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Abstract

In this paper we state a pointwise saturation result for sequences of linear oper-
ators that preserve the sign of the k-th derivative of the functions. We apply it to

some well known sequences of operators.

1. Notation and introduction

Let ACR, i€ Ny=NU{0}. As usual, we denote by C?(A) the space of all real-valued
i-times continuously differentiable functions defined on A and by D? the i-th differen-
tial operator. C%(A) denotes the subspace formed by the functions of C?(A) which are
bounded on A, and we write e; for the polynomial e;(t) = ¢. A function f € C*(A) is
said to be i-convex if D'f > 0 on A and a linear operator is said to be i-convex if it maps
1-convex functions onto i-convex functions.

Now let I be a closed real interval, let & € Ny and let L, : C*(I) — C*(I) be a

sequence of linear operators satisfying the following asymptotic condition:

A) there exist a sequence ), of real positive numbers, and a function p € C¥(I) strictly
positive on Int(I) such that for all ¢ € Ck(I), k + 2-times differentiable in some
neighborhood of a point z € Int([),

lim A, (DkLng(x) — Dkg(x)> = D" (pDQg) (x). (1)

n—-+o0o
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Some recent papers have proved that this formula is satisfied for many known operators
(see [1], [4], [7]). It informs that the speed of convergence of D* L, g(x)—D*g(z) to 0 cannot
overcome in general the one of 1. Those functions f that satisfy D*L,, f(x) — D¥ f(z) =
o\ 1) for x € (a,b) with a,b € Int(I) form the trivial class for the local saturation
problem of D*L,, while the functions that satisfy D*L,f(z) — D*f(z) = O(\;!) for
x € (a,b) form the so-called saturation class. Recently, in [5] the authors have found

these classes assuming also the following shape preserving property:
B) for all n € N, L,, is k-convex.

They have extended the results obtained by Miihlbach [11] for the case k = 0, taking
into account the outstanding work by Lorent and Schumaker [9] in 1972. Simultaneously,
Berens [3] dealt with this matter from a more general point of view but also just for
= 0. Here the basic tools were convexity arguments through the use of the theory
of extended complete Tchebycheff systems (ECT-Systems) and a generalization of the
parabola technique introduced by Bajsanski and Bojani¢ [2].
In the present paper we assume A) and B) and prove a pointwise saturation result for
DFL, that extends this last one in the sense of considering k > 0. We will also apply it
in the last section to the well-known operators of Bernstein and Szasz-Mirakjan. Firstly,

we prove the general formulation of the parabola technique we shall use here.

Lemma 1 Let 0 = Ly := D*y+a,(t)D'y+ay(t)y = 0 be a second-order linear differential
equation with ay,as € C(I) and assume that it has a unique solution taking any two given
real values at any two given points within Int(I). Let g € C(I) and ty,ty € Int(I). If
f € C(I) verifies that f(t1) = f(t2) = 0 and f(ty) > 0 for some ty € (t1,t2), then there
exist a real constant o < 0 and a solution of the previous differential equation, y, such

that for all t € [t1,ts], ag(t) + g(t) > f(t) and for some s € (a,b), ag(s)+ y(s) = f(s).

Proof Let L, be the unique solution of Ly = 0 satisfying L,(t;) = g(t;), i = 1,2, let yo
be a solution of Ly = 0 satisfying yo(t) > 0 Vt € [t1,ts] (whose existence is garanteed
taking into account that ti,t; € Int(I)), and let € > 0 be sufficiently small so that
f(to) — €(Ly(to) — g(to)) > 0. Then the function
f—e(Lg—g)
Yo
is continuous in [t1, 5], it vanishes at the end points of this interval and it is strictly
positive at the point ¢y, so it reaches a maximum value, say M, at a point s € (t,ts).

Consequently, for all ¢ € [ty, to]

€ (Ly(t) — g(t)) + Myo(t) = f(t)
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and
€(Lg(s) — g(s)) + Myo(s) = f(s).

Now the proof is over taking o = —e and y = €Ly + My,. O

2. The results

Along this section we assume that the operators L,, defined in Section 1. satisfy A) and

B). In [5] we proved the following result

Lemma 2 a) For k € N the ordinary linear differential equation
D*(pD%y) =0, (2)

has a fundamental system of solutions of the form {eq,...,ex_1,Y0,91}, and using

the change of variable = = DFy it can be reduced to
kD! k(k —1)D?
D%+ Ppr, Mz =0 (3)
p 2p
(p is necessarily a polynomial of degree less than or equal to 2).

b) If f € C%(I) is a solution of (2) on some neighborhood of a point x € Int(I), then

DL, f(z) — DFf(x) = o(A1).

n

c) Let f,g € Ch(I). If D*f < D*g on some neighborhood of a point x € Int(I), then
D¥L, f(x) < DFL,g(x) + o(\1).

In the sequel, if not specified in other sense, solutions of equation (2) and (3) are
understood on Int(7).

Take a,b € Int(l) with a < b and assume that (3) has a fundamental system of
solutions, say {zo, z1}, which form an ECT-System on (a,b). We write it as in [6], from

the functions wgy and wy:

20(t) = wo(t), 21(t) = wo(t) /at wy(s)ds. (4)

The next lemma shows the relation between convexity respect to this ECT-System

and approximation by D¥L,,.
Lemma 3 Let f € C*(I). If
lim sup A, (DL, f(t) — D*f(t)) >0, t € (a,b),

then D¥f is convex on (a,b) with respect to 2o, 21.
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Proof Assuming the contrary, there exist a < t; < to < ty < b such that D* f(t5) > z(t),
being z = z(t) the unique solution of (3) satisfying z(t;) = D¥f(t;), i = 1,2. Let
us apply Lemma 1 to (3) and D*f — z, with ¢ = D*w, being w € C*(I) such that
D?w(t) = ex(t)/p(t) for all t € [ti,t5]. Then there exist a solution of (3), say Z, and a
constant o < 0 verifying that for all ¢ € [ty, t5]

DFf(t) — 2(t) < aD*w(t) + 2(t)
and for some s € (ty,t2)
DFf(s) — z(s) = aD*w(s) + Z(s).

Now if we take y,5 € Ck(I), solutions of (2) on (t,t5) such that D*y(t) = z(t) and
D*4(t) = (), then using c), Lemma 2,

A (DFLyf(5) = DM f(5)) < @y (D¥Lyw(s) — DFw(s))

+An (D*Luii(s) = D¥i(s)) + An (D" Luy(s) — D*y(s)) + o(1).

Using b), Lemma 2 for y and ¢ and the asymptotic condition A) for w we obtain
An (DkLnf(s) - Dk’f(s)> < ak!'+ o(1)

what is a contradiction that ends the proof. O

Now we prove the main result. We shall obtain some information about functions f
that verify D¥L,, f(z)— D*f(z) = o(\;!) and D*L,,f(z)— D¥* f(x) = O(\;!) for € (a,b),
though we shall consider a more general framework. For this purpose we define ¢, (t) :=
(t — 2)*2/(k + 2)! and p,(x) := D*L,p.(x). Notice that from A) u,(x) = O(\1),
specifically

Antin(2) = p(x) + 0(1). (5)

Firstly we prove the following technical lemma which shall be used in the proof of

Theorem 1. In both of them we use the functions wy := 1/wow; and Wa(t) := [ ws(s)ds.

Lemma 4 Let h € Cla,b] and H € C*(I) be such that for all t € (a,b), D*H(t) =
wo(t) [L h(s)wi(s)ds. Then, for x € (a,b),

. D*L,H(z) — D*H(z) . h(t) — h(x)
lim su < limsu
asth fin () = R Wa () - Wa(w)
and i i
lim inf ht) = hiz) <lim inf DL H(z) = D H(as)
t=x Wy(t) — Wa(z) noo pin ()
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Proof We shall only prove the first inequality; the other one works similarly. Let x €

(a,b). We assume that there exists a real number m such that

h(t) —h
lim sup ®) (z) <m

t—x Wg(t) - WQ(ZE)

because if this is not the case there is nothing to prove. Then for some § > 0 whenever

|t — x| <6,
h(t) — h(x)
<m.
Wa(t) — Wa(x)
So for a sufficiently small § we have
At~ h(r) _
(t — z)w(x)

Multiplying by w;(t) and integrating we have
t

/x "(h(s) = h(z)) wi(s)ds < mws(x) / (5 — )i (s)ds,

xT

which, taking into account that

DMH(t)  DMH(z) _ oty
wo(t) wo() _[E h(s)w:(s)ds,

provides

D*H(t) DFH(x)
wo(t) wo(x)

— h(x) /: wi(8)ds < mws(x) /xt(s — x)wi(s)ds.

Multiplying now by wy(t) and considering Wi (t) := [’ w,(s)ds we obtain

_ D*H(x)wo(t)

DFH(t) e

— () (21(t) = Wi(z)wo(1))

t

< mwg(:c)wo(t)/ (s — x)wy(s)ds.

T

Equivalently, taking yo, y1, Y € C*(I) such that their k-th derivatives coincide respectively
with 2o, 21 and ws(z)wo(t) [1(s — x)wi(s)ds in the neighborhood of the point z we are
dealing with,

~ DMH(x)Dryolt)

wo ()

DFH(t)

— h(z) (D yi(t) = Wi(2) Dryo(t)) < mDY ().

Applying ¢), Lemma 2

_ D*H(z)D*Lynyo(x)

wo(x)

D*L,H(z) — h(z) (D" Luyy (x) = Wi(2) D" Lugyo(x))
<mDFL,Y (z) + o\ 1),
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Introducing the zero terms —D*H (z) + DkH(x)Dkyo(m) and —D*y;(z) + D*yo(x)W, ()

zo(x)

(notice that z;(x) = zo(x)W1(z)), and regrouping,

_ D*H(x)

20(2)

D*L,H(z) — D*H(z) (D*Loyo(w) — Dryo(x))

—h(@) (D*Lyyi (x) — Dryi(x) = Wi(x) (D*Loyo(w) — DFyo()))
<mD*L,Y (z) + o\ ).
Applying b), Lemma 2 to the functions yo and y;, and hypothesis A) to Y,

A (DFLyH(x) = D*H(x)) < mD* (pD?Y) (x) + o(1)

— mp(a)ws(a)w(x)wi () + o(1) = mp() + o(L),

where for the last equalities we have done some calculations taking into account the
definitions of Y, wy and that p is a polynomial of degree less than or equal to 2. Finally,

using (5) and taking limsup,,_,., we obtained

DL, H(x)— DFH
lim sup nf(z) (z)

<m,
n—oo ,Un<x)

and the proof is over. O

Theorem 1 Let f € C*(I) and suppose that v is a finitely valued function in Ly|a,b] for
which

lim inf DiLnf(x) = DYf () < ¢(z) < lim sup D*Lnf(x) = D*f(x)
noee pin () n—oc i ()

Then there ezist two constants ag and oy such that for all t € (a,b),
t

DFf(t) = agzo(t) + arz(t) + wo(t) /

a

wy(s) /S Y(v)wsy(v)duds.
Proof Let G € C*(I) such that for all ¢ € (a,b)

DAG(t) = DFF(E) — wolt) [ “wi(s) [ bywawyduds.

a

We shall prove that DG is convex and concave in (a, b) with respect to zy and 2.
For ¢ € N let m, and M, be respectively the minor and major functions of ¥ with

respect to wsq, such that

maft) = [ o(s)ua(s)ds

1
< —, te(a,b),
. (a,b)

M, (0) = [ 0ls)wa(s)as

1
< -, te(ab),
. (a,b)
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whose existence is well known from the theory of Lebesgue integration (see for instance

[12]). In particular it follows that

my(t) — mg(x) M (
lim sup o T = V@) = i e )

From Lemma 4 and the hypothesis, if we consider m, € C*(I) such that for all ¢ € (a,b)
DErig(t) = wo(t) ff my(s)w(s)ds, we have that

. DkLnﬁlq(x) - kaq(m ; q(t _ mq(fL’)
lim sup fin(2) < lim P Wa(t) — Wa(x)
< ¢(z) < lim sup kLnf(u)(x)Dkf(x)’
SO
lim sup L (S = 1) f)(;)pk Y — ) z) > 0.

From (5) and Lemma 3, we deduce that for all ¢ € N D* (f — 1) is convex in (a, b) with
respect to zp and z;. Letting ¢ tend to infinity we conclude that this also holds for D*G.
Analogously from M, we obtain that D*G is concave in (a,b) with respect to zy and 2.

O

Remark This theorem recovers the converse result of b), Lemma 2 that was stated in
[5]. Indeed, if D*L, f(x) — D*f(x) = o(\;'), then D*L, f(x) — D*f(x) = o(u,(x)) and
the theorem applies with ¢ = 0.

3. Applications

In this section we apply the previous result to the Bernstein and Szasz-Mirakjan operators

defined as follows respectively on C[0, 1] and C[0, c0) :

n=2s(" )(2)ra o,

S f(t) = —ntzf< )nptp‘
n
It is very well-known (see [8], [10]) that they are convex of any order , i.e. B) holds true
for any value of k € Ny. The validity of A) for B, with k = 0, A\, = 2n, p(t) = t(1 — 1),
and for S, with £ = 0, A\, = 2n, p(t) = t follows from classical results of Voronovskaya
[14] and Szasz [13]. Specifically, under the aforementioned conditions,

lim 2n (B,g(x) - g(z)) = z(1 — 2)D?*g(x), (6)

n—-4o0o
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and
lim 2n (S,g(z) — g(x)) = xD*g(x). (7)

n—-4-00

Roughly speaking, one can apply the differential operator D* for any k& € N to both sides
of the identities, what yields that A) holds true for B,, S, and all k¥ € N taking for A,
and p the corresponding values above (see [4], [7], [1]).

Hence we can apply our result to these operators. The following table contains for
each operator and for k& > 0 the values of A\, and p(¢), and a choice for wy(t) and w(t).

We do not apply our result to the case k = 0 because this can be done from [3].

Bn Sn
An 2n 2n
p(t) t(1—1) t

(t) 1/tk—1 1
wy(t) | tF72/(1 =)k | 1/tF
wo(t) | t(1—t)k tk

From Theorem 1, the following corollaries are easily obtained.

Corollary 1 Let ke N, 0 <a<b< 1, f € CF0,1], un(z) = D*B,p.(z) and suppose
that v is a finitely valued function in Li[a,b] such that

lim inf DEBaf () = D'f() < #(z) < lim sup D'B.f(z) - Dkf(x)
nee fin () n—co [in(2)

Then there ezist two constants ag and oy such that for all t € (a,b), one has
t t 1 s
D'f(t) = ap + ay log - —i—/a S =) /a P(v)v(1 — v)duds,

for k=1 and

k—2

DFf(t) = tffl + ( _atl)k_l + tkl—l /: (18_ 5 /asw(v)v(l —v)*duvds,

for k> 1.

Corollary 2 Let ke N, 0 <a < b, f € C§[0,00), pn(z) = D¥S,0,(x) and suppose that
W is a finitely valued function in Li|a,b] such that
Dk — DF¥ Dk — DF
lim inf Suf (%) /() < ¢(x) < lim sup Suf (%) f(x)
oo ,Un(x) n—oo ,Un(x)

Then there ezist two constants ag and oy such that for all t € (a,b), one has

t] s
D' f(t) = ag + aylogt +/ E/ ¥(v)vduds,

for k=1 and
t 1 s
DF f(t) :a0+£_—11+/ —k/ Y(v)vFduds,
a S a
for k> 1.
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