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Abstract

We give quantitative results for variation–diminishing splines, focusing on the

case of equidistant knots. New direct inequalities are obtained, both in terms of

the classical second modulus of continuity and in terms of the second Ditzian–Totik

modulus. These new results are based upon a detailed analysis of the second mo-

ments and very recent theorems for positive linear operator approximation. The

potential for simultaneous approximation is described by means of an estimate in-

volving both the first and the second classical modulus of continuity. The topic

of global smoothness preservation is also addressed. Furthermore, we discuss the

degree of simultaneous approximation in the multivariate case, namely for Boolean

sums and tensor products of Schoenberg splines.

Keywords: Variation–diminishing splines, degree of approximation, simultaneous

approximation, global smoothness preservation, Boolean sums, tensor products.

2000 MSC: 41A15, 41A25, 41A28, 41A36, 41A63, 65D07, 65D17.

1. Introduction

Consider the knot sequence ∆n = {xi}n+k
−k (n > 0, k > 0), with

x−k = x−k+1 = . . . = x0 = 0 < x1 < . . . < xn = . . . = xn+k = 1.

∗Dedicated to Prof. D.D. Stancu (* February 11, 1927) on the occasion of his 75th birthday
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For a function f ∈ R[0,1], the variation–diminishing spline of degree k w.r.t. ∆n is

given by

S∆n,kf(x) :=
n−1∑

j=−k
f(ξj,k) ·Nj,k(x) for 0 ≤ x < 1 and

S∆n,kf(1) := lim
y→1
y<1

S∆n,kf(y),

with the nodes (Greville abscissas) ξj,k :=
xj+1 + . . . + xj+k

k
, −k ≤ j ≤ n − 1, and the

normalized B–splines as fundamental functions

Nj,k(x) := (xj+k+1 − xj)[xj, xj+1, . . . , xj+k+1](· − x)k+.

This method of approximation was introduced by Schoenberg [72] in 1965 as a ”natu-

ral” extension of the classical Bernstein polynomial approximation; an important prede-

cessor is a paper by Curry and Schoenberg [18] written in 1945 and completed by 1947,

but ”for no good reason” not published until 1966. One further key article on the method

is one by Marsden and Schoenberg [58] which appeared in Romania, Schoenberg’s native

country, in 1966. Due to the early work of Marsden [55], [56] on the subject, Schoenberg’s

variation–diminishing splines (colloquially just denoted as ”Schoenberg splines”) became

known to the mathematical community in the early 1970’s and immediately attracted

considerable interest. Before continuing these short historical remarks, we list some of

their most important properties:

P1) S∆n,k is a positive linear operator which reproduces linear functions, i.e.,

n−1∑

j=−k
Nj,k(x) = 1, 0 ≤ x ≤ 1,

n−1∑

j=−k
ξj,k ·Nj,k(x) = x, 0 ≤ x ≤ 1.

P2) Theorem 1 (see [55, Theorem 3]) A necessary and sufficient condition that

lim S∆n,kf(x) = f(x), uniformly in [0, 1]

for every f ∈ C[0, 1], is that

lim
‖∆n‖

k
= 0.

P3) S∆n,k is a discretely defined operator, which maps R[0,1] into that subspace of

Ck−1[0, 1] containing all functions which are on each interval [xi, xi+1] a polyno-

mial of degree at most k;
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P4) Besides of the Bernstein operators, S∆n,k also generalizes piecewise linear interpo-

lation at the knots of ∆n;

P5) S∆n,k has the convex hull property and interpolates at the endpoints;

P6) S∆n,k has the variation–diminishing property, i.e., V (S∆n,kf − l) ≤ V (f − l) on

[0, 1], for all linear functions l, where V (g) denotes the number of sign changes of

the function g.

We said before that this method attracted interest in the mathematical community

already in the early 1970’s. The reader ought to consult the book of DeVore [21], and

papers by Leviatan [53], Meyer and Thomas [60], Scherer [71] (for an Lp modification),

and by Coman and Frenţiu [14], [15] (for multivariate approaches) in order to confirm our

statement. An important contribution from the period 1970–1975 is due to Munteanu

and Schumaker [62]. We will cite their article on several occasions in the sequel.

During the late 1970’s, the 80’s and the 90’s further contributions concerning mod-

ifications and generalizations of Schoenberg’s original method were given, both for the

univariate and multivariate cases. With a few exceptions the results given there were of a

positive nature. It should not be overlooked, though, that the behaviour in the vicinities

of the endpoints 0 and 1 is somewhat poor due to the coalescence of the knots there. We

will also discuss this below. Since the present note is not intended to be a survey paper,

we have chosen to add several references to the bibliography which are not explicitely

cited in the text, but should provide the reader with an idea of the continuing interest

among approximation theorists. We make no claim for completeness.

However, this introduction is not yet finished. Schoenberg’s variation–diminishing

spline operator is in much use in Computer–Aided Geometric Design and has become an

indispensible tool there. In CAGD the method has an early history of its own. In his

most interesting thesis Riesenfeld [69] introduced Schoenberg splines to the field, having

Gordon as his principal advisor. See [46] and [4] in order to confirm that Gordon was

always the driving force behind introducing B–spline methods into CAGD at a very early

stage of its development. These historical facts seem to be frequently overlooked (or

neglected). For more details in regard to their use in CAGD see the books by Farin [26]

and by Hoschek and Lasser [47] where more references can be found.

In the present note we will supplement the quantitative information available on

Schoenberg’s method. In doing so we will in part follow the organization of the Munteanu

and Schumaker paper, but also cover further aspects. We will consequently use second

order moduli of various types in our assertions. In the late 1960’s and early 70’s, that

is, at the time of writing of the fundamental papers on the subject, these were quantities

not too well understood and hardly ever used. The estimates given here are to the most
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part based upon very recent general results for positive linear and, more generally, con-

vex operators of various orders. This will enable us to also provide new statements on

the degree of simultaneous approximation for first and second order derivatives in both

the univariate and certain bivariate cases. There will be an emphasis on small explicit

constants.

In the foreground of our considerations will mostly be the mesh gauge (rather than

the degree) of the splines. Sometimes we will restrict ourselves to the case of equidistant

knots xj = j
n
, 0 ≤ j ≤ n, because we have not found corresponding statements for the

general case which reduce to the ”equidistant ones” we are able to give. Throughout this

paper we will always denote the k−th degree Schoenberg splines with equidistant knots

xj = j
n
, 0 ≤ j ≤ n, by Sn,k.

2. The second moments

As for any positive linear operator, the second moments (S∆n,k(e1−x)2)(x), x ∈ [0, 1], ei(t) =

ti for i ≥ 0, play an important role for the quantitative behaviour of S∆n,k. It is thus

instructive to have an idea of where the graph of the function

[0, 1] 3 x 7→ (S∆n,k(e1 − x)2)(x) ∈ IR

is located. For ξj,k ≤ x ≤ ξj+1,k we have

0 ≤ (x− ξj,k)(ξj+1,k − x) ≤ (S∆n,k(e1 − x)2)(x) ≤ (Bk(e1 − x)2)(x) =
x(1− x)

k
, (1)

n, k ≥ 1, where Bk is the k−th Bernstein operator given by

Bkf(x) =
k∑

i=0

f

(
i

k

)(
k

i

)
xi(1− x)k−i, x ∈ [0, 1].

The second inequality in (1) follows from the fact that, for x fixed, the graph of S∆n,k(e1−
x)2 lies in the convex hull of its convex control polygon. The third inequality is a conse-

quence of an observation made by Goodman and Sharma [43, Theorem 1], namely that,

for a convex function f , one has

S∆n,kf(t) ≤ Bkf(t), t ∈ [0, 1].

One further exact representation is

(S∆n,1(e1 − x)2)(x) = (x− xj)(xj+1 − x), x ∈ [xj, xj+1], 0 ≤ j ≤ n− 1. (2)

In the equidistant case this reduces to

(Sn,1(e1 − x)2)(x) =
{nx}(1− {nx})

n2
, x ∈ [0, 1],
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where y = [y] + {y}, i.e.,{y} is the fractional part of y (see [54]).

We continue to discuss the general case. As shown by DeVore [21]

0 ≤ (S∆n,k(e1 − x)2)(x)

=
n−1∑

j=−k

1

k2
· 1

k − 1

∑

1≤r<s≤k
(xj+r − xj+s)

2 ·Nj,k(x)

≤ α2
∆n,k

:=
1

k
· max
−k≤j≤n

(xj+k − xj)
2.

The above equation is not very instructive. It was shown by Marsden [56] that one

has

0 ≤ (S∆n,k(e1 − x)2)(x) ≤ min

{
1

2k
,
(k + 1)‖∆n‖2

12

}
, 0 ≤ x ≤ 1, (3)

where ‖∆n‖ := maxj(xj+1 − xj) is the mesh gauge.

However, the upper bound is not a pointwise one. Such pointwise bound is, for exam-

ple, needed for expressing the fact that one has interpolation at the endpoints.

For the case of equidistant knots we will give such inequalities in this section. We

will restrict ourselves first to a discussion of the cases k ∈ {1, 2, 3}, n ≥ 2 and present in

detail the case k = 3.

To this end, we have to estimate the quantity
(Sn,3(e1 − x)2)(x)

x(1− x)
.

For the case k = 3 and equidistant knots we get the Greville abscissas

ξ−3,3 = 0, ξ−2,3 =
1

3n
, ξ−1,3 =

1

n
,

ξj,3 = xj+2 =
j + 2

n
, j = 0, . . . , n− 4,

ξn−3,3 =
n− 1

n
, ξn−2,3 = 1− 1

3n
, ξn−1,3 = 1.

For 0 ≤ x ≤ 1
n

we have Sn,3f(x) =
0∑

j=−3

f(ξj,3) ·Nj,3(x). The divided differences which

we are interested in are equal to
[
0, 0, 0, 0,

1

n

]
(· − t)3

+ = n4 ·
(

1

n
− t
)3

+

,

[
0, 0, 0,

1

n
,
2

n

]
(· − t)3

+ =
n4

8
·
(

2

n
− t
)3

+

− n4 ·
(

1

n
− t
)3

+

,

[
0, 0,

1

n
,
2

n
,
3

n

]
(· − t)3

+ =
n4

18
·
(

3

n
− t
)3

+

− n4

4
·
(

2

n
− t
)3

+

+
n4

2
·
(

1

n
− t
)3

+

,

[
0,

1

n
,
2

n
,
3

n
,
4

n

]
(· − t)3

+ =
n4

24
·
(

4

n
− t
)3

+

− n4

6
·
(

3

n
− t
)3

+

+
n4

4
·
(

2

n
− t
)3

+

− n4

6
·
(

1

n
− t
)3

+

.
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For x ∈ [0, 1
n
], the first four B–splines of the basis have the form

N−3,3(x) = n3 ·
(

1

n3
− 3x

n2
+

3x2

n
− x3

)
,

N−2,3(x) = n3 ·
(

3x

n2
− 9x2

2n
+

7x3

4

)
,

N−1,3(x) = n3 ·
(

3x2

2n
− 11x3

12

)
,

N0,3(x) = n3 · x
3

6
.

For 0 ≤ x ≤ 1
n

it follows that

(Sn,3(e1 − x)2)(x) =
x

3n
− nx3

18
,

whence

(Sn,3(e1 − x)2)(x)

x(1− x)
=

1
3n
− nx2

18

1− x
≤

1
3n
− nx2

18

1− 1
n

=
6− n2x2

18(n− 1)
≤ 1

3(n− 1)
. (4)

Analogously, for 0 ≤ x ≤ 1
n
, one can prove that

(Sn,2(e1 − x)2)(x)

x(1− x)
=

1
2n
− x

4

1− x
≤ 1

2n
and (5)

(Sn,1(e1 − x)2)(x)

x(1− x)
=
−x + 1

n

1− x
≤ 1

n
. (6)

Because of the symmetry of the B–spline basis and the symmetry of the function

(e1 − x)2, we also get the above inequalities for 1 − 1
n
≤ x ≤ 1. Furthermore, using (3),

for arbitrary k and 1
n
≤ x ≤ 1− 1

n
there holds:

(Sn,k(e1 − x)2)(x)

x(1− x)
≤ (k + 1) · ‖∆n‖2

12x(1− x)
≤ k + 1

12
· 1

n2
· max

1
n
≤x≤1− 1

n

1

x(1− x)
=

k + 1

12(n− 1)
.

For k ∈ {1, 2} and n ≥ 2, one has k+1
12(n−1)

≤ 1
kn

, thus

(Sn,k(e1 − x)2)(x)

x(1− x)
≤ 1

kn
, for x ∈ [0, 1].

For k = 3 and n ≥ 2, one can only get

(Sn,3(e1 − x)2)(x)

x(1− x)
≤ 1

3(n− 1)
, for x ∈ [0, 1].

We will consider next the case of general k and n and recall that S1,kf(x) ≡ Bkf(x),

where Bkf is the Bernstein polynomial of f of degree k. In this case we have

(Bk(e1 − x)2)(x) =
x(1− x)

k
=

x(1− x)

n + k − 1
=

1

2
· min{2x(1− x), k

n
}

n + k − 1
.
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So it is natural to ask whether it is possible to find a constant A > 0 as small as possible

such that

(Sn,k(e1 − x)2)(x) ≤ A ·min{2x(1− x), k
n
}

n + k − 1
(7)

holds for all natural n and k. We give a positive answer to this question but do not assert

to find the optimal value of A in (7). Moreover, we show that it is not possible to find a

positive constant B such that

(Sn,k(e1 − x)2)(x)

x(1− x)
≤ B

k(n− 1)
(8)

holds for all k and n, although this is fulfilled for k ∈ {1, 2, 3} as it was proved above.

To show (7) we rely on the technique in [57]. In principle, the results presented there for

the second moments are correct, but the main tool – Marsden’s function f2(x, y) in [57,

p. 1089] – is not uniquely defined in certain cases. The corrections have recently been

made by us together with a new proof which will be presented elsewhere. Here we will

restrict ourselves to state the correct definitions. Following [57] we denote

E2(x) := (Sn,k(e1 − x)2)(x) =
n−1∑

j=−k

f2(ξj,k)

k − 1
·Nj,k(x), k ≥ 2, (9)

where

f2(ξj,k) := ξ2
j,k − ηj,k,

ηj,k :=

(
k

2

)−1

·
∑

j<i1<i2<j+k+1

xi1 · xi2 ,

(see [57, p. 1084], where to our notations ξj,k, ηj,k and f2(ξj,k) correspond there ξj, ξj,k

and f2(x, ξj), respectively; the function f2 does not actually depend on x).

The crucial representation is

g2(y) :=
f2(y)

k − 1
for y ∈ [0, 1], k ≥ 2, (10)

where the corrected form of g2 (not to be confused with Marsden’s g2) is

g2(y) =





1
k−1
·
(
−y2 + 1

3
· y
√

8 k
n
· y + 1

n2

)
, for 0 ≤ y ≤ min

{
k+1
2n

, n−1
2k

}
,

1
k−1
·
(
y − y2 − n2−1

6nk

)
, for n−1

2k
≤ y ≤ 1

2
,

1
k−1
· (k+1)(k−1)

12n2 , for k+1
2n
≤ y ≤ 1

2
,

g2(1− y), for 1
2
≤ y ≤ 1.

The function g2 is continuous on [0, 1].
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In order to compute a constant A in (7) we have to consider in the sequel the following

three cases (for n ≥ 2, because for n = 1 we get the Bernstein operator, which was already

discussed):

Case 1: k = n− 1

g2(y) =





1
k−1
·
(
−y2 + 1

3
· y
√

8 k
n
· y + 1

n2

)
, for 0 ≤ y ≤ 1

2
,

g2(1− y), for 1
2
≤ y ≤ 1.

Case 2: k < n− 1

g2(y) =





1
k−1
·
(
−y2 + 1

3
· y
√

8 k
n
· y + 1

n2

)
, for 0 ≤ y ≤ k+1

2n
,

1
k−1
· (k+1)(k−1)

12n2 , for k+1
2n
≤ y ≤ 1

2
,

g2(1− y), for 1
2
≤ y ≤ 1.

Case 3: k > n− 1

g2(y) =





1
k−1
·
(
−y2 + 1

3
· y
√

8 k
n
· y + 1

n2

)
, for 0 ≤ y ≤ n−1

2k
,

1
k−1
·
(
y − y2 − n2−1

6nk

)
, for n−1

2k
≤ y ≤ 1

2
,

g2(1− y), for 1
2
≤ y ≤ 1.

We have now the necessary ingredients in order to prove the following

Theorem 2 For n ≥ 1, k ≥ 1, x ∈ [0, 1] we have

(Sn,k(e1 − x)2)(x) ≤ 1 · min{2x(1− x), k
n
}

n + k − 1
.

Proof:

For brevity we write again E2(x) = (Sn,k(e1 − x)2)(x).

a) n = 1, k ≥ 1. This is the Bernstein operator case in which we have

E2(x) =
1

2
· min{2x(1− x), k

n
}

n + k − 1
.

b) n ≥ 2, k = 1. This is piecewise linear interpolation at l
n
, 0 ≤ l ≤ n. Here (see

(2)),

E2(x) =

(
x− l

n

)(
l + 1

n
− x

)
for x ∈

[
l

n
,
l + 1

n

]
.

For l = 0 one has

E2(x) = x

(
1

n
− x

)
≤ E2

(
1

2n

)
=

1

4n2
≤ 1

2
· min{2x(1− x), 1

n
}

n
for x ∈

[
0,

1

n

]
.
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For 1 ≤ l ≤ n− 2, i.e., x ∈
[

1
n
, n−1

n

]
, we have

E2(x) ≤ 1

4n2
≤ 1

2n2
=

1

2
· min{2x(1− x), 1

n
}

n
.

The case l = n− 1 is symmetric to l = 0.

c) n ≥ 2, k ∈ {2, 3}. First we observe that

min

{
2x(1− x),

k

n

}
=





2x(1− x), for 0 ≤ x ≤ 1
n
,

2x(1− x), for 1
n
≤ x ≤ 1

2
and 2 ≤ n ≤ 2k,

2x(1− x), for 1
n
≤ x ≤ k

n
(

1+
√

1− 2k
n

) and n ≥ 2k + 1,

k
n
, for k

n
(

1+
√

1− 2k
n

) ≤ x ≤ 1
2

and n ≥ 2k + 1.

Case 1: 0 ≤ x ≤ 1
n

From (4) and (5) it follows

E2(x) ≤ 2x(1− x) · 1

kn
· 1

2(1− x)
≤ 2x(1− x) · 1

kn
· 1

2(1− 1
n
)

=
2x(1− x)

n + k − 1
· n + k − 1

2k(n− 1)
.

We need now a constant a such that for all n ≥ 2 and k ∈ {2, 3} there holds

n + k − 1

2k(n− 1)
≤ a

which is equivalent to

n ≥ k − 1 + 2ak

2ak − 1
.

We impose
k − 1 + 2ak

2ak − 1
= 2,

which implies a = k+1
2k

. Thus we get a = 3
4

for k = 2, and a = 2
3

for k = 3, respectively.

Case 2: ( 1
n
≤ x ≤ 1

2
and 2 ≤ n ≤ 2k) or ( 1

n
≤ x ≤ k

n
(

1+
√

1− 2k
n

) and n ≥ 2k + 1).

Under these assumptions we can always write

2 1
n

(
1− 1

n

)

n + k − 1
≤ 2x(1− x)

n + k − 1
.

From Marsden’s paper [57] we know that

E2(x) ≤ k + 1

12n2
. (11)
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We need now to find again a constant a such that the inequality

k + 1

12n2
≤ a · 2(n− 1)

n2(n + k − 1)

holds for all n ≥ 2 and k ∈ {2, 3}. We thus get a = k2+2k+1
24

, which gives a = 3
8

for k = 2,

and a = 2
3

for k = 3.

Case 3: k

n
(

1+
√

1− 2k
n

) ≤ x ≤ 1
2

and n ≥ 2k + 1.

Inequality (11) holds also in this case. We require

k + 1

12n2
≤ a · k

n(n + k − 1)

for n ≥ 2, which leads to a = (k+1)2

24k
. Whence we get a = 3

16
for k = 2, and a = 2

9
for

k = 3.

Taking the maximum over all the constants a which have been computed, we find that

for n ≥ 2 and k ∈ {2, 3}

E2(x) ≤ 3

4
· min{2x(1− x), k

n
}

n + k − 1
.

d) n ≥ 2, k ≥ 4. Here we proceed differently using the function g2 from above. It is

our aim to show that in this case we have

g2(y) ≤ h2(y) :=
min{2y(1− y), k

n
}

n + k − 1
, y ∈ [0, 1]. (12)

Since h2(y) is a concave function, one has

Sn,k(h2(·); y) ≤ h2(y), y ∈ [0, 1].

Due to the positivity of Sn,k we also have

Sn,k(g2(·); y) ≤ Sn,k(h2(·); y), or

n−1∑

j=−k

f2(ξj,k)

k − 1
·Nj,k(y) ≤ h2(y) for all y ∈ [0, 1]. (13)

Setting y = x and combining (9), (12) and (13) then shows that for n ≥ 2 and k ≥ 4

E2(x) ≤ 1 · min{2x(1− x), k
n
}

n + k − 1
.

Hence it remains to prove (12).

Case k = n− 1:
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We may consider n ≥ 5, because n < 5 (that is k ≤ 3) was considered already. Since

8
k

n
y +

1

n2
≤ 4

n− 1

n
+

1

n2
=

(
2− 1

n

)2

we obtain

g2(y) ≤ 1

k − 1

[
−y2 +

y

3
·
(

2− 1

n

)]
≤ y(1− y)

3(k − 1)

(
2− 1

n

)
=

y(1− y)

n− 1
· a(n),

where

a(n) :=
n− 1

n− 2
· 1
3
·
(

2− 1

n

)
≤ a(5) =

4

5
.

Finally it follows

g2(y) ≤ 4

5
· y(1− y)

n− 1
=

4

5
· min{2y(1− y), k

n
}

n + k − 1
(14)

for all y ∈ [0, 1].

Case k < n− 1:

We may consider n ≥ 6, because k ≥ 4.

For 0 ≤ y ≤ k+1
2n

we obtain successively

g2(y) ≤ 1

k − 1

(
−y2 +

y

3

√
8
k

n
· k + 1

2n
+

1

n2

)
=

1

k − 1

(
−y2 +

y

3
· 2k + 1

n

)

≤ y(1− y)

k − 1
· 2k + 1

3n
=

2y(1− y)

n + k − 1
·
[(

n

k − 1
+ 1

)
· 2k + 1

6n

]

≤ 2y(1− y)

n + k − 1
·
[
1

3
+

1

2(k − 1)
+

2n− 1

6n

]
≤ 29

36
· 2y(1− y)

n + k − 1
.

For 0 ≤ y ≤ k+1
2n

we also have

g2(y) ≤ y(1− y)

k − 1
· 2k + 1

3n
≤ 35

64
· k

n(n + k − 1)
.

We conclude now that for 0 ≤ y ≤ k+1
2n

one has

g2(y) ≤ max

{
29

36
,
35

64

}
· min{2y(1− y), k

n
}

n + k − 1
=

29

36
· min{2y(1− y), k

n
}

n + k − 1
. (15)

Further we consider y ∈ [k+1
2n

, 1
2
] and observe that for the continuous function g2 we

can write

g2(y) = g2

(
k + 1

2n

)
= lim

z↗ k+1
2n

g2(z) ≤ lim
z↗ k+1

2n

29

36
· min{2y(1− y), k

n
}

n + k − 1
,

for all y ∈ [k+1
2n

, 1
2
].
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Hence (15) holds for y ∈ [0, 1].

Case k > n− 1:

It follows immediately that min{2y(1− y), k
n
} = 2y(1− y).

For 0 ≤ y ≤ n−1
2k

we obtain successively

g2(y) ≤ 1

k − 1

(
−y2 +

y

3

√
8
k

n
· n− 1

2k
+

1

n2

)

=
1

k − 1

[
−y2 +

y

3

(
2− 1

n

)]
≤ y(1− y)

k − 1

1

3

(
2− 1

n

)

=
2y(1− y)

n + k − 1
· 1
6

(
2− 1

n

)(
1 +

n

k − 1

)

≤ 7

9
· 2y(1− y)

n + k − 1
.

If y ∈ [n−1
2k

, 1
2
] then we have

g2(y) =
1

k − 1

(
y − y2 − n2 − 1

6nk

)
.

We have to show that

1

k − 1

(
y − y2 − n2 − 1

6nk

)
≤ 2y(1− y)

n + k − 1
,

the latter being equivalent to

n− k + 1

n + k − 1
· y(1− y) ≤ n2 − 1

6nk
.

For y ∈ [n−1
2k

, 1
2
] the left hand side does not exceed

n− k + 1

4(n + k − 1)
≤ n2 − 1

6nk
for n ≥ 2 and k > n− 1.

Thus

g2(y) ≤ 1 · 2y(1− y)

n + k − 1
(16)

for all y ∈ [0, 1], and the proof of Theorem 2 is complete.

Remark 3 We prove here that (8) is not possible. Suppose (8) holds for some B > 0.

From [57, Theorem 2] we get

lim
(n+k+1)→∞

(n + k + 1)(Sn,k(e1 − x)2)(x) =
1

12
t(t + 1),

for t := lim
(n+k+1)→∞

k

n
, 0 ≤ t ≤ 1 and t

2
≤ x ≤ 1− t

2
.
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For k = n we obtain t = 1 and x = 1
2
. In this case one gets

B

4
· lim

(n+k+1)→∞

[
n + k + 1

k(n− 1)

]
=

B

4
· lim
n→∞

[
2n + 1

n(n− 1)

]
≥ 1

12
· 2 =

1

6
.

The latter inequality is not true.

3. New direct inequalities

In this section we prove direct inequalities for arbitrary functions in C[0, 1].

3.1 Uniform estimates in terms of the classical second order modulus of smoothness

While there are many estimates in terms of the first order modulus of smoothness available

in the literature – starting with the ones by Marsden and Schoenberg ([72], [58], [55], [56])

and by Munteanu and Schumaker [62] – the first estimates with ω2 were given by Esser

in [25] and later further improved by Gonska [31]. One advantage of the use of ω2 is the

fact that this quantity annihilates linear functions. The desirability to have estimates in

terms of such a quantity was already observed at the end of the paper by Marsden and

Schoenberg [58] where

ω∗1(f ; δ) := inf
c∈R

ω1(f − ce1; δ)

was used. As was noted by one of the present authors in [33, p. 17] there is no constant

c > 0 such that

ω∗1(f ; δ) ≤ c · ω2(f ; δ) for all f ∈ C[0, 1] and all δ > 0.

The following elegant general result of Păltănea is the key for our subsequent applications

to Schoenberg splines.

Lemma 4 (see [68, Corollary 3.1]) Let K = [a, b] be a compact interval of the real axis

and K ′ a compact subinterval of K. If L : C(K) → C(K ′) is a positive linear operator,

then for f ∈ C(K), x ∈ K ′, and each 0 < h ≤ 1
2
length(K), the following holds:

|(Lf)(x)− f(x)| ≤ |(Le0)(x)− 1| · |f(x)|+ 1

h
· |(L(e1 − x))(x)| · ω1(f ; h) (17)

+

[
(Le0)(x) +

1

2h2
· (L(e1 − x)2)(x)

]
· ω2(f ; h).

Remark 5 Condition h ≤ 1
2
·length(K) in the above can be eliminated for operators which

preserve linear functions.

Thus we can state
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Theorem 6 For all f ∈ C[0, 1], x ∈ [0, 1] and h > 0, there holds

|S∆n,kf(x)− f(x)| ≤
(

1 +
1

2h2
·min

{
1

2k
,
(k + 1)‖∆n‖2

12

})
· ω2(f ; h). (18)

Proof:

Applying (17) and taking into account that S∆n,k reproduces linear functions yields

|S∆n,kf(x)− f(x)| ≤
[
1 +

1

2h2
· (S∆n,k(e1 − x)2)(x)

]
· ω2(f ; h).

Since

(S∆n,k(e1 − x)2)(x) ≤ min

{
1

2k
,
(k + 1)‖∆n‖2

12

}
,

the statement of our theorem follows.

To achieve the goal of this subsection there are two meaningful choices for the param-

eter h in (18), namely in terms of the degree k and in terms of the mesh gauge ‖∆n‖. A

direct application of Theorem 6 yields in these cases:

Corollary 7 For all f ∈ C[0, 1], x ∈ [0, 1], one has the following uniform estimates

‖S∆n,kf − f‖∞ ≤ 5

4
· ω2

(
f ;

1√
k

)
, and (19)

‖S∆n,kf − f‖∞ ≤
(

1 +
k + 1

24

)
· ω2 (f ; ‖∆n‖) . (20)

Remark 8 From (19) and (20), using the properties of the moduli, one gets for f ∈
C1[0, 1], x ∈ [0, 1], that

‖S∆n,kf − f‖∞ ≤ 5

4
√

k
· ω1

(
f ′;

1√
k

)
, and (21)

‖S∆n,kf − f‖∞ ≤
(

1 +
k + 1

24

)
· ‖∆n‖ · ω1 (f ′; ‖∆n‖) , (22)

respectively.

We listed inequalities (21) and (22) here, because they improve the corresponding ones

by Munteanu and Schumaker [62, (2.19) and (2.18), respectively] (the second one, how-

ever, only for k ≥ 2).

The inequality

(S∆n,k(e1 − x)2)(x) ≤ min

{
1

2k
,
(k + 1)‖∆n‖2

12

}

is not quite satisfactory because it does not reflect the fact that

(S∆n,k(e1 − x)2)(x) = 0 for x ∈ {0, 1}.

For the case of equidistant knots the situation is different as we showed in Section 2. The

pointwise inequalities from there will be employed in Sections 3.2 and 3.3.
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3.2 Uniform estimates in terms of the Ditzian–Totik modulus of smoothness

In the sequel we use the following particular case of a very recent result by Gonska and

Păltănea:

Lemma 9 (see [37]) If L : C[0, 1] → C[0, 1] is a linear positive operator reproducing

linear functions, then we have

|L(f, x)− f(x)| ≤
[
1 +

7

4
· (L(e1 − x)2)(x)

(hϕ(x))2

]
ωϕ2 (f ; h), (23)

for all f ∈ C[0, 1], x ∈ (0, 1) and h ∈ (0, 1].

Here

ωϕ2 (f ; h) = sup{|∆2
ρϕ(x)f(x)|, x± ρϕ(x) ∈ [0, 1], 0 < ρ ≤ h}

is the second order Ditzian–Totik modulus, with ϕ(x) =
√

x(1− x) and ∆2
ηf(y) = f(y −

η)− 2f(y) + f(y + η), if η > 0, y ± η ∈ [0, 1], f ∈ IR[0,1].

Applying Lemma 9 we first consider the three cases in which we have an exact repre-

sentation of (Sn,k(e1 − x)2)(x) close to the endpoints.

Theorem 10 For all f ∈ C[0, 1], x ∈ [0, 1], h ∈ (0, 1] and n ≥ 2, one has

|Sn,3f(x)− f(x)| ≤
[
1 +

7

4
· 1

h2
· 1

3(n− 1)

]
ωϕ2 (f ; h), and

|Sn,kf(x)− f(x)| ≤
[
1 +

7

4
· 1

h2
· 1

kn

]
ωϕ2 (f ; h), for k ∈ {1, 2}.

Thus it follows immediately

Corollary 11

‖Sn,3f − f‖∞ ≤ 19

12
· ωϕ2

(
f ;

1√
n− 1

)
,

‖Sn,2f − f‖∞ ≤ 15

8
· ωϕ2

(
f ;

1√
n

)
, and

‖Sn,1f − f‖∞ ≤ 11

4
· ωϕ2

(
f ;

1√
n

)
.

In the general case we apply again Lemma 9 and use Theorem 2.

Theorem 12 For all f ∈ C[0, 1], x ∈ [0, 1], h ∈ (0, 1] and n, k ≥ 1 one has:

i) If k
n
≥ 1

2
, then

|Sn,kf(x)− f(x)| ≤
[
1 +

7

2
· 1

h2(n + k − 1)

]
· ωϕ2 (f ; h) .
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ii) If k
n

< 1
2
, then

|Sn,kf(x)− f(x)| ≤
[
1 +

7

4
· k

h2 · n(n + k − 1)

]
· ωϕ2 (f ; h) .

In particular we get

Corollary 13 i) If k
n
≥ 1

2
, then

‖Sn,kf − f‖∞ ≤
[
1 +

7

2
· n

n + k − 1

]
· ωϕ2

(
f ;

1√
n

)
,

‖Sn,kf − f‖∞ ≤
[
1 +

7

2
· k

n + k − 1

]
· ωϕ2

(
f ;

1√
k

)
,

‖Sn,kf − f‖∞ ≤ 9

2
· ωϕ2

(
f ;

1√
n + k − 1

)
.

ii) If k
n

< 1
2
, then

‖Sn,kf − f‖∞ ≤
[
1 +

7

4
· k

n + k − 1

]
· ωϕ2

(
f ;

1√
n

)
,

‖Sn,kf − f‖∞ ≤
[
1 +

7

4
· k2

n(n + k − 1)

]
· ωϕ2

(
f ;

1√
k

)
,

‖Sn,kf − f‖∞ ≤ 11

4
· ωϕ2

(
f ;

√
k

n(n + k − 1)

)
.

Remark 14 We recall here that Schoenberg’s original intention was to introduce a natural

”spline extension” of the Bernstein polynomials. This was definitely achieved. Since then

impressive progress was made in the investigation of Bernstein operators. One particular

highlight is the result of Knoop and Zhou [51]. They showed that for the second order

Ditzian–Totik modulus one has

‖Bkf − f‖∞ ≈ ωϕ2

(
f ;

1√
k

)
, k →∞.

The authors are not aware of any corresponding result for the S∆n,k’s which generalizes

the assertion of Knoop and Zhou. We feel that the proof of a strong converse inequal-

ity (in what form soever) would be a significant and most valuable contribution to both

Approximation Theory and CAGD.

3.3 Pointwise inequalities

For the case of equidistant knots Lemma 4 can also be used to give pointwise inequalities.

We have
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Theorem 15 For all f ∈ C[0, 1], x ∈ [0, 1], h ∈ (0, 1] and n, k ≥ 1 one has:

|Sn,kf(x)− f(x)| ≤
[
1 +

1

2h2
· min{2x(1− x); k

n
}

n + k − 1

]
· ω2 (f ; h) . (24)

In particular, one has

|Sn,kf(x)− f(x)| ≤ 3

2
· ω2

(
f ;

√
2x(1− x)

n + k − 1

)
. (25)

Proof:

The first inequality is an immediate consequence of Theorem 2 and Lemma 4; for the

second one we consider two cases:

Case 1: k
n
≥ 1

2
. In this case we have for x ∈ [0, 1]

min

{
2x(1− x);

k

n

}
= 2x(1− x).

Putting h =
√

2x(1−x)
n+k−1

≤ 1 yields

|Sn,kf(x)− f(x)| ≤ 3

2
· ω2

(
f ;

√
2x(1− x)

n + k − 1

)
. (26)

Case 2: k
n

< 1
2
.

Depending on the position of x we have two possibilities.

For x ∈
[
0, 1

2

(
1−

√
1− 2k

n

)]
∪
[

1
2

(
1 +

√
1− 2k

n

)
, 1
]

it follows min
{
2x(1− x); k

n

}
=

2x(1− x), thus (26) also holds in this case.

For x ∈
(

1
2

(
1−

√
1− 2k

n

)
, 1

2

(
1 +

√
1− 2k

n

))
it follows min

{
2x(1− x); k

n

}
= k

n
. In

this case Theorem 15 implies

|Sn,kf(x)− f(x)| ≤
[
1 +

1

2h2
· k

n(n + k − 1)

]
· ω2 (f ; h) . (27)

Setting h =
√

k
n(n+k−1)

we obtain

|Sn,kf(x)− f(x)| ≤ 3

2
· ω2

(
f ;

√
k

n(n + k − 1)

)
≤ 3

2
· ω2

(
f ;

√
2x(1− x)

n + k − 1

)
. (28)

This concludes the proof.

Remark 16 (i) Case 1 in the proof of Theorem 15, namely k
n
≥ 1

2
, is the one similar

to that of the Bernstein operators Bk. For these we obtain

|Bkf(x)− f(x)| ≤ 3

2
· ω2

(
f ;

√
2x(1− x)

k

)
.
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(ii) The case k
n

< 1
2

(where the piecewise polynomial degree k is small in comparison to

the number n − 1 of interior knots) is more similar to ”true spline interpolation”.

In the middle of the interval [0, 1] we used the inequality k
n
≤ 2x(1 − x) in order

to arrive at (25), thus loosing one power of 1
n

under the square root in the special

situation k
n

= kn
n

= O( 1
n
), n→∞.

There is a second possibility to prove pointwise inequalities. This bridges the gap

between pointwise ones in terms of the classical second modulus and uniform estimates

using the Ditzian–Totik modulus. In order to indicate what can be done in this direction,

we give without proof the following

Theorem 17 Under the conditions of Theorem 15 one has

|Sn,kf(x)− f(x)| ≤ 2 · c
(

λ,

(
1

2

)1−λ
)
· ωϕλ2

(
f ;

ϕ(x)1−λ
√

n + k − 1

)
.

Here, ϕ(x) =
√

x(1− x), 0 ≤ λ ≤ 1, the constant c(λ, t0) is chosen such that Kϕλ

2 (f ; t2) ≤
c(λ, t0) · ωϕ

λ

2 (f ; t) for 0 ≤ t ≤ t0; Kϕλ

2 (f ; t2) := inf{‖f − g‖∞ + t2 · ‖ϕ2λ · g′′‖∞}, t ≥ 0,

where the infimum is taken over all g such that g′ ∈ ACloc[0, 1] and ‖ϕ2λ · g′′‖∞ <∞, and

ωϕ
λ

2 (f ; t) := sup
0≤h≤t

‖∆2
hϕλf‖∞ with

∆2
hϕλf(x) :=





f(x− hϕλ(x))− 2f(x) + f(x + hϕλ(x)), if [x− hϕλ(x), x + hϕλ(x)] ⊆ [0, 1];

0, otherwise.

For details on the technique employed here see [38, Theorem 4.1] or [22, 27, 28].

Refinements of Theorem 17 are possible.

4. Approximation of derivatives

While, for functions f ∈ Cr[0, 1], the rth derivatives of the corresponding Bernstein

polynomials converge uniformly to the rth derivative of the function f on [0, 1], this fact

does not hold for variation–diminishing spline approximations in general, except for r = 1

(see, for example, [55, Theorem 9]).

For the special case of equidistant knots,

n > 1 and xj =
j

n
, 0 ≤ j ≤ n,

Marsden [55, Section 10] noted that the pth derivative (1 < p ≤ r) of the spline approxi-

mation of degree k to f(x) converges to f (p)(x) as

‖∆n‖
k
→ 0 or, equivalently k + n→∞
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if and only if 0 < x < 1. The convergence is uniform on compact subintervals of (0, 1).

Of course, the latter statement assumes that all quantities in question are defined. For

example, one needs k − 1 ≥ p here in order to have sufficiently many derivatives of the

splines available.

In the sequel we present quantitative estimates concerning the degree of simultaneous

approximation for the first and second derivative. In order to do so, we need some general

settings.

Again K = [a, b] is a compact interval of the real axis and K ′ ⊂ K. We consider the

Banach space X = Cr(K) endowed with the norm ‖g‖X := max
0≤j≤r

(‖Djg‖K). Here ‖ · ‖K
denotes the Chebyshev norm in C(K) := C0(K) and Dj is the j−th differential operator.

Let KiK := {f ∈ C(K) : [x0, . . . , xi; f ] ≥ 0 for any x0 < . . . < xi ∈ K}, where

[x0, . . . , xi; f ] is an i−th order divided difference of f . Note that K0
K is the set of all

positive functions on K, K1
K is the set of non–decreasing functions, and K2

K represents

the usual convex functions on the same interval.

Knoop and Pottinger [50] generalized the convexity notion for operators as follows:

an operator L : V → C(K ′) is called almost convex of order r − 1 (r ≥ 0) if there exist

p ≥ 0 integers ij, 1 ≤ j ≤ p, satisfying 0 ≤ i1 < . . . < ip < r such that

f ∈
(

p⋂

j=1

KijK

)
∩ KrK ∩ V implies Lf ∈ KrK′ .

Here, the empty intersection
(⋂0

j=1 . . .
)

is taken by definition to be the entire subspace V .

The main result that we use in the sequel is the following quantitative Korovkin–type

theorem on simultaneous approximation given by Kacsó (see [48], [49]), improving an

earlier similar result of Gonska [32]:

Theorem 18 Let r ∈ IN0 and the operator L : Cr(K) → Cr(K ′) be almost convex of

order r− 1. If L(Πr−1) ⊆ Πr−1, then for all f ∈ Cr(K), x ∈ K ′ and 0 < h ≤ 1
2
length(K)

there holds:

|DrLf(x)−Drf(x)| ≤
∣∣∣∣
1

r!
DrLer(x)− 1

∣∣∣∣ · |Drf(x)|+ 1

h
· |γL(x)| · ω1(D

rf ; h)

+

[
DrL

(
1

r!
er

)
(x) +

1

2h2
· βL(x)

]
· ω2(D

rf ; h),

where

γL(x) := DrL

(
1

(r + 1)!
er+1 −

1

r!
x · er

)
(x), (29)

βL(x) := DrL

(
2

(r + 2)!
er+2 −

2

(r + 1)!
x · er+1 +

1

r!
x2 · er

)
(x). (30)
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In regard to the representation and the behaviour of the spline functions, Marsden

proved the following results:

Lemma 19 (see [55, Lemmas 1,2])

(i) Let f ∈ C1[0, 1] and k > 1. Then

DS∆n,kf(x) =
n−1∑

j=1−k

f(ξj,k)− f(ξj−1,k)

ξj,k − ξj−1,k

·Nj,k−1(x) (31)

=
n−1∑

j=1−k
Df(θj,k) ·Nj,k−1(x), ξj−1,k < θj,k < ξj,k.

(ii) Let f ∈ C2[0, 1] and k > 1. Then

D2S∆n,kf(x) =
n−1∑

j=2−k
D2f(ηj,k) ·

ξj,k − ξj−2,k

2(ξj,k−1 − ξj−1,k−1)
·Nj,k−2(x), ξj−2,k < ηj,k < ξj,k.(32)

Lemma 20 (see [55, Theorem 10]) Let f ∈ C3[0, 1] and k > 2. Then

(i) If Df(x) ≥ 0 on [0, 1], then DS∆n,kf(x) ≥ 0 on [0, 1].

(ii) If D2f(x) ≥ 0 on [0, 1], then D2S∆n,kf(x) ≥ 0 on [0, 1].

However,

(iii) If D3f(x) ≥ 0 on [0, 1], D3S∆n,kf(x) need not be nonnegative.

Lemma 21 (see [55, Theorem 11]) Let f ∈ C2[0, 1], and let xj = j
n
, 0 < j < n, be the

interior knots of ∆n. Let k + n→∞, lim inf n > 1, and lim inf k > 1. If

lim

(
k − 1

k

)
= R

exists, then

lim D2Sn,kf(0) =
3R

2
D2f(0),

lim D2Sn,kf(1) =
3R

2
D2f(1),

lim D2Sn,kf(x) = D2f(x), for 0 < x < 1.

The convergence is uniform on compact subsets of (0, 1).

The most elegant case in the above is attained for 3R
2

= 1, that is for k = 3. This is

why for the second derivative cubic splines with equidistant knots play a special role.

For the first order derivatives we can prove the following
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Theorem 22 Let f ∈ C1[0, 1], x ∈ [0, 1] and h > 0. Then, for n ≥ 1, k ≥ 2, the

following estimate holds:

|DS∆n,kf(x)−Df(x)| (33)

≤ 1

h
· ‖∆n‖ · ω1(Df ; h) +


1 +

1

2h2

(
1 +

√
k

12

)2

· ‖∆n‖2


ω2(Df ; h).

Proof:

The above statement will be derived using the result in Theorem 18; to that end we

need upper bounds for the quantities appearing there (with r = 1).

Using (31) we get immediately

DS∆n,ke1(x) =
n−1∑

j=1−k
De1(θj,k) ·Nj,k−1(x) =

n−1∑

j=1−k
Nj,k−1(x) = 1, ξj−1,k < θj,k < ξj,k,

thus

|DS∆n,ke1(x)− 1| = |DSn,ke1(x)− 1| = 0.

For γS∆n,k
(x) we obtain successively

|γS∆n,k
(x)| :=

∣∣∣DS∆n,k

(e2

2
− xe1

)
(x)
∣∣∣ =

∣∣∣∣
1

2
DS∆n,ke2(x)− xDS∆n,ke1(x)

∣∣∣∣

=

∣∣∣∣∣
1

2
· 2

n−1∑

j=1−k
Nj,k−1(x) · θj,k −

n−1∑

j=1−k
Nj,k−1(x) · ξj,k−1

∣∣∣∣∣

= |
n−1∑

j=1−k
Nj,k−1(x)(θj,k − ξj,k−1)|

≤
n−1∑

j=1−k
Nj,k−1(x)|θj,k − ξj,k−1|.

Since

ξj−1,k ≤ ξj,k−1 ≤ ξj,k, −k < j < n and

ξj−1,k < θj,k < ξj,k,

it follows that

|θj,k − ξj,k−1| ≤ ξj,k − ξj−1,k =
xj+k − xj

k
≤ ‖∆n‖.

Substituting this in the above yields

|γS∆n,k
(x)| ≤ ‖∆n‖

n−1∑

j=1−k
Nj,k−1(x) = ‖∆n‖.
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In order to obtain an upper bound for βS∆n,k
(x) we apply formula (31) for the function

f = e3
3
− xe2 + x2e1 and write successively

βS∆n,k
(x) := DS∆n,k

(e3

3
− xe2 + x2e1

)
(x)

=
n−1∑

j=1−k
(θ2
j,k − 2xθj,k + x2) ·Nj,k−1(x) =

n−1∑

j=1−k
(θj,k − x)2 ·Nj,k−1(x)

=
n−1∑

j=1−k
(θj,k − ξj,k−1 + ξj,k−1 − x)2 ·Nj,k−1(x)

≤
n−1∑

j=1−k
(θj,k − ξj,k−1)

2 ·Nj,k−1(x) +
n−1∑

j=1−k
(ξj,k−1 − x)2 ·Nj,k−1(x)

+2
n−1∑

j=1−k
|θj,k − ξj,k−1| · |ξj,k−1 − x| ·Nj,k−1(x)

≤ ‖∆n‖2 + S∆n,k−1((e1 − x)2; x) + 2‖∆n‖ · S∆n,k−1(|e1 − x|; x)

≤ ‖∆n‖2 + S∆n,k−1((e1 − x)2; x) + 2‖∆n‖ ·
√

S∆n,k−1((e1 − x)2; x)

≤ ‖∆n‖2 +
k‖∆n‖2

12
+ 2

√
k

12
· ‖∆n‖2

=

(
1 +

√
k

12

)2

· ‖∆n‖2.

In the above we used the Cauchy inequality and (3).

Replacing the above quantities into the general estimate of Theorem 18, we obtain the

statement of our theorem.

Taking h = ‖∆n‖ in Theorem 22 yields

Corollary 23 Let f ∈ C1[0, 1], x ∈ [0, 1]. Then, for n ≥ 1, k ≥ 2, one has

|DS∆n,kf(x)−Df(x)| ≤ ω1 (Df ; ‖∆n‖) +
3

2

(
1 +

√
k

12

)2

· ω2 (Df ; ‖∆n‖) . (34)

Remark 24 For the Schoenberg splines Sn,k (with equidistant knots), inequality (33) can

be given only in terms of the second order modulus of smoothness if x ∈
[
k − 1

n
, 1− k − 1

n

]

instead of x ∈ [0, 1] since, on this smaller interval, γSn,k(x) = 0. Thus we get

|DSn,kf(x)−Df(x)| ≤


1 +

1

2h2
· 1

n2

(
1 +

√
k

12

)2

ω2(Df ; h), (35)
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for 2 ≤ k ≤ n
2

+ 1 (the latter inequality following from the requirement k−1
n
≤ 1− k−1

n
).

In particular, for h =
1

n
, the latter estimate becomes

|DSn,kf(x)−Df(x)| ≤ 3

2

(
1 +

√
k

12

)2

· ω2

(
Df ;

1

n

)
, (36)

for 2 ≤ k ≤ n
2

+ 1.

For splines with xj = j
n
, 0 ≤ j ≤ n, and second order derivatives one has uniform

convergence on compact subsets of (0, 1) only. In this case we can state the following

Theorem 25 Let f ∈ C2[0, 1], x ∈
[
k − 1

n
, 1− k − 1

n

]
and h > 0. Then there holds:

|D2Sn,kf(x)−D2f(x)| (37)

≤ 1

h
· 1
n
· ω1(D

2f ; h) +


1 +

1

2h2
· 1

n2

(
1 +

√
k − 1

12

)2

 · ω2(D

2f ; h),

for 3 ≤ k ≤ n
2

+ 1.

Proof:

Putting

Bj,k :=
ξj,k − ξj−2,k

2(ξj,k−1 − ξj−1,k−1)
, (38)

formula (32) becomes

D2Sn,kf(x) =
n−1∑

j=2−k
D2f(ηj,k) · Bj,k ·Nj,k−2(x), ξj−2,k < ηj,k < ξj,k. (39)

One has

Bj,k =
1

2
· k − 1

k
·
(

1 +
xj+k − xj−1

xj+k−1 − xj

)

=
1

2
· k − 1

k
·
(

1 +
k + 1

k − 1

)
, for 1 ≤ j ≤ n− k

= 1, for 1 ≤ j ≤ n− k.

Thus, for x ∈
[
k − 1

n
, 1− k − 1

n

]
, we obtain

∣∣∣∣
1

2
D2Sn,ke2(x)− 1

∣∣∣∣ =

∣∣∣∣∣
1

2

n−k∑

j=1

2 · Bj,k ·Nj,k−2(x)− 1

∣∣∣∣∣ =

∣∣∣∣∣
n−k∑

j=1

Nj,k−2(x)− 1

∣∣∣∣∣ = 0.
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Here we have taken into account that on

[
0,

k − 1

n

]
the splines Nj,k−2, 2− k ≤ j ≤ 0, are

zero, and the same is true for Nj,k−2 on

[
1− k − 1

n
, 1

]
for n− k + 1 ≤ j ≤ n− 1.

Furthermore,

|γSn,k(x)| :=
∣∣∣D2Sn,k

(e3

3!
− x

e2

2

)
(x)
∣∣∣ =

∣∣∣∣
1

3!
D2Sn,ke3(x)− x

∣∣∣∣

=

∣∣∣∣∣
1

3!
· 6

n−k∑

j=1

ηj,k · Bj,k ·Nj,k−2(x)−
n−k∑

j=1

ξj,k−2 ·Nj,k−2(x)

∣∣∣∣∣ (ξj−2,k < ηj,k < ξj,k)

=

∣∣∣∣∣
n−k∑

j=1

Nj,k−2(x)(ηj,k · Bj,k − ξj,k−2)

∣∣∣∣∣

≤
n−k∑

j=1

Nj,k−2(x)|ηj,k − ξj,k−2| ≤
n−k∑

j=1

Nj,k−2(x) · 1
n

=
1

n
.

In the above we used the fact that

|ηj,k − ξj,k−2| ≤





ξj,k − ξj,k−2 = 1
n
, if ηj,k ≥ ξj,k−2,

ξj,k−2 − ξj−2,k = 1
n
, if ηj,k < ξj,k−2.

For βSn,k(x), x ∈
[
k − 1

n
, 1− k − 1

n

]
, we use formula (32) for the function f = 2

4!
e4 −

2
3!
xe3 + 1

2!
x2e2 and write successively

0 ≤ βSn,k(x) := D2Sn,k

(
2

4!
e4 −

2

3!
xe3 +

1

2!
x2e2

)
(x)

=
n−k∑

j=1

Nj,k−2(x)(η2
j,k − 2xηj,k + x2) · Bj,k (ξj−2,k < ηj,k < ξj,k)

=
n−k∑

j=1

Nj,k−2(x)(ηj,k − x)2

=
n−k∑

j=1

Nj,k−2(x)(ηj,k − ξj,k−2 + ξj,k−2 − x)2

≤
n−k∑

j=1

Nj,k−2(x)(ηj,k − ξj,k−2)
2 +

n−k∑

j=1

Nj,k−2(x)(ξj,k−2 − x)2

+2
n−k∑

j=1

|ηj,k − ξj,k−2| · |ξj,k−2 − x| ·Nj,k−2(x)

≤ 1

n2
+

k − 1

12n2
+ 2 · 1

n
·
√

k − 1

12n2
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=
1

n2

(
1 +

√
k − 1

12

)2

.

In the above we used the Cauchy inequality and (3). An application of Theorem 18 yields

the statement of our theorem.

In particular, for h =
1

n
, we get

Corollary 26 Let f ∈ C2[0, 1], x ∈
[
k − 1

n
, 1− k − 1

n

]
and 3 ≤ k ≤ n

2
+ 1. Then there

holds:

|D2Sn,kf(x)−D2f(x)| ≤ ω1

(
D2f ;

1

n

)
+

3

2

(
1 +

√
k − 1

12

)2

· ω2

(
D2f ;

1

n

)
.(40)

As was mentioned earlier in this note, close to the endpoints there are problems with

second order derivatives. We illustrate this for a simple case in the following

Example 27 Consider Sn,3(e2; x) for 0 ≤ x ≤ 1
n
. From the representations for Nj,3(x), −3 ≤

j ≤ 0, given above it can be derived that on [0, 1
n
] one has

D2Sn,3e2(x) = 2− 1

3
xn,

that is

D2Sn,3(e2; 0) = 2 = D2e2(0),

but, independent of n,

D2Sn,3

(
e2;

1

n

)
=

5

3
< 2 = D2e2

(
1

n

)
.

This is why it is impossible to prove uniform convergence for the second derivatives

on the whole interval [0, 1] as 1
n
→ 0.

At the left endpoint k−1
n

= 2
n

of the interval on which we proved uniform convergence

we have

D2Sn,3

(
e2;

2

n

)
= 2 = D2e2

(
2

n

)
, 4 ≤ n,

again due to the general statement. In fact,

D2Sn,3(e2; x) = D2e2(x)

even for all x ∈ [ 2
n
, 1− 2

n
].

It is also interesting to note that, while D3e2(x) = 0 for all x ∈ [0, 1], the second

derivative of Sn,3e2 strictly decreases on [0, 1
n
].
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5. Global smoothness preservation

Over the recent years there has been considerable interest in the preservation of global

smoothness in various contexts. This intensive research culminated in the recent book by

Anastassiou and Gal [3]. Already in the very first article [2] treating this phenomenon

under a systematic point of view, global smoothness preservation by Schoenberg operators

S∆n,k with respect to the first order modulus ω1 was investigated. It was shown there,

among other things, that

ω1(S∆n,kf ; t) ≤ 2 · ω1(f ; t), f ∈ C[0, 1], t ≥ 0.

In this section we present an analogous result for a certain ”second” K− functional and

the classical second order modulus. To that end we use the following tool given earlier by

Cottin and Gonska.

Lemma 28 (see Theorem 2.2 in [17]) Let r ≥ 0 and s ≥ 1 be integers, and let K and

K ′ be given as above. Furthermore, let L : Cr(K) → Cr(K ′) be a linear operator having

the following properties:

(i) L is almost convex of orders r − 1 and r + s− 1,

(ii) L maps Cr+s(K) into Cr+s(K ′),

(iii) L(Πr−1) ⊆ Πr−1 and L(Πr+s−1) ⊆ Πr+s−1

(iv) L(Cr(K)) /⊂ Πr−1.

Then for all f ∈ Cr(K) and all δ ≥ 0 we have

Ks(D
rLf ; δ)K′ ≤

1

r!
· ‖DrLer‖ ·Ks

(
f (r);

1

(r + s)s
· ‖D

r+sLer+s‖
‖DrLer‖

· δ
)

K

. (41)

In the above, Ks is the Peetre K–functional of order s, s ≥ 1, given by

Ks(f ; δ) := K(f ; δ; C[0, 1], Cs[0, 1]) := inf{‖f − g‖+ δ · ‖g(s)‖ : g ∈ Cs[0, 1]},

(a)b denotes the Pochhammer symbol defined by

(a)0 := 1, (a)b :=
b−1∏

k=0

(a− k), a ∈ IR, b ∈ IN,

and Π−1 := {0}.

Now we can state
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Theorem 29 For all f ∈ C[0, 1] and all δ ≥ 0, the variation–diminishing splines S∆n,k

of degree k ≥ 3 with n ≥ 2 satisfy the following estimates:

K2(S∆n,kf ; δ) ≤ K2

(
f ;

k − 1

k
·
(

1

2
+ ρ(∆n)

)
· δ
)

, and (42)

ω2(S∆n,kf ; δ) ≤ 3 ·
[
1 +

k − 1

4k
· (1 + 2 · ρ(∆n))

]
· ω2(f ; δ), (43)

where ρ(∆n) :=
‖∆n‖

min
0≤i≤n−1

(xi+1 − xi)
is the mesh ratio.

Proof:

It can be easily verified that, for r = 0 and s = 2, the assumptions of Lemma 28 are

satisfied by S∆n,k with k ≥ 3. Hence (41) reads now as follows:

K2(S∆n,kf ; δ) ≤ ‖S∆n,ke0‖ ·K2

(
f ;

1

2
· ‖D

2S∆n,ke2‖
‖S∆n,ke0‖

· δ
)

(44)

= K2

(
f ;

1

2
· ‖D2S∆n,ke2‖ · δ

)
,

since ‖S∆n,ke0‖ = 1.

Furthermore, for k ≥ 3,

Bj,k =
1

2
· k − 1

k
·
(

1 +
xj+k − xj−1

xj+k−1 − xj

)

≤ 1

2
· k − 1

k
·
(

1 + max
−k+2≤j≤n−1

xj+k − xj−1

xj+k−1 − xj

)

≤ 1

2
· k − 1

k
·
(

1 + max

{
2,

k + 1

k − 1

}
· ρ(∆n)

)

=
1

2
· k − 1

k
· (1 + 2 · ρ(∆n)) .

The 2 appearing in max
{
2, k+1

k−1

}
in the above is due to certain special cases when con-

sidering equidistant knots.

Thus

|D2S∆n,kf(x)| ≤ ‖f ′′‖ · 1
2
· k − 1

k
· (1 + 2 · ρ(∆n))

n−1∑

j=2−k
Nj,k−2(x)

= ‖f ′′‖ · 1
2
· k − 1

k
· (1 + 2 · ρ(∆n)) ,

and, in particular,

‖D2S∆n,ke2‖ ≤
k − 1

k
· (1 + 2 · ρ(∆n)) .

Substituting this upper bound into (44) yields (42).
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For the second statement of our theorem we employ the function Zδ(f) from Žuk’s

paper [81] (see Lemma 1 there), also observing the fact that

K2(f ; δ) = K(f ; δ; C[0, 1], C2[0, 1]) = K(f ; δ; C[0, 1], W2,∞[0, 1]).

Here,

W2,∞[0, 1] := {f ∈ C[0, 1] : f ′ absolutely continuous, ‖f ′′‖L∞ <∞},

where

‖f ′′‖L∞ = vrai sup
x∈[0,1]

|f ′′(x)|.

Let now f ∈ C[0, 1], 0 < δ ≤ 1
2

be arbitrarily given, and let |h| ≤ δ. Then for a typical

difference figuring in the definition of ω2(S∆n,kf ; δ) we have

|S∆n,kf(x− h)− 2S∆n,kf(x) + S∆n,kf(x + h)|

= |{S∆n,k(f − g; x− h)− 2S∆n,k(f − g; x) + S∆n,k(f − g; x + h)}

+{S∆n,k(g; x− h)− 2S∆n,k(g; x) + S∆n,k(g; x + h)}|,

where g ∈ W2,∞[0, 1] may be arbitrarily chosen.

The absolute value of the first term in curly parentheses can be estimated from above

by

4‖S∆n,k(f − g)‖∞ ≤ 4‖f − g‖∞.

For the modulus of the second expression in curly brackets we have

|S∆n,k(g; x− h)− 2S∆n,k(g; x) + S∆n,k(g; x + h)|

= |D2S∆n,k(g; ξ)| · h2 (for some ξ between x− h and x + h)

≤ ‖D2S∆n,kg‖ · h2 ≤ 1

2
· k − 1

k
· (1 + 2 · ρ(∆n)) · h2 · ‖g′′‖L∞ .

We now substitute the function g ∈ W2,∞[0, 1] by Zh(f) from Žuk’s paper [81], satis-

fying for 0 < h ≤ 1
2

the inequalities

‖f − Zh(f)‖ ≤ 3

4
· ω2(f ; h), and

‖Z ′′h(f)‖L∞ ≤ 3

2
· 1

h2
· ω2(f ; h).

Combining these estimates leads to

ω2(S∆n,kf ; δ) ≤ 3 · ω2(f ; δ) +
3

4
· k − 1

k
· (1 + 2 · ρ(∆n)) · ω2(f ; δ)

= 3 ·
[
1 +

k − 1

4k
· (1 + 2 · ρ(∆n))

]
· ω2(f ; δ),
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which completes the proof.

Since, for equidistant knots xj = j
n
, 0 ≤ j ≤ n, one has ρ(∆n) = 1, it follows

immediately

Corollary 30 For all f ∈ C[0, 1] and all δ ≥ 0, the variation–diminishing splines Sn,k of

degree k ≥ 3 with n ≥ 2 satisfy the following estimates:

K2(Sn,kf ; δ) ≤ K2

(
f ;

3

2
· k − 1

k
· δ
)

, and

ω2(Sn,kf ; δ) ≤
(

3 +
9

4
· k − 1

k

)
· ω2 (f ; δ) .

6. Multivariate approaches

In the sequel we present statements on the degrees of approximation and simultaneous

approximation for first and second derivatives in certain bivariate cases. We restrict

ourselves to state inheritance principles (Theorems 31, 37) in terms of the classical second

order modulus of smoothness, but similar statements can be formulated also for ωϕ2 and

ωϕ
λ

2 (see, e.g., [24, 16]).

All our results below should be compared with corresponding ones by Munteanu and

Schumaker [62]. Due to the consequent use of ω2 all our estimates will be of at least the

orders given by Munteanu and Schumaker or improve them. Furthermore, again thanks

to ω2, we are able to better exploit smoothness properties of a given function f than they

were able to do. This is true in particular in those cases in which f has two continuous

partials in either x, y, or both. Note that we are also able to give quantitative information

for more partials than they did.

Several results of this section will be given in terms of so–called partial moduli of

smoothness of order r, given for the compact intervals I, J ⊂ R, for f ∈ C(I×J), r ∈ IN0

and δ ∈ R+ by

ωr(f ; δ, 0) := sup

{∣∣∣∣∣
r∑

ν=0

(−1)r−ν
(

r

ν

)
· f(x + νh, y)

∣∣∣∣∣ : (x, y), (x + rh, y) ∈ I × J, |h| ≤ δ

}

and symmetrically by

ωr(f ; 0, δ) := sup

{∣∣∣∣∣
r∑

ν=0

(−1)r−ν
(

r

ν

)
· f(x, y + νh)

∣∣∣∣∣ : (x, y), (x, y + rh) ∈ I × J, |h| ≤ δ

}
.

Occasionally we will use total moduli of smoothness of order r, defined by

ωr(f ; δ1, δ2) := sup

{∣∣∣∣∣
r∑

ν=0

(−1)r−ν
(

r

ν

)
· f(x + νh1, y + νh2)

∣∣∣∣∣ :

(x, y), (x + rh1, y + rh2) ∈ I × J, |h1| ≤ δ1, |h2| ≤ δ2} ,
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for the compact intervals I, J ⊂ R, for f ∈ C(I × J), r ∈ IN0 and δ1, δ2 ∈ R+.

The third type of moduli figuring in this section will be the mixed moduli of smooth-

ness, given for r, s ∈ IN0 by

ωr,s(f ; δ1, δ2) := sup

{∣∣∣∣∣
r∑

ν=0

s∑

µ=0

(−1)r+s−ν−µ
(

r

ν

)(
s

µ

)
· f(x + νh1, y + µh2)

∣∣∣∣∣ :

(x, y), (x + rh1, y + sh2) ∈ I × J, |hi| ≤ δi, i = 1, 2} .

Several properties of these moduli can be found in Schumaker’s book [73] and in [34].

6.1 Boolean sums

In order to cover Boolean sums of Schoenberg spline operators we will use the inheritance

principle in the theorem below. The theorem is in analogy to two previous versions given

in [35], [36], but it is adapted here to the situation we are dealing with.

In particular the operators L and M will be discretely defined, i.e., for finitely many,

mutually distinct points xe, e ∈ E (E a suitable index set) of the compact interval I and

fundamental functions Ae the operator L will be of the form

L(g; x) =
∑

e∈E
g(xe) · Ae(x).

If Ae ∈ Cp(I ′), p ≥ 0, I ′ ⊆ I, then L : Cp(I)→ Cp(I ′).

Likewise M will be of the form

M(h; y) =
∑

f∈F
h(yf ) · Bf (y)

and under analogous assumptions will map Cq(J) into Cq(J ′).

If L is of the form given above, then its parametric extension to Cp,q(I × J) is given

by

xL(F ; x, y) = L(Fy; x) =
∑

e∈E
Fy(xe) · Ae(x) =

∑

e∈E
F (xe, y) · Ae(x).

If we apply the partial differential operator ∂q

∂yq
= D(0,q) to this function we get

(
D(0,q) ◦ xL

)
(F ; x, y) =

∂q

∂yq

∑

e∈E
F (xe, y)Ae(x)

=
∑

e∈E

∂q

∂yq
F (xe, y) · Ae(x) =

∑

e∈E

(
F (0,q)

)
y
(xe) · Ae(x)

=
(
xL ◦D(0,q)

)
(F ; x, y),

that is, D(0,q) and xL commute on Cp,q(I × J).
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Analogously

D(p,0) ◦ yM = yM ◦D(p,0).

These commutativities will be crucial for the proof of the inheritance principle given in

the theorem below.

One additional difference in comparison to earlier statements consists in our introduc-

ing certain intervals I ′, J ′, with I ′ ⊆ I, J ′ ⊆ J . This is due to the fact that, already for

the second derivative, Schoenberg splines show a certain deficiency close to the endpoints.

This was also observed by Marsden [55].

In other words, we will thus be able to give better estimates on I ′×J ′ in the particular

case where I ′ ( I and J ′ ( J . Details will become clear in the applications.

Theorem 31 Let I, I ′, J , J ′ be non–trivial compact intervals of the real axis R, such

that I ′ ⊆ I and J ′ ⊆ J . For (0, 0) ≤ (p′, q′) ≤ (p, q) let discretely defined operators

L : Cp(I)→ Cp′(I ′) and M : Cq(J)→ Cq′(J ′) be given such that for fixed r, s ∈ IN0

|(g − Lg)(p)(x)| ≤
r∑

ρ=0

Γρ,p,L(x) · ωρ(g(p); Λρ,p,L(x)), x ∈ I ′, g ∈ Cp(I), (45)

and

|(h−Mh)(q)(y)| ≤
s∑

σ=0

Γσ,q,M(y) · ωσ(h(q); Λσ,q,M(y)), y ∈ J ′, h ∈ Cq(J). (46)

Here, Γ and Λ are positive, bounded functions.

Then we have for any (x, y) ∈ I ′ × J ′ and for all f ∈ Cp,q(I × J)

∣∣∣(f − (xL⊕ yM)f)(p,q) (x, y)
∣∣∣

≤
r∑

ρ=0

s∑

σ=0

Γρ,p,L(x) · Γσ,q,M(y) · ωρ,σ
(
f (p,q); Λρ,p,L(x), Λσ,q,M(y))

)
.

Proof:

We want to estimate

∣∣D(p,q) ◦ [Id− (xL⊕ yM)] (f ; x, y)
∣∣

=
∣∣D(p,0) ◦D(0,q) ◦ [Id− (xL⊕ yM)] (f ; x, y)

∣∣

=
∣∣D(p,0)

[
D(0,q)((Id− yM)(f)− xL ◦ (Id− yM)(f))

]
(x, y)

∣∣

=
∣∣D(p,0)

[(
D(0,q) ◦ (Id− yM)

)
(f)−

(
D(0,q) ◦ xL ◦ (Id− yM)

)
(f)
]
(x, y)

∣∣ .
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Using now the commutativity D(0,q) ◦ xL = xL ◦D(0,q), x ∈ I ′, for the discretely defined

operator L we get

∣∣D(p,0)
[(

D(0,q) ◦ (Id− yM)
)
(f)−

(
D(0,q) ◦ xL ◦ (Id− yM)

)
(f)
]
(x, y)

∣∣

=
∣∣D(p,0)

[(
D(0,q) ◦ (Id− yM)

)
(f)− xL ◦

(
D(0,q) ◦ (Id− yM)

)
(f)
]
(x, y)

∣∣ .

Now the assumption on the quantitative behaviour of the univariate operator L may be

used since the function in [...] can also be written as a univariate function of x with

parameter y, namely as

I ′ 3 x 7→
[(

D(0,q) ◦ (Id− yM)
)
(f)
]
y
(x)− L

([(
D(0,q) ◦ (Id− yM)

)
(f)
]
y
; x
)
∈ R.

Applying D(p,0) to the function in [...] is the same as differentiating the latter univari-

ate function with respect to x. Hence, by assumption (45), the quantity which we are

interested in is bounded from above by

r∑

ρ=0

Γρ,p,L(x) · ωρ
((

d

dx

)p [(
D(0,q) ◦ (Id− yM)

)
(f)
]
y
; Λρ,p,L(x)

)
.

The ρ–th modulus of smoothness can be replaced by
∣∣∣∣x∆

ρ
δ∗

[(
d

dx

)p [(
D(0,q) ◦ (Id− yM)

)
(f)
]
y

]
(x∗)

∣∣∣∣

for some x∗ ∈ I ′ and |δ∗| ≤ Λρ,p,L(x).

Next we investigate the latter quantity by using the information available on M . The

absolute value of the ρ–th order difference is equal to
∣∣∣∣∣

ρ∑

i=0

(−1)i
(

ρ

i

)[(
d

dx

)p [(
D(0,q) ◦ (Id− yM)

)
(f)
]
y

]
(x∗ + iδ∗)

∣∣∣∣∣ .

As in the above for L, we use now the commutativity for M , namely D(p,0) ◦ yM =

yM ◦D(p,0), y ∈ J ′. Since
(

d

dx

)p [(
D(0,q) ◦ (Id− yM)

)
(f)
]
y
(x) =

(
D(p,0) ◦D(0,q) ◦ (Id− yM)

)
(f ; x, y)

=
(
D(0,q) ◦D(p,0) ◦ (Id− yM)

)
(f ; x, y)

=
(
D(0,q) ◦ (Id− yM) ◦D(p,0)

)
(f ; x, y),

it follows that the ρ–th order difference can be written as
∣∣∣∣∣

ρ∑

i=0

(−1)i
(

ρ

i

)(
D(0,q) ◦ (Id− yM)

) (
D(p,0)f ; x∗ + iδ∗, y

)
∣∣∣∣∣

=

∣∣∣∣∣

ρ∑

i=0

(−1)i
(

ρ

i

){(
d

dy

)q (
D(p,0)f

)
x∗+iδ∗ (y)−

(
d

dy

)q (
yM ◦D(p,0)(f)

)
x∗+iδ∗ (y)

}∣∣∣∣∣
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=

∣∣∣∣∣

ρ∑

i=0

(−1)i
(

ρ

i

){(
d

dy

)q (
D(p,0)f

)
x∗+iδ∗ (y)−

(
d

dy

)q
M
((

D(p,0)f
)
x∗+iδ∗ ; y

)}∣∣∣∣∣

=

∣∣∣∣∣

[(
d

dy

)q
−
(

d

dy

)q
◦M

]( ρ∑

i=0

(−1)i
(

ρ

i

)(
D(p,0)f

)
x∗+iδ∗ ; y

)∣∣∣∣∣ .

This difference may now be evaluated using assumption (46) on M . Hence, its absolute

value is less than or equal to

s∑

σ=0

Γσ,q,M(y) · ωσ
((

d

dy

)q ρ∑

i=0

(−1)i
(

ρ

i

)(
D(p,0)f

)
x∗+iδ∗ ; Λσ,q,M(y)

)
.

The σ–th order modulus can be written as
∣∣∣∣∣y∆

σ
η∗

[(
d

dy

)q ρ∑

i=0

(−1)i
(

ρ

i

)(
D(p,0)f

)
x∗+iδ∗

]
(y∗)

∣∣∣∣∣

for some y∗ ∈ J ′ and a suitable η∗ such that |η∗| ≤ Λσ,q,M(y). More explicitly, the latter

quantity is equal to
∣∣∣∣∣y∆

σ
η∗

ρ∑

i=0

(−1)i
(

ρ

i

)(
d

dy

)q (
D(p,0)f

)
x∗+iδ∗ (y∗)

∣∣∣∣∣

=

∣∣∣∣∣y∆
σ
η∗

ρ∑

i=0

(−1)i
(

ρ

i

)(
D(p,q)f

)
x∗+iδ∗ (y∗)

∣∣∣∣∣

=

∣∣∣∣∣
σ∑

j=0

(−1)j
(

σ

j

) ρ∑

i=0

(−1)i
(

ρ

i

)(
D(p,q)f

)
(x∗ + iδ∗, y∗ + jη∗)

∣∣∣∣∣

=

∣∣∣∣∣
σ∑

j=0

ρ∑

i=0

(−1)j+i
(

σ

j

)(
ρ

i

)(
D(p,q)f

)
(x∗ + iδ∗, y∗ + jη∗)

∣∣∣∣∣

≤ ωρ,σ
(
f (p,q); Λρ,p,L(x), Λσ,q,M(y)

)
.

Combining the latter inequality with the observations made earlier in this proof shows

the validity of the statement of Theorem 31.

We will now give a number of applications for Boolean sums of Schoenberg splines.

In doing so we will not strive to be as general as possible, but restrict ourselves to some

cases of special interest, namely to estimates involving only the mesh gauge of the splines,

but other direct inequalities from Section 3 can be used as well. The results given here

should be also compared to the early paper [14] by Coman.

Theorem 32 We consider the operators S∆n,k : C[0, 1]→ Ck−1[0, 1] and S∆m,l : C[0, 1]→
C l−1[0, 1] for n, m ≥ 1 and k, l ≥ 1. For their Boolean sums we have

‖f − (xS∆n,k ⊕ yS∆m,l)f‖∞ ≤
(

1 +
k + 1

24

)
·
(

1 +
l + 1

24

)
· ω2,2 (f ; ‖∆n‖, ‖∆m‖) .
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The proof is immediate: put r = s = 2 and Γ0,p,L = Γ1,p,L = Γ0,q,M = Γ1,q,M = 0 in

the general theorem for Boolean sums and use (20) twice.

We now turn to statements concerning also the approximation of derivatives. However,

the upper bounds which are derived from Theorem 31 are quite complex. We thus focus in

the following results on certain smooth functions to derive more instructive upper bounds.

Nonetheless the following proof will provide the reader with an idea of what can be stated

for less smooth functions.

Theorem 33 For the operators S∆n,k : C1[0, 1] → Ck−1[0, 1] and S∆m,l : C1[0, 1] →
C l−1[0, 1] for n, m ≥ 1 and k, l ≥ 2 the following inequalities hold for any function f ∈
C2,2[0, 1]2:

(i) ‖f − (xS∆n,k ⊕ yS∆m,l)f‖∞ = O
(
‖∆n‖2 · ‖∆m‖2

)
;

(ii) ‖(f − (xS∆n,k ⊕ yS∆m,l)f)(1,0)‖∞ = O
(
‖∆n‖ · ‖∆m‖2

)
;

(iii) ‖(f − (xS∆n,k ⊕ yS∆m,l)f)(0,1)‖∞ = O
(
‖∆n‖2 · ‖∆m‖

)
;

(iv) ‖(f − (xS∆n,k ⊕ yS∆m,l)f)(1,1)‖∞ = O (‖∆n‖ · ‖∆m‖) .

In all four cases O depends on k and l.

Proof:

(i) is an immediate consequence of Theorem 32. It is only necessary to observe that

ω2,2 (f ; ‖∆n‖, ‖∆m‖) ≤ ‖∆n‖2 · ‖∆m‖2 · ‖f (2,2)‖∞.

(ii) We apply Theorem 31 (for p = 1, q = 0) with r = s = 2, Γ0,0,S∆n,k
= Γ0,1,S∆n,k

= 0

and collect the others Γ’s and the Λ’s from the univariate case, that is

Γ1,0,S∆n,k
(x) = 0,

Γ2,0,S∆n,k
(x) = 1 + k+1

24
, Λ2,0,S∆n,k

(x) = ‖∆n‖;

Γ1,1,S∆n,k
(x) = 1, Λ1,1,S∆n,k

(x) = ‖∆n‖;

Γ2,1,S∆n,k
(x) = 3

2

(
1 +

√
k
12

)2

, Λ2,1,S∆n,k
(x) = ‖∆n‖.

The Γ’s and the Λ’s with respect to S∆m,l are to be chosen analogously.

For brevity we write in the sequel Γ1,1(x) instead of Γ1,1,S∆n,k
(x), etc. The upper bound

which is derived from Theorem 31 is then as follows:

‖(f − (xS∆n,k ⊕ yS∆m,l)f)(1,0)‖∞

≤ Γ1,1(x) · [Γ1,0(y) · ω1,1(f
(1,0); Λ1,1(x), Λ1,0(y)) + Γ2,0(y) · ω1,2(f

(1,0); Λ1,1(x), Λ2,0(y))]
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+Γ2,1(x) · [Γ1,0(y) · ω2,1(f
(1,0); Λ2,1(x), Λ1,0(y)) + Γ2,0(y) · ω2,2(f

(1,0); Λ2,1(x), Λ2,0(y))]

=

(
1 +

l + 1

24

)
· ω1,2

(
f (1,0); ‖∆n‖, ‖∆m‖

)

+
3

2

(
1 +

√
k

12

)2

·
(

1 +
l + 1

24

)
· ω2,2

(
f (1,0); ‖∆n‖, ‖∆m‖

)

= O
(
ω1,2

(
f (1,0); ‖∆n‖, ‖∆m‖

)
+ ω2,2

(
f (1,0); ‖∆n‖, ‖∆m‖

))

= O
(
‖∆n‖ · ‖∆m‖2 · ‖f (2,2)‖∞

)

= O
(
‖∆n‖ · ‖∆m‖2

)
for f ∈ C2,2[0, 1]2.

(iii) This is analogous to case (ii).

(iv) The functions Γ and Λ are the same as in case (ii); they just appear in different

combinations now:

‖(f − (xS∆n,k ⊕ yS∆m,l)f)(1,1)‖∞

≤ Γ1,1(x) · [Γ1,1(y) · ω1,1(f
(1,1); Λ1,1(x), Λ1,1(y)) + Γ2,1(y) · ω1,2(f

(1,1); Λ1,1(x), Λ2,1(y))]

+Γ2,1(x) · [Γ1,1(y) · ω2,1(f
(1,1); Λ2,1(x), Λ1,1(y)) + Γ2,1(y) · ω2,2(f

(1,1); Λ2,1(x), Λ2,1(y))]

= ω1,1

(
f (1,1); ‖∆n‖, ‖∆m‖

)
+

3

2

(
1 +

√
l

12

)2

· ω1,2

(
f (1,1); ‖∆n‖, ‖∆m‖

)

+
3

2

(
1 +

√
k

12

)2

· [ ω2,1

(
f (1,1); ‖∆n‖, ‖∆m‖

)

+
3

2

(
1 +

√
l

12

)2

· ω2,2

(
f (1,1); ‖∆n‖, ‖∆m‖

)
]

= O
(
ω1,1

(
f (1,1); ‖∆n‖, ‖∆m‖

)
+ ω1,2

(
f (1,1); ‖∆n‖, ‖∆m‖

)

+ ω2,1

(
f (1,1); ‖∆n‖, ‖∆m‖

)
+ ω2,2

(
f (1,1); ‖∆n‖, ‖∆m‖

))

= O
(
‖∆n‖ · ‖∆m‖ · ‖f (2,2)‖∞

)

= O (‖∆n‖ · ‖∆m‖) for f ∈ C2,2[0, 1]2.

Remark 34 If in Theorem 33 we take the sup norms over
[
k−1
n

, 1− k−1
n

]
×
[
l−1
n

, 1− l−1
n

]

only and f ∈ C3,3[0, 1]2, we get O (‖∆n‖2 · ‖∆m‖2) as an upper bound for all the quantities

from (i) to (iv) there.

In order to give inequalities for the partial derivatives of orders up to (2, 2) which

are not covered by the previous theorem we restrict our attention to
[
k−1
n

, 1− k−1
n

]
×[

l−1
n

, 1− l−1
n

]
and to the case of equidistant knots.
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Theorem 35 For Sn,k : C2[0, 1] → Ck−1[0, 1] and Sm,l : C2[0, 1] → C l−1[0, 1], 3 ≤ k ≤
n
2

+ 1, 3 ≤ l ≤ m
2

+ 1, the following inequalities are true for f ∈ C3,3[0, 1]2:

(i) ‖(f − (xSn,k ⊕ ySm,l)f)(2,0)‖∞ = O
(

1

n
· 1

m2

)
;

(ii) ‖(f − (xSn,k ⊕ ySm,l)f)(2,1)‖∞ = O
(

1

n
· 1

m2

)
;

(iii) ‖(f − (xSn,k ⊕ ySm,l)f)(2,2)‖∞ = O
(

1

n
· 1

m

)
.

Analogous statements hold for the partial derivatives of orders (0, 2) and (1, 2). The O’s

depend on k and l and the sup norms are to be taken over
[
k−1
n

, 1− k−1
n

]
×
[
l−1
n

, 1− l−1
n

]
.

Proof:

The functions needed now are Γ0,0 = Γ0,1 = Γ0,2 = 0 and

Γ1,0(x) = 0,

Γ2,0(x) = 1 + k+1
24

, Λ2,0(x) = 1
n
;

Γ1,1(x) = 0,

Γ2,1(x) = 3
2

(
1 +

√
k
12

)2

, Λ2,1(x) = 1
n
;

Γ1,2(x) = 1, Λ1,2(x) = 1
n
;

Γ2,2(x) = 3
2

(
1 +

√
k−1
12

)2

, Λ2,2(x) = 1
n
.

Again, the Γ’s and the Λ’s with respect to Sm,l are analogous.

(i) From the general theorem we obtain

‖(f − (xSn,k ⊕ ySm,l)f)(2,0)‖∞

≤ Γ1,2(x) ·
[
Γ1,0(y) · ω1,1

(
f (2,0);

1

n
,

1

m

)
+ Γ2,0(y) · ω1,2

(
f (2,0);

1

n
,

1

m

)]

+Γ2,2(x) ·
[
Γ1,0(y) · ω2,1

(
f (2,0);

1

n
,

1

m

)
+ Γ2,0(y) · ω2,2

(
f (2,0);

1

n
,

1

m

)]

=

(
1 +

l + 1

24

)
· ω1,2

(
f (2,0);

1

n
,

1

m

)

+
3

2

(
1 +

√
k − 1

12

)2

·
(

1 +
l + 1

24

)
· ω2,2

(
f (2,0);

1

n
,

1

m

)

= O
(

ω1,2

(
f (2,0);

1

n
,

1

m

)
+ ω2,2

(
f (2,0);

1

n
,

1

m

))

= O
(

1

n
· 1

m2

)
for f ∈ C3,3[0, 1]2.

44



          

(ii) Now

‖(f − (xSn,k ⊕ ySm,l)f)(2,1)‖∞

≤ Γ1,2(x) ·
[
Γ1,1(y) · ω1,1

(
f (2,1);

1

n
,

1

m

)
+ Γ2,1(y) · ω1,2

(
f (2,1);

1

n
,

1

m

)]

+Γ2,2(x) ·
[
Γ1,1(y) · ω2,1

(
f (2,1);

1

n
,

1

m

)
+ Γ2,1(y) · ω2,2

(
f (2,1);

1

n
,

1

m

)]

=
3

2

(
1 +

√
l

12

)2

· ω1,2

(
f (2,1);

1

n
,

1

m

)

+
3

2

(
1 +

√
k − 1

12

)2

· 3
2

(
1 +

√
l

12

)2

· ω2,2

(
f (2,1);

1

n
,

1

m

)

= O
(

ω1,2

(
f (2,1);

1

n
,

1

m

)
+ ω2,2

(
f (2,1);

1

n
,

1

m

))

= O
(

1

n
· 1

m2

)
for f ∈ C3,3[0, 1]2.

(iii) In this case

‖(f − (xSn,k ⊕ ySm,l)f)(2,2)‖∞

≤ Γ1,2(x) ·
[
Γ1,2(y) · ω1,1

(
f (2,2);

1

n
,

1

m

)
+ Γ2,2(y) · ω1,2

(
f (2,2);

1

n
,

1

m

)]

+Γ2,2(x) ·
[
Γ1,2(y) · ω2,1

(
f (2,2);

1

n
,

1

m

)
+ Γ2,2(y) · ω2,2

(
f (2,2);

1

n
,

1

m

)]

= ω1,1

(
f (2,2);

1

n
,

1

m

)
+

3

2

(
1 +

√
l − 1

12

)2

· ω1,2

(
f (2,2);

1

n
,

1

m

)

+
3

2

(
1 +

√
k − 1

12

)2

· ω2,1

(
f (2,2);

1

n
,

1

m

)

+
3

2

(
1 +

√
k − 1

12

)2

· 3
2

(
1 +

√
l − 1

12

)2

· ω2,2

(
f (2,2);

1

n
,

1

m

)

= O
(

1

n
· 1

m
+

1

n
· 1

m
+

1

n
· 1

m
+

1

n
· 1

m

)
= O

(
1

n
· 1

m

)
for f ∈ C3,3[0, 1]2.

Remark 36 The fact that the partials of orders (2, 0) and (2, 1) are approximated with

the same order O
(

1
n
· 1
m2

)
is due to the fact that on the small interval

[
l−1
n

, 1− l−1
n

]
for the

univariate operator Sm,l both a function f ∈ C3[0, 1] and its derivative are approximated

with the same order. When it comes to the second derivative a power of one is lost in the

univariate case.
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6.2 Tensor products

For the tensor product case the situation is the same as for Boolean sums: the reader

should compare our results with those of Munteanu and Schumaker in order to confirm

that the consequent use of ω2 provides more insight. Further papers on tensor products

were provided by Coman and Frenţiu [15] and Felicia Stancu [77], for example.

Also in the tensor product case we will use an inheritance principle. It is stated in a

form which exactly suits our purposes and makes the same assumptions concerning the

univariate building blocks as in the Boolean sum case.

Theorem 37 Let I ′ ⊆ I, J ′ ⊆ J be non–trivial compact intervals of the real axis R. For

p, q ∈ IN0 let L : Cp(I)→ Cp(I ′) and M : Cq(J)→ Cq(J ′) be discretely defined operators

as given above and such that for fixed r, s ∈ IN0

∣∣(g − Lg)(p)(x)
∣∣ ≤

r∑

ρ=0

Γρ,p,L(x) · ωρ(g(p); Λρ,p,L(x)), x ∈ I ′, g ∈ Cp(I),

and

∣∣(h−Mh)(q)(y)
∣∣ ≤

s∑

σ=0

Γσ,q,M(y) · ωσ(h(q); Λσ,q,M(y)), y ∈ J ′, h ∈ Cq(J).

Here, Γ and Λ are bounded functions.

(i) Then for (x, y) ∈ I ′ × J ′ and f ∈ Cp,q(I × J) the following hold:

∣∣∣[f − (xL ◦ yM)f ](p,q) (x, y)
∣∣∣ ≤

r∑

ρ=0

Γρ,p,L(x) · ωρ(f (p,q); Λρ,p,L(x), 0)

+ ‖Dp ◦ L‖∗ ·
s∑

σ=0

Γσ,q,M(y) · ωσ(f (p,q); 0, Λσ,q,M(y)).

Here

‖Dp ◦ L‖∗ := inf{c : ‖(Dp ◦ L)g‖∞,I′ ≤ c · ‖g(p)‖∞,I , ∀ g ∈ Cp(I)}.

(ii) A symmetric upper bound is given by

s∑

σ=0

Γσ,q,M(y) · ωσ(f (p,q); 0, Λσ,q,M(y)) + ‖Dq ◦M‖∗ ·
r∑

ρ=0

Γρ,p,L(x) · ωρ(f (p,q); Λρ,p,L(x), 0).

Proof:

Recall first that

D(0,q) ◦ xL = xL ◦D(0,q) on C(p,q)(I × J).
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Then

∣∣[f − (xL ◦ yM)f ](p,q)(x, y)
∣∣

=
∣∣D(p,0) ◦D(0,q) ◦ (Id− xL ◦ yM)(f ; x, y)

∣∣

=
∣∣[D(p,0) ◦D(0,q) ◦ (Id− xL) + D(p,0) ◦D(0,q) ◦ xL ◦ (Id− yM)](f ; x, y)

∣∣

=
∣∣[D(p,0) ◦ (Id− xL) ◦D(0,q) + D(p,0) ◦ xL ◦D(0,q) ◦ (Id− yM)](f ; x, y)

∣∣

≤
∣∣D(p,0) ◦ (Id− xL) ◦D(0,q)(f ; x, y)

∣∣+
∣∣D(p,0) ◦ xL ◦D(0,q) ◦ (Id− yM)(f ; x, y)

∣∣

=: E1(x, y) + E2(x, y).

Now, for x ∈ I ′,

E1(x, y) =
∣∣D(p,0) ◦ (Id− L)((f (0,q))y; x)

∣∣ ≤
r∑

ρ=0

Γρ,p,L(x) · ωρ((f (p,q))y; Λρ,p,L(x))

≤
r∑

ρ=0

Γρ,p,L(x) · ωρ(f (p,q); Λρ,p,L(x), 0).

Furthermore, with F := D(0,q) ◦ (Id− yM)f , we have

E2(x, y) =
∣∣(D(p,0) ◦ xL

)
(F ; x)

∣∣ = |(Dp ◦ L)(Fy; x)| ≤ ‖(Dp ◦ L)(Fy)‖∞,I′ .

Here again Fy ∈ Cp(I) for all y ∈ J ′. By our assumption on L we have for any g ∈ Cp(I)

that

‖(Dp ◦ L)g‖∞,I′ ≤
(

1 +
r∑

ρ=0

2ρ · ‖Γρ,p,L‖∞,I′
)
· ‖g(p)‖∞,I .

Hence

‖Dp ◦ L‖∗ := inf{c : ‖Dp ◦ L)g‖∞,I′ ≤ c · ‖g(p)‖∞,I ∀ g ∈ Cp(I)} <∞.

In our present situation we have

‖F (p)
y ‖∞,I =

∥∥∥∥
dp

dxp
[
D(0,q) ◦ (Id− yM)f

]
y
(x)

∥∥∥∥
∞,I

=
∥∥D(p,0) ◦D(0,q) ◦ (Id− yM)f(·, y)

∥∥
∞,I

=
∥∥D(0,q) ◦ (Id− yM)f (p,0)(·, y)

∥∥
∞,I =

∥∥∥∥
dq

dyq
◦ (Id− yM)

(
f (p,0)

)
x
(y)

∥∥∥∥
∞,I

≤
∥∥∥∥∥

s∑

σ=0

Γσ,q,M(y) · ωσ
(

dq

dyq
(
f (p,0)

)
x
; Λσ,q,M(y)

)∥∥∥∥∥
∞,I

≤
s∑

σ=0

Γσ,q,M(y) · sup
x∈I

ωσ

(
dq

dyq
(
f (p,0)

)
x
; Λσ,q,M(y)

)

=
s∑

σ=0

Γσ,q,M(y) · ωσ
(
f (p,q); 0, Λσ,q,M(y)

)
.
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Hence

E1(x, y) + E2(x, y) ≤
r∑

ρ=0

Γρ,p,L(x) · ωρ
(
f (p,q); Λρ,p,L(x), 0

)

+ ‖Dp ◦ L‖∗ ·
s∑

σ=0

Γσ,q,M(y) · ωσ
(
f (p,q); 0, Λσ,q,M(y)

)
.

The second upper bound can be obtained in an analogous fashion.

For the tensor product of two Schoenberg spline operators we first state

Theorem 38 For n, m ≥ 1 and k, l ≥ 1 we have

‖f − (xS∆n,k
◦ yS∆m,k

)f‖∞,I×J

≤
(

1 +
k + 1

24

)
· ω2(f ; ‖∆n‖, 0) +

(
1 +

l + 1

24

)
· ω2(f ; 0, ‖∆m‖)

≤
(

2 +
k + l + 2

24

)
· ω2(f ; ‖∆n‖, ‖∆m‖).

Proof:

This is the case p = q = 0, r = s = 2. With Γ0,0(x) = Γ1,0(x) = 0, Γ2,0(x) =

1 + k+1
24

, Λ2,0(x) = ‖∆n‖ and analogous choices with respect to the variable y we arrive

at the above upper bound, also observing that ‖D0 ◦ S∆n,k
‖∗ = 1.

For the partial derivatives up to order (1, 1) we arrive at

Theorem 39 For n, m ≥ 1 and k, l ≥ 2 we have the following inequalities for any f ∈
C2,2[0, 1]2.

(i) ‖f − (xS∆n,k
◦ yS∆m,l

)f‖∞ = O(‖∆n‖2 + ‖∆m‖2);

(ii) ‖(f − (xS∆n,k
◦ yS∆m,l

)(1,0)‖∞ = O(‖∆n‖+ ‖∆m‖2);

(iii) ‖(f − (xS∆n,k
◦ yS∆m,l

)(0,1)‖∞ = O(‖∆n‖2 + ‖∆m‖);

(iv) ‖(f − (xS∆n,k
◦ yS∆m,l

)(1,1)‖∞ = O(‖∆n‖+ ‖∆m‖).

In all four cases O depends in k and l, and the sup norms are those over [0, 1]2.

Proof:

The Γ’s and the Λ’s are again the same as in the Boolean sum case (see the proof of

Theorem 33).

(i) This is an immediate consequence from Theorem 38.
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(ii) With r = s = 2, p = 1, q = 0, in the general theorem we have

‖(f − (xS∆n,k
◦ yS∆m,l

)f)(1,0)‖∞,I×J

≤ 1 · ω1

(
f (1,0); ‖∆n‖, 0

)
+

3

2

(
1 +

√
k

12

)2

· ω2

(
f (1,0); ‖∆n‖, 0

)

+‖D1 ◦ S∆n,k
‖∗ ·

(
1 +

l + 1

24

)
· ω2

(
f (1,0); 0, ‖∆m‖

)
.

From the representation of (D1 ◦S∆n,k
)g for g ∈ C1[0, 1] it follows that ‖D1 ◦S∆n,k

‖∗ ≤ 1.

Thus we obtain an upper bound of order

O
(
ω1(f

(1,0); ‖∆n‖, 0) + ω2(f
(1,0); ‖∆n‖, 0) + ω2(f

(1,0); 0, ‖∆m‖)
)

= O
(
‖∆n‖+ ‖∆m‖2

)
for f ∈ C2,2[0, 1]2.

(iii) The proof for the partial of order (0, 1) is ’symmetric’ to that for (1, 0).

(iv) Again with r = s = 2, p = q = 1, we have

∥∥∥
(
f − (xS∆n,k

◦ yS∆m,l
)f
)(1,1)

∥∥∥
∞,I×J

≤ 1 · ω1

(
f (1,1); ‖∆n‖, 0

)
+

3

2

(
1 +

√
k

12

)2

· ω2

(
f (1,1); ‖∆n‖, 0

)

+ 1 ·


ω1

(
f (1,1); 0, ‖∆m‖

)
+

3

2

(
1 +

√
l

12

)2

· ω2

(
f (1,1); 0, ‖∆m‖

)



= O (‖∆n‖+ ‖∆m‖) for f ∈ C2,2[0, 1]2.

For the remaining partials up to order (2, 2) again we consider only the case of equidis-

tant knots and the smaller intervals
[
k−1
n

, 1− k−1
n

]
×
[
l−1
m

, 1− l−1
m

]
. We now have

Theorem 40 For 3 ≤ k ≤ n
2
+1, 3 ≤ l ≤ m

2
+1 the following are true for f ∈ C3,3[0, 1]2:

(i)
∥∥∥(f − (xSn,k ◦ ySm,l)f)(2,0)

∥∥∥
∞

= O
(

1
n

+ 1
m2

)
;

(ii)
∥∥∥(f − (xSn,k ◦ ySm,l)f)(2,1)

∥∥∥
∞

= O
(

1
n

+ 1
m2

)
;

(iii)
∥∥∥(f − (xSn,k ◦ ySm,l)f)(2,2)

∥∥∥
∞

= O
(

1
n

+ 1
m

)
.

Analogous statements hold for the partials of orders (0, 2) and (1, 2); O depends on k and

l in all cases and the sup norms are those over the smaller subinterval given above.
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Proof:

The Γ’s and the Λ’s are again the same as in the Boolean sum case (see the proof of

Theorem 35).

(i) From the general statement we obtain with p = 2, q = 0, r = s = 2,

∥∥∥(f − (xSn,k ◦ ySm,l)f)(2,0)
∥∥∥
∞

≤ Γ1,2(x) · ω1

(
f (2,0); Λ1,2(x), 0

)
+ Γ2,2(x) · ω2

(
f (2,0); Λ2,2(x), 0

)

+
∥∥D2 ◦ Sn,k

∥∥∗ · Γ2,0(y) · ω2

(
f (2,0); 0, Λ2,0(y)

)

≤ ω1

(
f (2,0);

1

n
, 0

)
+

3

2

(
1 +

√
k − 1

12

)2

· ω2

(
f (2,0);

1

n
, 0

)

+
3

2
· k − 1

k
·
(

1 +
l + 1

24

)
· ω2

(
f (2,0); 0,

1

m

)

= O
(

1

n
+

1

m2

)
for f ∈ C3,2[0, 1]2.

Note that ‖D2 ◦Sn,k‖∗ ≤ 3
2
· k−1

k
was shown in the section on global smoothness preserva-

tion.

(ii) For p = 2, q = 1, r = s = 2 we have

∥∥∥(f − (xSn,k ◦ ySm,l)f)(2,1)
∥∥∥
∞

≤ Γ1,2(x) · ω1

(
f (2,1); Λ1,2(x), 0

)
+ Γ2,2(x) · ω2

(
f (2,1); Λ2,2(x), 0

)

+
∥∥D2 ◦ Sn,k

∥∥∗ ·
{
Γ1,1(y) · ω1

(
f (2,1); 0, Λ1,1(y)

)
+ Γ2,1(y) · ω2

(
f (2,1); 0, Λ2,1(y)

)}

≤ ω1

(
f (2,1);

1

n
, 0

)
+

3

2

(
1 +

√
k − 1

12

)2

· ω2

(
f (2,1);

1

n
, 0

)

+
3

2
· k − 1

k
· 3
2

(
1 +

√
l

12

)2

· ω2

(
f (2,1); 0,

1

m

)

=




O
(

1
n

+ 1
m

)
for f ∈ C3,2,

O
(

1
n

+ 1
m2

)
for f ∈ C3,3.

(iii) Now p = q = 2, r = s = 2. Thus

∥∥∥(f − (xSn,k ◦ ySm,l)f)(2,2)
∥∥∥
∞

≤ ω1

(
f (2,2);

1

n
, 0

)
+

3

2

(
1 +

√
k − 1

12

)2

· ω2

(
f (2,2),

1

n
, 0

)
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+
3

2
· k − 1

k
·


ω1

(
f (2,2); 0,

1

m

)
+

3

2

(
1 +

√
l − 1

12

)2

· ω2

(
f (2,2); 0,

1

m

)


= O
(

ω1

(
f (2,2),

1

n
, 0

)
+ ω2

(
f (2,2);

1

n
, 0

)
+ ω1

(
f (2,2); 0,

1

m

)
+ ω2

(
f (2,2); 0,

1

m

))

= O
(

1

n
+

1

m

)
for f ∈ C3,3[0, 1]2.

7. Concluding remarks and open problems

1. For the case of equidistant knots we were able to show

(Sn,k(e1 − x)2)(x) ≤ 1 · min
{
2x(1− x), k

n

}

n + k − 1
.

For n = 1, k ≥ 1 and n ≥ 2, k = 1 the constant 1 can be replaced by 1
2
. It should

be clearified if 1 is globally optimal.

It would likewise be desirable to have an analogous inequality for general knot

sequences.

Instructive exact representations (and thus lower bounds) for (Sn,k(e1− x)2)(x) are

only known in a few exceptional cases. It would thus be of interest to find such

representations or lower bounds for more general combinations of n and k.

2. Strong converse inequalities also seem to be known only in very special cases. For

piecewise linear interpolation at equidistant knots see Ditzian and Ivanov [23], for

Bernstein and related operators consult the papers by Zhou, Totik, Knoop, Ivanov

and Ditzian [51, 79, 23]. It seems as if there is no strong converse inequality even

for the case of quadratic Schoenberg splines, rather a popular tool (cf. their use in

packages such as MacDraw, for example).

3. Likewise it would be desirable to prove at least inverse and saturation results in-

cluding such for derivatives.

4. We have only given estimates for the approximation of derivatives up to order 2.

We are not aware of corresponding estimates for derivatives of order l ≥ 3.

5. The preservation of global smoothness is well understood for Bernstein operators and

their derivatives (see [17]). For the Schoenberg operator this appears to be much

more difficult since derivatives of order l ≥ 3 would have to be also represented

appropriately in order to come up with inequalities such as

ω2(D
1Sn,kf ; δ) ≤ . . . ω2(f

′; . . .), or

ω2(D
2Sn,kf ; δ) ≤ . . . ω2(f

′′; . . .).

51



   

Acknowledgments

The present article was significantly improved and finalized while all four authors were

RiP–fellows at the Mathematical Research Institute in Oberwolfach. They gratefully

acknowledge the support of the Volkswagen–Stiftung for this opportunity. The fourth

author’s contribution was also made possible by a DAAD–fellowship for visiting the Uni-

versity of Duisburg in the fall of 2001.

References

[1] A. Akopjan, B. Bojanov: The Theory of Spline Functions (Bulgarian). Sofia: Nauka

i Izkustv 1990.

[2] G.A. Anastassiou, C. Cottin, H.H. Gonska: Global smoothness of approximating func-

tions, Analysis 11 (1991), 43–57.

[3] G.A. Anastassiou, S.G. Gal: Approximation theory. Moduli of continuity and global

smoothness preservation. Boston, MA: Birkhäuser 2000.
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148 (1976), 23–32.

[51] H.–B. Knoop, X.–l. Zhou: The lower estimate for linear positive operators (II), Re-

sultate Math. 25 (1994), 315–330.

[52] J.M. Lane, R.F. Riesenfeld: A geometric proof of the variation diminishing property

of B–spline approximation, J. Approx. Theory 37 (1983), 1–4.

[53] D. Leviatan: On the representation of the remainder in the variation–diminishing

spline approximation, J. Approx. Theory 7 (1973), 63–70.

55
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