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Abstract

In this paper we state a pointwise saturation result for sequences of linear oper-

ators that preserve the sign of the k-th derivative of the functions. We apply it to

some well known sequences of operators.

1. Notation and introduction

Let A ⊂ R, i ∈ N0 = N ∪ {0}. As usual, we denote by Ci(A) the space of all real-valued

i-times continuously differentiable functions defined on A and by Di the i-th differen-

tial operator. Ci
B(A) denotes the subspace formed by the functions of Ci(A) which are

bounded on A, and we write ei for the polynomial ei(t) = ti. A function f ∈ Ci(A) is

said to be i-convex if Dif ≥ 0 on A and a linear operator is said to be i-convex if it maps

i-convex functions onto i-convex functions.

Now let I be a closed real interval, let k ∈ N0 and let Ln : Ck(I) −→ Ck(I) be a

sequence of linear operators satisfying the following asymptotic condition:

A) there exist a sequence λn of real positive numbers, and a function p ∈ Ck(I) strictly

positive on Int(I) such that for all g ∈ Ck
B(I), k + 2-times differentiable in some

neighborhood of a point x ∈ Int(I),

lim
n→+∞

λn

(
DkLng(x) −Dkg(x)

)
= Dk

(
pD2g

)
(x). (1)
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Some recent papers have proved that this formula is satisfied for many known operators

(see [1], [4], [7]). It informs that the speed of convergence of DkLng(x)−Dkg(x) to 0 cannot

overcome in general the one of λ−1
n . Those functions f that satisfy DkLnf(x)−Dkf(x) =

o(λ−1
n ) for x ∈ (a, b) with a, b ∈ Int(I) form the trivial class for the local saturation

problem of DkLn, while the functions that satisfy DkLnf(x) − Dkf(x) = O(λ−1
n ) for

x ∈ (a, b) form the so-called saturation class. Recently, in [5] the authors have found

these classes assuming also the following shape preserving property:

B) for all n ∈ N, Ln is k-convex.

They have extended the results obtained by Mühlbach [11] for the case k = 0, taking

into account the outstanding work by Lorent and Schumaker [9] in 1972. Simultaneously,

Berens [3] dealt with this matter from a more general point of view but also just for

k = 0. Here the basic tools were convexity arguments through the use of the theory

of extended complete Tchebycheff systems (ECT-Systems) and a generalization of the

parabola technique introduced by Bajsanski and Bojanić [2].

In the present paper we assume A) and B) and prove a pointwise saturation result for

DkLn that extends this last one in the sense of considering k > 0. We will also apply it

in the last section to the well-known operators of Bernstein and Szász-Mirakjan. Firstly,

we prove the general formulation of the parabola technique we shall use here.

Lemma 1 Let 0 = Ly := D2y+a1(t)D
1y+a2(t)y = 0 be a second-order linear differential

equation with a1, a2 ∈ C(I) and assume that it has a unique solution taking any two given

real values at any two given points within Int(I). Let g ∈ C(I) and t1, t2 ∈ Int(I). If

f ∈ C(I) verifies that f(t1) = f(t2) = 0 and f(t0) > 0 for some t0 ∈ (t1, t2), then there

exist a real constant α < 0 and a solution of the previous differential equation, ỹ, such

that for all t ∈ [t1, t2], αg(t) + ỹ(t) > f(t) and for some s ∈ (a, b), αg(s) + ỹ(s) = f(s).

Proof Let Lg be the unique solution of Ly = 0 satisfying Lg(ti) = g(ti), i = 1, 2, let y0

be a solution of Ly = 0 satisfying y0(t) > 0 ∀t ∈ [t1, t2] (whose existence is garanteed

taking into account that t1, t2 ∈ Int(I)), and let ε > 0 be sufficiently small so that

f(t0) − ε (Lg(t0) − g(t0)) > 0. Then the function

f − ε (Lg − g)

y0

is continuous in [t1, t2], it vanishes at the end points of this interval and it is strictly

positive at the point t0, so it reaches a maximum value, say M , at a point s ∈ (t1, t2).

Consequently, for all t ∈ [t1, t2]

ε (Lg(t) − g(t)) + My0(t) ≥ f(t)
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and

ε (Lg(s) − g(s)) + My0(s) = f(s).

Now the proof is over taking α = −ε and ỹ = εLg + My0. ✷

2. The results

Along this section we assume that the operators Ln defined in Section 1. satisfy A) and

B). In [5] we proved the following result

Lemma 2 a) For k ∈ N the ordinary linear differential equation

Dk(pD2y) ≡ 0, (2)

has a fundamental system of solutions of the form {e0, . . . , ek−1, y0, y1}, and using

the change of variable z = Dky it can be reduced to

D2z +
kD1p

p
D1z +

k(k − 1)D2p

2p
z ≡ 0 (3)

(p is necessarily a polynomial of degree less than or equal to 2).

b) If f ∈ Ck
B(I) is a solution of (2) on some neighborhood of a point x ∈ Int(I), then

DkLnf(x) −Dkf(x) = o(λ−1
n ).

c) Let f, g ∈ Ck
B(I). If Dkf ≤ Dkg on some neighborhood of a point x ∈ Int(I), then

DkLnf(x) ≤ DkLng(x) + o(λ−1
n ).

In the sequel, if not specified in other sense, solutions of equation (2) and (3) are

understood on Int(I).

Take a, b ∈ Int(I) with a < b and assume that (3) has a fundamental system of

solutions, say {z0, z1}, which form an ECT-System on (a, b). We write it as in [6], from

the functions w0 and w1:

z0(t) = w0(t), z1(t) = w0(t)
∫ t

a
w1(s)ds. (4)

The next lemma shows the relation between convexity respect to this ECT-System

and approximation by DkLn.

Lemma 3 Let f ∈ Ck(I). If

lim sup
n→∞

λn

(
DkLnf(t) −Dkf(t)

)
≥ 0, t ∈ (a, b),

then Dkf is convex on (a, b) with respect to z0, z1.
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Proof Assuming the contrary, there exist a < t1 < t0 < t2 < b such that Dkf(t0) > z(t0),

being z = z(t) the unique solution of (3) satisfying z(ti) = Dkf(ti), i = 1, 2. Let

us apply Lemma 1 to (3) and Dkf − z, with g = Dkw, being w ∈ Ck(I) such that

D2w(t) = ek(t)/p(t) for all t ∈ [t1, t2]. Then there exist a solution of (3), say z̃, and a

constant α < 0 verifying that for all t ∈ [t1, t2]

Dkf(t) − z(t) ≤ αDkw(t) + z̃(t)

and for some s ∈ (t1, t2)

Dkf(s) − z(s) = αDkw(s) + z̃(s).

Now if we take y, ỹ ∈ Ck
B(I), solutions of (2) on (t1, t2) such that Dky(t) = z(t) and

Dkỹ(t) = z̃(t), then using c), Lemma 2,

λn

(
DkLnf(s) −Dkf(s)

)
≤ αλn

(
DkLnw(s) −Dkw(s)

)

+λn

(
DkLnỹ(s) −Dkỹ(s)

)
+ λn

(
DkLny(s) −Dky(s)

)
+ o(1).

Using b), Lemma 2 for y and ỹ and the asymptotic condition A) for w we obtain

λn

(
DkLnf(s) −Dkf(s)

)
≤ αk! + o(1)

what is a contradiction that ends the proof. ✷

Now we prove the main result. We shall obtain some information about functions f

that verify DkLnf(x)−Dkf(x) = o(λ−1
n ) and DkLnf(x)−Dkf(x) = O(λ−1

n ) for x ∈ (a, b),

though we shall consider a more general framework. For this purpose we define ϕx(t) :=

(t − x)k+2/(k + 2)! and µn(x) := DkLnϕx(x). Notice that from A) µn(x) = O(λ−1
n ),

specifically

λnµn(x) = p(x) + o(1). (5)

Firstly we prove the following technical lemma which shall be used in the proof of

Theorem 1. In both of them we use the functions w2 := 1/w0w1 and W2(t) :=
∫ t
a w2(s)ds.

Lemma 4 Let h ∈ C[a, b] and H ∈ Ck(I) be such that for all t ∈ (a, b), DkH(t) =

w0(t)
∫ t
a h(s)w1(s)ds. Then, for x ∈ (a, b),

lim sup
n→∞

DkLnH(x) −DkH(x)

µn(x)
≤ lim sup

t→x

h(t) − h(x)

W2(t) −W2(x)

and

lim inf
t→x

h(t) − h(x)

W2(t) −W2(x)
≤ lim inf

n→∞
DkLnH(x) −DkH(x)

µn(x)
.
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Proof We shall only prove the first inequality; the other one works similarly. Let x ∈
(a, b). We assume that there exists a real number m such that

lim sup
t→x

h(t) − h(x)

W2(t) −W2(x)
< m

because if this is not the case there is nothing to prove. Then for some δ > 0 whenever

|t− x| < δ,
h(t) − h(x)

W2(t) −W2(x)
< m.

So for a sufficiently small δ we have

h(t) − h(x)

(t− x)w2(x)
< m.

Multiplying by w1(t) and integrating we have

∫ t

x
(h(s) − h(x))w1(s)ds < mw2(x)

∫ t

x
(s− x)w1(s)ds,

which, taking into account that

DkH(t)

w0(t)
− DkH(x)

w0(x)
=

∫ t

x
h(s)w1(s)ds,

provides

DkH(t)

w0(t)
− DkH(x)

w0(x)
− h(x)

∫ t

x
w1(s)ds < mw2(x)

∫ t

x
(s− x)w1(s)ds.

Multiplying now by w0(t) and considering W1(t) :=
∫ t
a w1(s)ds we obtain

DkH(t) − DkH(x)w0(t)

w0(x)
− h(x) (z1(t) −W1(x)w0(t))

< mw2(x)w0(t)
∫ t

x
(s− x)w1(s)ds.

Equivalently, taking y0, y1, Y ∈ Ck(I) such that their k-th derivatives coincide respectively

with z0, z1 and w2(x)w0(t)
∫ t
x(s − x)w1(s)ds in the neighborhood of the point x we are

dealing with,

DkH(t) − DkH(x)Dky0(t)

w0(x)
− h(x)

(
Dky1(t) −W1(x)Dky0(t)

)
< mDkY (t).

Applying c), Lemma 2

DkLnH(x) − DkH(x)DkLny0(x)

w0(x)
− h(x)

(
DkLny1(x) −W1(x)DkLny0(x)

)

≤ mDkLnY (x) + o(λ−1
n ).
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Introducing the zero terms −DkH(x) + DkH(x)
z0(x)

Dky0(x) and −Dky1(x) + Dky0(x)W1(x)

(notice that z1(x) = z0(x)W1(x)), and regrouping,

DkLnH(x) −DkH(x) − DkH(x)

z0(x)

(
DkLny0(x) −Dky0(x)

)

−h(x)
(
DkLny1(x) −Dky1(x) −W1(x)

(
DkLny0(x) −Dky0(x)

))

≤ mDkLnY (x) + o(λ−1
n ).

Applying b), Lemma 2 to the functions y0 and y1, and hypothesis A) to Y ,

λn

(
DkLnH(x) −DkH(x)

)
≤ mDk

(
pD2Y

)
(x) + o(1)

= mp(x)w2(x)w0(x)w1(x) + o(1) = mp(x) + o(1),

where for the last equalities we have done some calculations taking into account the

definitions of Y,w2 and that p is a polynomial of degree less than or equal to 2. Finally,

using (5) and taking lim supn→∞ we obtained

lim sup
n→∞

DkLnH(x) −DkH(x)

µn(x)
≤ m,

and the proof is over. ✷

Theorem 1 Let f ∈ Ck(I) and suppose that ψ is a finitely valued function in L1[a, b] for

which

lim inf
n→∞

DkLnf(x) −Dkf(x)

µn(x)
≤ ψ(x) ≤ lim sup

n→∞

DkLnf(x) −Dkf(x)

µn(x)
.

Then there exist two constants α0 and α1 such that for all t ∈ (a, b),

Dkf(t) = α0z0(t) + α1z1(t) + w0(t)
∫ t

a
w1(s)

∫ s

a
ψ(v)w2(v)dvds.

Proof Let G ∈ Ck(I) such that for all t ∈ (a, b)

DkG(t) = Dkf(t) − w0(t)
∫ t

a
w1(s)

∫ s

a
ψ(v)w2(v)dvds.

We shall prove that DkG is convex and concave in (a, b) with respect to z0 and z1.

For q ∈ N let mq and Mq be respectively the minor and major functions of ψ with

respect to w2, such that

∣∣∣∣mq(t) −
∫ t

a
ψ(s)w2(s)ds

∣∣∣∣ < 1

q
, t ∈ (a, b),

∣∣∣∣Mq(t) −
∫ t

a
ψ(s)w2(s)ds

∣∣∣∣ < 1

q
, t ∈ (a, b),
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whose existence is well known from the theory of Lebesgue integration (see for instance

[12]). In particular it follows that

lim sup
t→x

mq(t) −mq(x)

W2(t) −W2(x)
≤ ψ(x) ≤ lim inf

t→x

Mq(t) −Mq(x)

W2(t) −W2(x)
.

From Lemma 4 and the hypothesis, if we consider m̃q ∈ Ck(I) such that for all t ∈ (a, b)

Dkm̃q(t) = w0(t)
∫ t
a mq(s)w1(s)ds, we have that

lim sup
n→∞

DkLnm̃q(x) −Dkm̃q(x)

µn(x)
≤ lim sup

t→x

mq(t) −mq(x)

W2(t) −W2(x)

≤ ψ(x) ≤ lim sup
n→∞

DkLnf(x) −Dkf(x)

µn(x)
,

so

lim sup
n→∞

DkLn (f − m̃q) (x) −Dk (f − m̃q) (x)

µn(x)
≥ 0.

From (5) and Lemma 3, we deduce that for all q ∈ N Dk (f − m̃q) is convex in (a, b) with

respect to z0 and z1. Letting q tend to infinity we conclude that this also holds for DkG.

Analogously from Mq we obtain that DkG is concave in (a, b) with respect to z0 and z1.

✷

Remark This theorem recovers the converse result of b), Lemma 2 that was stated in

[5]. Indeed, if DkLnf(x) − Dkf(x) = o(λ−1
n ), then DkLnf(x) − Dkf(x) = o(µn(x)) and

the theorem applies with ψ ≡ 0.

3. Applications

In this section we apply the previous result to the Bernstein and Szász-Mirakjan operators

defined as follows respectively on C[0, 1] and C[0,∞) :

Bnf(t) =
n∑

p=0

f
(
p

n

)(
n

p

)
tp(1 − t)n−p,

Snf(t) = e−nt
∞∑

p=0

f
(
p

n

)
nptp

p!
.

It is very well-known (see [8], [10]) that they are convex of any order , i.e. B) holds true

for any value of k ∈ N0. The validity of A) for Bn with k = 0, λn = 2n, p(t) = t(1 − t),

and for Sn with k = 0, λn = 2n, p(t) = t follows from classical results of Voronovskaya

[14] and Szász [13]. Specifically, under the aforementioned conditions,

lim
n→+∞

2n (Bng(x) − g(x)) = x(1 − x)D2g(x), (6)
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and

lim
n→+∞

2n (Sng(x) − g(x)) = xD2g(x). (7)

Roughly speaking, one can apply the differential operator Dk for any k ∈ N to both sides

of the identities, what yields that A) holds true for Bn, Sn and all k ∈ N taking for λn

and p the corresponding values above (see [4], [7], [1]).

Hence we can apply our result to these operators. The following table contains for

each operator and for k > 0 the values of λn and p(t), and a choice for w0(t) and w1(t).

We do not apply our result to the case k = 0 because this can be done from [3].

Bn Sn

λn 2n 2n

p(t) t(1 − t) t

w0(t) 1/tk−1 1

w1(t) tk−2/(1 − t)k 1/tk

w2(t) t(1 − t)k tk

From Theorem 1, the following corollaries are easily obtained.

Corollary 1 Let k ∈ N, 0 < a < b < 1, f ∈ Ck[0, 1], µn(x) = DkBnϕx(x) and suppose

that ψ is a finitely valued function in L1[a, b] such that

lim inf
n→∞

DkBnf(x) −Dkf(x)

µn(x)
≤ ψ(x) ≤ lim sup

n→∞

DkBnf(x) −Dkf(x)

µn(x)
.

Then there exist two constants α0 and α1 such that for all t ∈ (a, b), one has

D1f(t) = α0 + α1 log
t

1 − t
+

∫ t

a

1

s(1 − s)

∫ s

a
ψ(v)v(1 − v)dvds,

for k = 1 and

Dkf(t) =
α0

tk−1
+

α1

(1 − t)k−1
+

1

tk−1

∫ t

a

sk−2

(1 − s)k

∫ s

a
ψ(v)v(1 − v)kdvds,

for k > 1.

Corollary 2 Let k ∈ N, 0 < a < b, f ∈ Ck
B[0,∞), µn(x) = DkSnϕx(x) and suppose that

ψ is a finitely valued function in L1[a, b] such that

lim inf
n→∞

DkSnf(x) −Dkf(x)

µn(x)
≤ ψ(x) ≤ lim sup

n→∞

DkSnf(x) −Dkf(x)

µn(x)
.

Then there exist two constants α0 and α1 such that for all t ∈ (a, b), one has

D1f(t) = α0 + α1 log t +
∫ t

a

1

s

∫ s

a
ψ(v)vdvds,

for k = 1 and

Dkf(t) = α0 +
α1

tk−1
+

∫ t

a

1

sk

∫ s

a
ψ(v)vkdvds,

for k > 1.
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