde{m}_{q} \in C^{k}(I)$ such that for all $t \in(a, b)$ $D^{k} \tilde{m}_{q}(t)=w_{0}(t) \int_{a}^{t} m_{q}(s) w_{1}(s) d s$, we have that

$$
\begin{aligned}
\lim \sup _{n \rightarrow \infty} & \frac{D^{k} L_{n} \tilde{m}_{q}(x)-D^{k} \tilde{m}_{q}(x)}{\mu_{n}(x)} \leq \lim \sup _{t \rightarrow x} \frac{m_{q}(t)-m_{q}(x)}{W_{2}(t)-W_{2}(x)} \\
& \leq \psi(x) \leq \lim \sup _{n \rightarrow \infty} \frac{D^{k} L_{n} f(x)-D^{k} f(x)}{\mu_{n}(x)}
\end{aligned}
$$

so

$$
\lim \sup _{n \rightarrow \infty} \frac{D^{k} L_{n}\left(f-\tilde{m}_{q}\right)(x)-D^{k}\left(f-\tilde{m}_{q}\right)(x)}{\mu_{n}(x)} \geq 0 .
$$

From (5) and Lemma 3, we deduce that for all $q \in \mathbb{N} D^{k}\left(f-\tilde{m}_{q}\right)$ is convex in (a, b) with respect to z_{0} and z_{1}. Letting q tend to infinity we conclude that this also holds for $D^{k} G$. Analogously from M_{q} we obtain that $D^{k} G$ is concave in (a, b) with respect to z_{0} and z_{1}.

Remark This theorem recovers the converse result of b), Lemma 2 that was stated in [5]. Indeed, if $D^{k} L_{n} f(x)-D^{k} f(x)=o\left(\lambda_{n}^{-1}\right)$, then $D^{k} L_{n} f(x)-D^{k} f(x)=o\left(\mu_{n}(x)\right)$ and the theorem applies with $\psi \equiv 0$.

3. Applications

In this section we apply the previous result to the Bernstein and Szász-Mirakjan operators defined as follows respectively on $C[0,1]$ and $C[0, \infty)$:

$$
\begin{gathered}
B_{n} f(t)=\sum_{p=0}^{n} f\left(\frac{p}{n}\right)\binom{n}{p} t^{p}(1-t)^{n-p}, \\
S_{n} f(t)=e^{-n t} \sum_{p=0}^{\infty} f\left(\frac{p}{n}\right) \frac{n^{p} t^{p}}{p!} .
\end{gathered}
$$

It is very well-known (see [8], [10]) that they are convex of any order, i.e. B) holds true for any value of $k \in \mathbb{N}_{0}$. The validity of A) for B_{n} with $k=0, \lambda_{n}=2 n, p(t)=t(1-t)$, and for S_{n} with $k=0, \lambda_{n}=2 n, p(t)=t$ follows from classical results of Voronovskaya [14] and Szász [13]. Specifically, under the aforementioned conditions,

$$
\begin{equation*}
\lim _{n \rightarrow+\infty} 2 n\left(B_{n} g(x)-g(x)\right)=x(1-x) D^{2} g(x), \tag{6}
\end{equation*}
$$

and

$$
\begin{equation*}
\lim _{n \rightarrow+\infty} 2 n\left(S_{n} g(x)-g(x)\right)=x D^{2} g(x) \tag{7}
\end{equation*}
$$

Roughly speaking, one can apply the differential operator D^{k} for any $k \in \mathbb{N}$ to both sides of the identities, what yields that A) holds true for B_{n}, S_{n} and all $k \in \mathbb{N}$ taking for λ_{n} and p the corresponding values above (see [4], [7], [1]).

Hence we can apply our result to these operators. The following table contains for each operator and for $k>0$ the values of λ_{n} and $p(t)$, and a choice for $w_{0}(t)$ and $w_{1}(t)$. We do not apply our result to the case $k=0$ because this can be done from [3].

	B_{n}	S_{n}
λ_{n}	$2 n$	$2 n$
$p(t)$	$t(1-t)$	t
$w_{0}(t)$	$1 / t^{k-1}$	1
$w_{1}(t)$	$t^{k-2} /(1-t)^{k}$	$1 / t^{k}$
$w_{2}(t)$	$t(1-t)^{k}$	t^{k}

From Theorem 1, the following corollaries are easily obtained.
Corollary 1 Let $k \in \mathbb{N}, 0<a<b<1, f \in C^{k}[0,1], \mu_{n}(x)=D^{k} B_{n} \varphi_{x}(x)$ and suppose that ψ is a finitely valued function in $L_{1}[a, b]$ such that

$$
\lim _{n \rightarrow \infty} \inf _{n \rightarrow \infty} \frac{D^{k} B_{n} f(x)-D^{k} f(x)}{\mu_{n}(x)} \leq \psi(x) \leq \lim \sup _{n \rightarrow \infty} \frac{D^{k} B_{n} f(x)-D^{k} f(x)}{\mu_{n}(x)}
$$

Then there exist two constants α_{0} and α_{1} such that for all $t \in(a, b)$, one has

$$
D^{1} f(t)=\alpha_{0}+\alpha_{1} \log \frac{t}{1-t}+\int_{a}^{t} \frac{1}{s(1-s)} \int_{a}^{s} \psi(v) v(1-v) d v d s
$$

for $k=1$ and

$$
D^{k} f(t)=\frac{\alpha_{0}}{t^{k-1}}+\frac{\alpha_{1}}{(1-t)^{k-1}}+\frac{1}{t^{k-1}} \int_{a}^{t} \frac{s^{k-2}}{(1-s)^{k}} \int_{a}^{s} \psi(v) v(1-v)^{k} d v d s
$$

for $k>1$.
Corollary 2 Let $k \in \mathbb{N}, 0<a<b, f \in C_{B}^{k}[0, \infty), \mu_{n}(x)=D^{k} S_{n} \varphi_{x}(x)$ and suppose that ψ is a finitely valued function in $L_{1}[a, b]$ such that

$$
\lim \inf _{n \rightarrow \infty} \frac{D^{k} S_{n} f(x)-D^{k} f(x)}{\mu_{n}(x)} \leq \psi(x) \leq \lim \sup _{n \rightarrow \infty} \frac{D^{k} S_{n} f(x)-D^{k} f(x)}{\mu_{n}(x)}
$$

Then there exist two constants α_{0} and α_{1} such that for all $t \in(a, b)$, one has

$$
D^{1} f(t)=\alpha_{0}+\alpha_{1} \log t+\int_{a}^{t} \frac{1}{s} \int_{a}^{s} \psi(v) v d v d s
$$

for $k=1$ and

$$
D^{k} f(t)=\alpha_{0}+\frac{\alpha_{1}}{t^{k-1}}+\int_{a}^{t} \frac{1}{s^{k}} \int_{a}^{s} \psi(v) v^{k} d v d s
$$

for $k>1$.

References

[1] U. Abel, M. Ivan, Asymptotic expansion of the Jakimovski-Leviatan operators and their derivatives, Proc. of the F. Alexits Conference, Budapest (1999) (to appear).
[2] B. Bajsanski, R. Bojanić, A note on approximation by Bernstein polynomials Bull. Amer. Math. Soc., 70 (1964), 675-677.
[3] H. Berens, Pointwise saturation of positive operators, J. Approx. Theory, 6 (1972), 135-146.
[4] D. Cárdenas-Morales, P. Garrancho, F. J. Muñoz-Delgado, A result on asymptotic formulae for linear k-convex operators, Int. J. Differ. Equ. Appl., 2, no.3, (2001), 335-347.
[5] D. Cárdenas-Morales, P. Garrancho, Local saturation of conservative operators, Acta Math. Hung. (to appear).
[6] S. J. Karlin, W. J. Studden, Tchebycheff Systems, Interscience, New York (1966).
[7] A. J. López-Moreno, Expresiones y estimaciones de operadores lineales conservativos, Doctoral Thesis, University of Jaén, Spain (2001).
[8] G. G. Lorentz, Bernstein Polynomials, Chelsea Publishing Company, New York (1986).
[9] G. G. Lorentz, L. L. Schumaker, Saturation of Positive Operators, J. Approx. Theory, 5 (1972), 413-424.
[10] A. Lupas, Some properties of the linear positive operators (I), Mathematica, Cluj, 9 (1967), 77-83.
[11] G. Mühlbach, Operatoren vom Bernsteinschen Typ, J. Approx. Theory, 3 (1970), 274-292.
[12] I. Pesin, Classical and Modern Integration Theories, Academic Press, New York (1951).
[13] O. Szász, Generalization of S. Bernstein's polynomials to the infinite interval, J. Res. Nat. Bur. Standards, 45 (1950), 239-245: Collected Mathematical Works, Cincinnati (1955), 1401-1407.
[14] E. Voronovskaya, Détermination de la forme asymptotique d'approximation des fonctions par les polynômes de S. Bernstein, Dokl. Akad. Nauk. USSR, A (1932), 79-85.

[^0]: *This work is partially supported by Junta de Andalucía, Grupo de Investigación FQM 0178 and by Ministerio de Ciencia y Tecnología, Proyecto de Investigación BFM 2000-0911.

