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AN INTRODUCTION TO NUCLERR SPACES

by

C. Bessaga, B. Hernando Boto and E. Martin-Peinador

Seminar, February 1994.

Abstract.

These are slightly extended and revised notes of seminar
lectures delivered by the first-named author at the Universidad
Complutense in Madrid (Spain). they cover only special intro-
ductory topics on nuclear spaces, selected intentionally for the
purpose of illustrating the role of Kolmogorov diameters and

Kolmogorov numbers.

The discussion is restricted to real locally convex spaces
and their subclasses. Nevertheless all the theorems presented
are valid also in the complex case. The complex versions can
either be proved in exactly the same way, or can be derived from
the real theorems using some extra argument, (see Remark 1.7 and

Exercise 2.4).

Many important subjects related to nuclear spaces are not
even touched. For instance: Relations to the theory of absolu-
tely summing operators; Discussion of concrete nuclear spaces
and concrete bases; T. & Y. Komuras' theorem on universal
spaces; Vogt's structure theory and in particular applications
of his “"splitting theorem"; Relations to the distribution
theory; Tame structures and commections with Nash-Moser implicit

function theorem; .....
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s o. Preliminaries

We shall concentrate on deviations from the standard terminology and
notation of functional analysis and on the points which may cause a
confusion.

R" denotes the set of all non-negative reals.

Unless stated otherwise, X,Y,,... denote real topological vector
spaces, and X‘, Y ... their duals (i.e. the spaces of continuous
linear functionals). By an operator T:X — Y we mean a continuous
linear mapping.A functional is an operator to the field of scalars.
Here the arrow indicates the domain and codomain of T, while the
expression “xa—a x" stands for "l%m X = x" ; and X — Y,
denotes the mapping which sends each X to Y, -

The composition TS of operators will also be denoted by TS.

By a subspace of a topological vector space X we mean a linear
(not necessarily closed) subspace of X. A subspace Y of X is said to
be complemented, if there is a continuous linear projection of X with
~ the range Y. For a subset A ¢ X the symbol [A] stands for the subspace

of X generated by A.

Seminorms A seminorm defined on a vector space X is a function
p:X — R" such that p(x+y) = p(x) + p(y), p(tx) = |ltlp(x) for all
X,yeX, and for all scalars t. The symbol Up= {xeX; p(x) = 1}, denotes

the seminorm-ball. A norm on X is a seminorm p:X — R° such that

p(x) = 0 implies x = 0. A normed space is a pair (X,l II) where X is a
vector space and Il l:X — R* is a norm; often the normed space is
denoted by the single letter X.

The symbol cpl X stands for the Banach space which is the

completion of X in the norm.



Bx = (xeX;Ixll = 1} and Sx= {xeX;llxit = 1}

are the closed unit ball and the unit sphere of the normed space X.

To each seminorm p defined on a vector space X corresponds the
quotient space Xp = X/pq(o) whose elements are the cosets:

[(x] = (yeXip(y-x)=0),

The space Xp will be regarded as a normed space with the norm u[x]pu
= p(x), in the sequel denoted briefly by the same symbol p.

We shall also consider the Banach space §p= cpl Xp, and we
denote its norm again by the same symbol p.

If g is a seminorm on X dominating p, i.e., p(x) = cg(x) for some
¢ > 0, then the linking operators

ap

IP:X —> Xp, Ip(x)=[x]p; I :Xq———) Xp, qu([x]q)=[x]p

and fqp:id—a ip, the continuous extension of qu, are well defined.

Let X be a topological vector space. Denote by #(X) and by U(X)
the set of all continuous seminorms and the class of all
zero-neigborhoods in the space X. We shall say that a subclass
W ¢ U(X) is fundamental if there are constants c(W) > 0, WeW, such
that the family {c(W)-W;WeW) is a base of zero-neighbourhoods of X; a
subset P ¢ ¥(X) is said to be fundamental if the family (Up;pe?) is
fundamental.

Clearly, each Up is a convex, symmetric with respect to zero and
closed zero-neighborhood, and to every convex centrally symmetric

U e U(X) corresponds a continuous seminorm p such that Up is the

closure of U, the gauge functional of U. However it may happen that

#(X) consists of the zero seminorm only (e.g.for the space L with
P

0 = p <1).

Locally convex spaces and Fréchet spaces. The space X is locally

convex 1ff #(X) is fundamental. Complete-metrizable locally convex

spaces are called Fréchet spaces. A grading of a Fréchet space X is a
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nor-decreasing sequence § = (pn), p < #(X) whose elements constizute a
furdamental set.

Every Fréchet space, being metrizable, admits a countable
furdamental set of seminorms (qn;nelN), therefore it also admits
gradings, § = (pn), where p.= sup(qm: m=n} for neN.

A Fréchet space X is said to be locally radially bounded if it
adrits a base of zero-neighbourhoods each of which does not contain
any half-line, equivalently, if there exists a grading for X
consisting of norms.

The following fact is referred +to as the Banach - Steinhaus

theorem for seminorms:

0.1 Let X be a Fréchet space. If q e 7 (X), neN are such that

q(x) = sup q (x) < o, then the seminorm g is continuous.

Proof. By the assumption, the seminorm-balls An= {xeX:q(x)=n)
cover the (complete metric) space X. Therefore there is an n  such

that W = int An is non empty. Since the set An is convex and cextrally

symnetric, it contains the open zero-neighbourhood U= =(— W-W).

1
2
Therefore, if x € en;IU then q{x) = £, 1i.e., the seminorm gq is

continuous at zero and, being sublinear, is continuous everywhere. g

°

0.2 Corollary. Let X be a Fréchet space and Y an arbitrary
locally convex space. If Tn:X - Y, nelN, are continous linear
operators such that T(x) = l%m Tn(x) exists for every xeX, then T is a
continuous linear operator.

Proof. Let p € ¥(Y) an arbitrary seminorm. Let qn(x) = p(Tn(x)) ,
and q = sup q. By 0.1 ¢ is continuous, which implies the continuity

of T. i
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s1. Kolmogorov diameters

Definition. Let A,B be two nonempty subsets of a vector space X.

For every neN, the n-th Kolmogorov diameter of A with respect to B is

defined by
Bn(A,B) := inf inf{t>0; ActB+L},
L
the first infimum taken over all 1linear subspaces L of X with

dim L <n. (Recall that the infimum of the empty set is o !)

It should be clear that the Kolmogorov diameters depend also on
the linear . space X. In the situation A,B ¢ X ¢ Y the diameters

relative X may differ from those with respect to Y.

1.1 Remark. For a normed space X the Kolmogorov diameters with
respect to the unit ball BX can be expressed by
an(A) = inf sup dist(x,L).

dim L<n XEA

1.2. Elementary properies of Kolmogorov diameters:

(1) 3 (A,B) = 8 (A,B) = § (A,B) =

(ii) an(A1’B1) = Sn(A,B) whenever Alc A and Blz B.
(iii) & _(an,BB) = aﬁ"an(A,B) if ¢ 20, B> 0.

(iv) & (A,C) =5 (A,B)-5 (B,C).

(v) If X is a normed space, A ¢ X, then Sl(A,BX) = sup{llali;acA}.

The proof of (iv) 1is similar to that of 1.8 (i). The other
properties are evident. g
Vanishing of Kolmogorov diameters of a set A is related to the

dimension of its linear span.

1.3 Let A be a subset of a normed space X and let neN. Then the

following implications hold
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(a) dim[A] < n implies én(A) = 0,
(b) dim[A] = n implies én(A) > 0.

In particular dim[A]= o iff Sn(A) # 0 for every neN.

Proof. The statement (a) is obvious.

Assume that (b) is false, 1i.e., that there exist n 1linearly
independent vectors a,---,a, in A together with 6n(A,Bx) = 0. By
Hahn-Banach theorem there are linear functionals f1’ . ,fn such that
fi(aj) = 8”, the Kronecker delta. Since det{sij) = 1, there exists a

A > 0 with det(aij— a”} # 0 for la”I = A

Let t:=x/max(llfill; i=1l,...,n}. Since Bn(A,BX) = 0, there 1is a

subspace L ¢ X of dimension at most n-1 such that A c tBX+ L. Thus

a =tx +¢ ,
b i

and Itf.(xj)l = A we have
1

j=1,...,n, for some xj in Bx and P.j in L. As det(fi(ﬂj))=0

0 = det(fi(aj) - tf‘(xJ)) = det(fx(lj)) =0,

a contradiction. g

Now it seems natural to study bounded sets A of a normed space X
such that dim [A] = o but l%m 8 (A,B,) = 0. The following proposition

characterizes these sets:

1.4 A bounded subset A of a normed space X is precompact if and

only 1if l%m Bn(A,BX) = 0.

Proof. We recall that A is precompact if for every &>0 there
exists a finite set F < X such that A ¢ eB + F. Therefore, if A is
precompact, then lri‘m an(A,Bx) = 0. The converse implication follows
from the fact that every bounded subset of a finite-dimensional normed

space is precompact. g

The following theorem of Krasnoselski, Krein and Milman 1is the
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main technical tool for computing and estimating Kolmogorov diameters,

cf [T].

1.5 Theorem. For every n-dimensional (nzl) subspace H of a normed

space X it is satisfied that an(BH,B = 1.

)

Proof. (following [DG)) As we have observed, the n-th Kolmogorov
diameter of an arbitrary set A with respect to the wunit ball B, is
equal to

inf sup dist(x,L),
dim L<n X€A

and since the vector 0 belongs to every subspace L, it follows that
Sn(BHﬁﬁ) = sup lix-0l = 1. So it remains to prove the following fact:
XE€B
(kkm) Let H and L be finite-dimensional subspaces of X. If
dim L < dim H, then there 1is an X € S, such that dist(xo,L)

= lx 0l = 1.
0

Proof. There is no loss of generality in assuming that dim H
= dim L + 1. Suppose first that the norm I I is strictly convex, i.e.,
Ix+yl < lxll + Iyl whenever x, y are linearly independent. It is then
easily seen that each x € X, 1in particular, x e SH has a unique

nearest point y = ¢(x) and that the metric projection p:S,— L is

continuous. (Use standard Bolzano-Welerstrass argument: If X — X in s,

then every convergent subsequence of the sequence (w(xn)) has the same

limit ¢(x), and every subsequence of (w(xn)) contains a convergent
sub-subsequence. Hence w(xn),—a @ (x) ). Furthermore the mapping ¢ has
the property ¢(-x) = -¢(x) for all x e SH. Consequently by the  Borsuk

theorem ([DG],3.5.2), there is an X€ SH such that w(xo) = 0. Clearly
%, is the required point.
In the general case choose a basis fx'fz""’fn’ n =dimH, in H*

and define
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ikt =V oaxi? + m(E () %+, .+ £ (%)7)
m 1 n
ixli is a new and strictly convex norm in H For each meN there is
m
x € S with dist (x ,L) = lIx - Ol = 1. Since x I < fIx =1, the
m H m m m m m m m
sequence {x } contains a convergent subsequence relative I II; the
m

limit X, of this subsequence satisfies the requirements of the

theorem. g

1.6 Exercise. Under the additional assumption, that the subspace

is a range of a contractive projection of X, prove the 1last theoren

without referring to the Borsuk theorem.

The additional assumption above is met in the applications

presented in these Notes.

1.7 Remark. Assume now that X is a complex normed space. Let
6n(A,B) be the n-th Kolmogorov diameter of A with respect to B, and
let GT(A,B) denote the n-th real Kolmogorov diameter, i.e., with the
infimum taken over '‘all real subspaces L of real dimension less than
n. Obviously SSH(A,B) < an(A,B). Hence, by Theorem 1.5, if H is a

subspace of X of dimension n, (and real dimension 2n) then

R

5n(SH,BX) = Szn(SH,BX) = 1. That means that Theorem 1.5 implies its

complex version.

Definition. Let T:X — Y be an operator acting between normed

spaces. The n-th Kolmogorov number of T is defined by

d_(T):= §_(T(B,).B,.

Obviously, HTI = d (T) = dz(T) = ...

1.8 Basic properties of Kolmogorov numbers

Assume that T: X— Y and S: Y— Z. Then
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(1) danl(ST) = dn(T)dm(S), in particular, dn(ST) = dn(T)~nsn and
dm(ST) = uTn-dm(S) for every n,melN.

(ii) If T:cpl X — cpl Y is the continuous extension of the operator
T, then dn(i*) = d (T) for all neN.

(iii) If ¥ is a linear subspace of 2 and J:Y — 2Z is the canonical
inclusion then dn(JT) = dn(T) for all neN; if ¥ is a range of
a contractive linear projection of Z, in particular , if Z is a

Hilbert space, then dn(JT) = dn(T).

(iv) An operator T is compact, if an only if 1%m dn(T) = 0.

Proof. (i) Ignoring the trivial case when one of the right hand
side factors is infinite, assume that o > dn(T) and B > dm(T). By
definition of the Kolmogorov numbers there exist subspaces L and A of
Y and Z, respectively, with dim L < n and dim A < m, such that

T(Bx)c L + ozBY and S(By)c A+ BBZ.
Therefore
ST(BX)C S(L)+o (A + BBZ) < S(L) + A + aBBZ and dim(S({L)+A)<n+m-1
The statements (ii) and (iii) are obvious and (iv) 1is a direct

consequence of 1.4. g

We end this section with a useful fact concerning seminorm-balls.

1.9 Let X be a vector space, p,q € #(X). If g dominates p then

dn(qu) = dn(qu) = én(Uq,Up) for every neNlN.

Proof. The first equality directly follows from 1.8 (ii). The
second equality is a conseguence of the following three easily
verifiable facts:

xeU iff ([x]e B, ; xeU iff [x] e B_ .
P P Xp q q 2

For every subspace L ¢ X with dim L < n and for every t > 0 the

condition Uq c tU + L implies B < tBX+~Ip(L).
P
q P
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Fbr every subspace H < &}with dim H = k < n and for every t > 0

the condition I (B c tB + H implies Uq c tUp+ L, L being any
ap

X) X
q p

subspace of X generated by the vectors. Xipeoo X such that [xJp,

...,[xk]p are linearly independent in the space H . g

g2. Nuclear operators

We shall be concerned with the relations between the property

Y nadn(T) < o, >0 of an operator and its nuclearity

n

Definition. Let X and Y be normed spaces. An operator T:X— Y is
said to be nuclear if there exist two sequences (£} < X~ and {y}) ey

such that

Y anu uynu <o and T(x) = ¥ fn(x)yn for all xeX.

n n

The mentioned sequences are not unique and the expression

T= Y fn® Y, is called a nuclear representation of T. The set N(X,Y)
n

of all nuclear operators from X into Y is a linear space and the

function ¥:N(X,Y) — R defined by
7(T) := inf { Y anu Nynu ; T =71 fn® Y, }
n n
is a norm on N(X,Y).

It is convenient to assume that 7 is defined for all operators

and ¥(T) = » if T is not nuclear.

2.1 Elementary properties of nuclear operators. Assume that

T:X— Y 1is an operator. Then

(i) #TH = ¥(T), whence nuclear operators are the || HI-limits of
finite rank operators, therefore they are compact.

(ii) If S:¥Y — Z, then ¥ (ST) = min{(y(S)NTH, ¥ (T)NSu}).

(iii) If Y is a Banach space and Sn:X-—+ Y are such that the series

17



¥ 7(Sn) < o, then T:= ¥ Sn is a nuclear operator.
n

(iv) If Y is complete ‘then (N(X,Y),>) is a Banach space.
(v) If ‘T‘:cpl X — cpl ¥ is the continuous extension of the operator
T, then ¥ (T) = 7(T).

(vi) Let Yx be a subspace of Y and let T:X— Y be a nuclear
operator with wvalues in Yl, and let T::X—> \(1 be the
astriction of T, i.e., T1(X) = T(x) for xeX. If either Y1 is
dense in Y or Y is the range of a contractive 1linear

1

projection, then ‘I‘1 is nuclear.

Proof of (iii). For each neN take a nuclear represenation
— n n - n n < . -Nn
Sn— I fm ® Yy with [ !ifmll ty I = 7(8“) + 2 .
m m
Then T(x) = ¥ T f:(x)y: for all x € X and therefore T e N(X,Y).
n m

(iv) easily follows from (iii).
(v) The inequality 7{(’1’1) = y(T) is obvious. The other inequality
follows from the argument below.

(vi). Assume that T = | fe Y, with yevY is a nuclear

representation of T. If Y1 is dense in Y, then, for every € > 0, each

y is a sum of a series [ y_~ such that iy i = y i+ e-27",
n = Lom o Tom ;

whence T, = ¥ feo Y. is the nuclear representation; if P:¥ — Y, is
m, n

a contractive projection then T = ¥ fe P(y), the required nuclear
n

representation.

Routine proofs of (i) and (ii) are left to the reader. =

Let us note that the astrictions of nuclear operators need not

be nuclear; they are called guasinuclear, see [P], sect. 3.2.

2.2. Lemma. Let Y be a normed space and Z one of its subspaces of
dimension n. Then there exists a linear operator P:Y —s 2 such that

P(z) = 2z for all ze€Z and ¥(P) = n.

18



Proof. Let us take an Auerbach basis for 2, i.e. vectors

Z---,2 € 7z and functionals f‘,...,fne z° such that fl(zj) = 5;j and
"Za" = Ilfjll for i,j € (1,...,n}, cf£. (W], 2E.11. Let g, Ilg‘u =1, be
the Hahn-Banach extension of fi for i=1,...,n. Then P = § g6 2z, has

the required property. g

2.3 If T:X — Y is a rank n operator, i.e., dim T(X) =n, then

7(T) = nliTH.

Proof. T = JT, where J is the operator of the previous Lemma with

Z = T(X). Hence, by 2.1 (i), 7(T) = w(J)ITI. g

2.4 Exercise. Let X and Y be complex normed spaces, T:X — Y an
operator which admits a nuclear representation by means of real linear
functionals defined on X. Show that T is nuclear.

Hint. If T:X — Y is a complex linear operator, i.e., such that

T(x) = —iT(ix), and T = } fne Yy, with real Llinear functionals fn,
nelN, then T(x) = )‘_(pn(x)yn, where gon(x) =é (fn(x) - ifn(ix)) are

complex linear functionals with o It = WE W,

An excursion to Hilbert spaces . We shall be concerned with real

Hilbert spaces X, Y, Z, ... and compact operators acting between them.

Inexplained terminology and the proofs which are omitted can be found

in Schatten’s book [Sch]. The reader interested in generalizations of
the stated results to the cases of noncompact operator and to complex

Hilbert spaces is also referred there.

Recall that for an operator T: X — Y, its Hilbert conjugate
T': Y — X is the only operator such that (T(x)ly) = (xlT’(y)) for all

x € X, y € Y. An operator T: X — X is said to be hermitian if T = T .

An hermitian operator T is positive if (T(x)Ix) =z 0 for every x € X.

Recall the spectral theorem for compact hermitian operators.
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2.5 Every compact hermitian operator K: X — X can be expressed

in the form

K(x) = ¢ ).n(xifn)fn

n
where A , neN, are non-zero eigenvalues of K, repeated according to
n
their multiplicity and {fn) is the sequence of eigenvectors
corresponding to these eigenvalues, i.e., K(fn) = Anfn. The values An

are real and An — 0.

Clearly, the operator K is positive iff A = 0 for all neNlN.

Definition. The n-th sgingular number of a compact operator
T:X — Y is defined by sn(T) = v hn , where (An) is the sequence of
eigenvalues of the positive compact selfadjoint operator K = T put

in the non-increasing order.

A consequence of the spectral theorem is the following

representation theorem for compact operators:

2.6 Every compact operator T: X — Y can be represented in the

form

T sn(xlen)fn, where s = sn(T),
n

where (e } and (fn) are orthonormal systems in X and Y, respectively,
n
for each nelN, e is the eigenvector of the operator T'T corresponding

to the eigenvalue s: and Ten = snfn

2.7 For a compact operator T: X — Y acting between Hilbert

spaces the singular numbers are exactly the Kolmogorov numbers.

Proof TLet T =7 sn(xlen)fn, H(m) = {f}i...,fmd]. Then
n

T(B,) = ( Lstf; ¥ ti s 1},

n n

and, for every X € T(Bx),we have
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dist(x,H(m)) = sup(l ¥ sntnfnu; ¥ ti = 1)

nZm n

2
< sm'm'sup(u T tnenu,x tn =1} = s -

nZm n

Hence dm(T) = S - on the other hand, T(Bx)r\H(m+1) > smBh(m“, and

therefore, by theorem 1.5, dm(T) zZs.m

2.8 A compact operator T: X — Y acting between Hilbert spaces is

nuclear iff § dn(T) < . Furthermore ¥ (T) = §} dn(T).

n

Proof By2£,T=ZsffeH whence 7@)52|$£J4mﬂ= Zﬂ

n n n

= ¥ d (T). Therefore the condition ¥ dn(T) < o implies the nuclearity
n
n

n

of the operator T.

Now suppose that T admits the nuclear representation T= } gevy.
n

et s, e, f, be those of 2.6. Fix an neN. By Bessel’s inequality
n n n
we have

g 1% = Ti(gle)l® : uyu® =735 I(yI1£)1°
n 5 n } n 3 n J

and, by the Cauchy-Schwartz inequality,
172

i/72
Tl le) iy, 1£)] = (Zl(glej)lz} [Zl(y if)lz] = gl Ay .
j n n J n -’ n J n n
Thus

I <Ts, =L (Telf) - j[ D (g,le),lf, ] -

3
LI (gle) (yIf) =TI I(gle)l Ly I£)I=s T ligh iyl <o. g
jon n g

I

Back to normed spaces. The following proposition is a link

connecting nuclear operators acting in Hilbert spaces with those in

Banach spaces.

2.9 Lemma. If X and Y are Banach spaces, then every nuclear

operator T:X — Y can be factored through the Hilbert space %'

Proof. Choose a nuclear representation T = § fe e such  that
n n

21



e w = e i. Obviously | "fn“2= ¥ "en"2< ®o. The operators T :X — 82
n

n n

and T2:£2 — ¥ defined by Tl(x) = (fn(x)) and TZ((an)) =y ae are

n

both continuous and satisfy T = Tle. -
Now we are ready to prove the main results of this section,

2.10 Let X and Y be normed spaces and T:X — Y a composition of

three nuclear operators. Then [ dn(T) < @,

n

Proof. According to 1.8 (ii),(iii) and 2.1 (v),(vi), we may pass
to the completions of the spaces and assume that T = JRS is the
product of three nuclear operators: S:X — Z2, R:Z2 — W and J:W — Y,

where X, 2, W, Y are Banach spaces. The previous lemma allows us to

write T as the composition of the following operators:

X —55 7z Byw 9,y

5\1\' J\ /)
Hence T = JZHSI, where H = Jlez is a nuclear operator. Since, by 2.8,

T dn(H) < o, we conclude that

n

LA(T) = L I3,0d (H)IS) < ©. g

n n

2.11 Let X,Y be normed spaces. If an operator T:X — Y satisfies

) nzdn(T) < o, then T is nuclear.

Proof. Take an (n-1)-dimensional subspace 'Ln_lc Y such that
sup {dist(y,Ln_l); yeT(Bx)) < 2dn(T). By Lemma 2.2 there exists a
projection Pn-1:Y — Ln_1 such that "Pn-an = 7(Pn_1) = n-1.

We claim now that: T(X) = l%m Pn_ZT(x).

This can be proved as follows: take x € Bx and let zeLn_l be the

nearest point to T(x). Then
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IT(x) - P_T()I < WT(x) - zll + WP T(x) - P_ (z)I = 2d (T)

+ 2(n—1)dn(T) = 2ndn(T).
By the assumption on T, l%m 2ndn(T) = 0.
[oe]
Let us write T(x) = PIT(x) + ¥ (Pn- Pml)T(x). We have
2
lI(Pn- Pn-x)T“ = lIT—Pn_lT - (T-—PnT) = IlT—Pn_lTI( + IIT-PnTII =

= 2ndn(T) + 2(n+1)dnﬂ(T) = (4n+2)dn(T).
Now, since rank(P T - P T) = 2n-1, by Proposition 2.3 we obtain:
¥(PT - P T) = (2n-1)IPT - P_ Tl = (2n-1)(4n+2)d (T)=8n°d (T).
n n-1 n n-1 n n
Since T is a sum of a series of nuclear operators such that the sum

of their nuclear norms is convergent, we conclude that T is nuclear. g

§ 3. Locally convex nuclear spaces. Mitiagin's characterization

We recall that a topological vector space X is locally convex iff

#(X) is fundamental.
It is clear that if X is 1locally convex and if ? c ¢(X) |is

fundamental, then every p € ¥(X) is dominated by a seminorm q € P.

Definition. A locally convex space X is said to be nuclear if for
every pe¥(X) there exists a ge¥(X) such that the linking operator Iqp
is nuclear.

In the above definition the expression "pef(X)" can be replaced

by "pe?P, a fundamental set of seminorms", and the operator Iqp can be

replaced f“. This is a direct consequence of 2.1 and 1.8.
Now we are ready to state the Mitiagin characterization theorem.

3.1 Theorem. For a locally convex space X the following
statements are equivalent:

(1) X is nuclear,
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(i1i) there is an a > 0 such that for every p e ¥(X) there 1is a
q € $(X) with g > p and sup nadn(qu) < o,

(*ii) there is an a > 0 such that for every U e U(X) there 1is a
V e U(x) with sup n‘&n(v,m < o,

(iii) for every a > 0 and for every p € ¥(X) there is a q e ¥(X)
with g > p and sup n"“dn(qu) < w®,

(*1ii) for every a > 0 and for every U e U(X) there exists a

V e U(X) with sup naan(V,U) < w,

3.2 Remark. Assume that ¥ c¢ U(X) and P ¢ ¥#(X) are fundamental.
Then, by 1.2 and 1.8, in the statements (*ii), (*iii) above the U(X)
may be replaced by % and in (ii), (iii) the #(X) may be replaced by ?.

Also the link operators qu may be replaced by iqp.

Proof. (i) ==>(ii). For a fixed p € ¥(X) let r, s and g be three
continuous seminorms on X with psrsssqg such that the corresponding
operators Irp, Isr and Iqs are nuclear. Then, by 2.10, the operator

I =1I I I satisfies § d (I ) < ». Hence the sequence (@°(1 )
qap rp sr gqs nonooar n’ qp

is bounded for a = 1.

(ii) = (iii). Given p e ¥(X) there exist a q¢ (X)), q,>p and
a constant C > 0 such that d (I ) = Cln_a
1

for all neN. Next, there

. -a
exist q, € (X)), q, > q and C2 >0 such that d“(lqqu) = Can for

all n, whence q, > P and, by 1.2,

2a

d = -d (1 = CcCn 11 n.
(T ) dn(Iqq) n(qp} G for a n

2n
q2p 21 1

Proceeding in the same way, for every keN, we can find a qkey’(x) ,
9, > P, and Dk > 0 such that

d (I ) =Dpn*?® for all neN.

Now, given b>0, if keN is so big that k-a = 3b, then
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sup n°d (I ) < »
o qkp

because for every m = k* there is an n = k such that kn = m = k(n+1)

3b k*a
n .

A

Thus n’d (I ) = n’d (I ) and n’s kb(n+1)bs nb(nz)b = n
m® oqpP kn q.p

(1ii) = (i). Let p € ¥(X). By the hypothesis, we can pick a

ge¥(X) so that sup n4dn(qu) < ®. Then, by 2.11, qu is nuclear.

(*#i1) > (ii) & (*iii) —(iii). By 1.9, d (I_) =3 (U_,U).

We complete the proof by applying Remark 3.2 with 2 = (UP; P € ¥(X)}.

s 4 Nuclear Fréchet spaces with bases. Absoluteness

The aim of this paragraph is +the Dynin Mitiagin criterion
characterizing nuclear spaces among Fréchet spaces with bases, which
implies that all bases of nuclear Fréchet spaces are absolute.

Assume that X is an infinite-dimensional Fréchet space. Recall
that #(X) denotes the set of all continuous seminorms defined on X.

A segquence (xn) c X is said to be a basis [an absolute basis] of

X if every x € X has a unique representation x = ¥ t x [and moreover
nn
n

Y p(t x) < o for every seminorm p € ¥(X)].

n

It is known that the coeficient functionals (fn} of the basis defined

by

fk({j ‘cnxn) =t , for keN,
are continuous, cf. [R], sect. 2.6. Therefore by the Banach-Steinhau
theorem the projectors Pn and Pn u defined by

n
Pn(x) =)y tx, P =P - Pn, n,meN,

it n,m n+m
are equicontinuous, that means:
(*) Vp e #(X) Ir € ¥(X) such that p(Pn"rﬁn(x)) = r(x) VYxeX, n,meN
In the sequel when writing "a basis (xn,fn)" we shall have in

mind that (xn) is a basis and (fn) the sequence o f its coeficient
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functionals.
Definition. A seminorm p € ¥(X) is said to be adjusted [resp.
81 adjusted ] to the basis (xn,fn) if llfn® xn:Xp — Xpll = 1 for

every neN, that is, if p(f (x)x ) = p(x) [resp. L p(f (xX)x) = p(x) ]
n
for all xeX, n eN. A grading § is said to be adjusted [Zl adijusted ]

if each seminorm of the grading is adjusted [é1 adjusted ].

4.2 Let X be a Fréchet space with a basis {xn). For every
seminorm p € ¥(X) there is a seminorm q € ¥(X) which is adjusted to

the basis and such that g z p.

Proof Given p, let

a(x) = sup (p(P _(x)); n,meN).
Then, clearly, g = p, and since fne X = Pn-l,n' we get q(fn(x)xn) =
= p(fn(x)xn) = g(x). The continuity of g follows from qg(x) = r(x),
with r selected according to the condition (*) above. g
The proof of the main result is based on a lemma concerning
operators acting between Banach spaces. Recall that a vrank one

operator F:X — X is an operator of the form T = £ e x, where feX',

xeX, £ # 0, x = 0.

4.3 Lemma. Let Z and Y be normed spaces, T:Z2 — Y an operator
such that

(1) ¥ mdm(T) < .

m

If Fn:Z — Z, Gn:Y —> Y are rank 1 operators such that:

(i) FF =8 F; GG =68 G,
n m nm n nm nm n a
(ii) IlGn!I = 1 and the operators Pn= Y Gi are equicontinuous,
i=1
(1ii) the set (G (Y) vG () v...] is dense in Y,
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(iv) TF = GT; T(F (2)) =G (¥); IFI =1

for all n € N. Then [ IGTHI < o.

n

Proof Denote An= IlGnTIl, nelN, and observe that, by (iv), the
image GnT(Z) ='T(Fn(Z)) = Gn(Y) is one-dimensional and therefore
A+ 0.

n

Further argument will proceed in five steps.

1°y = lim P_(y) for every y e Y.

If y € [G(Y) v G(Y) v ...], say y =G(y,) + ...+ G (y), then,
by (i), Gn(y) = Gn(yn) for n = m and Gn(Y) = 0 for n > m. Therefore

y = lri,m Pn(y) for every y e [GI(Y) v} G2(Y) vo...]
By (ii) and (iii) the same is true for every y e Y.
2°A — 0.
n

In fact, if not, there would exist a bounded sequence (zn) in 2,
a subsequence {k(n)) of indices, and an €>0, such that
(2) Ile(n)T(zn)ll z €.

Since, by (1), the operator T is compact, we may assume without loss
of generality that
Gk(n)T(zn) — y € Y.

But, by (i), G (y) =l%m GG (T(zn)) = 0 for every fixed meN,

k(n)
whence, by 1°, y = 0, a contradiction with (2).

o

37 IT(u)it = An‘l!ull for every u e Fn(Z), nelN.

In fact, by (iv),

An= sup(HTFn(z)lI; zeBz) = sup(llTFn(Fn(z))ll: szz)
and Fn(Bz) c Bz' Therefore An= sup(llTFn(u)ll;u € an Fn(Z)) = HTFn(uo) I
for some u e an Fn(z). But since the range Fn(Z) is one-dimensional,

we get the equality 3°.
According to 2°, after passing to a permutation of indices, we

may assume that
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(3) A= A=Az ...
Consider the m-dimensional subspace H(m) = GI(Y)+ .. + Gm(Y), for a

fixed meN. We claim that

o -1
4 BH(m)c m Am T(Bz).

Proof of 4°. Pick an arbitrary V = G (y)+ ...+ G (y) e Bim®

By (i), G (y) = G (y) forn =m, i.e
Yy = Gx(Y) Fooot Gm(y).

By (iv) there are u e Fn(Z) such that Gn(y) = TFn(un) for n=m, whence

. o _ -1 — -1 -
y = T(z) with 2z = u1+...+ u. By 3, llunll = An llT(un) [ An lIGn(y) I =

m
1

= A;lllyll. Hence, by (3), Nzl = (A]'s ...+ A;l)llyll = mA;l!lyH, it  means
that z € mA 'B..
m 2
5° Now we complete the proof of the 1lemma. Combining (3) with
theorem 1.2 we get

= = —1 > =
md (T) = & (mT(B,),B) = A3 (mA 'T(B,),B) > AS (B, ,B) =A.

Hence the assumption (1) implies [ A < o. g
m
Now we can state the Dynin-Mitiagin criterion

4.4 Theorem. Let X be a Fréchet space with a basis (xn,fn). Then

the following statements are equivalent:

(n1) X is nuclear,
(n2) V pef(X) 3 gef(X), g=p, such that ¥ If o xn:Xq — XPII < .
(n3) V pe¥(X) 3 gef(X), gzp, such that | p(xn)/q(xn) < w.

Proof. (nl) ==(n2). Let p € ¥(X). Choose r,s,q € ¥(X), so that

p=s=r =3s =g, r and q are adjusted to the basis and ¥ mdm(Isr) < .

(This is possible because of 3.1(ii) and 4.2.), whence

(4) L md (I ) < o

m
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Let M = (nelN; r(xn) # 0) and let (k(n)) be the increasing sequence of

all the the indices belonging to M. Let Y =X, Y= 0x,.,]
n

’
r n r

z = [xk(n)]q for n € N, 2 = the closure of the set [(zn;ne[N)] in the
Banach space f(q. Let T:2 — Y, F:2 — 2, G:Y — Y, neN, be the

continuous extensions of the operators defined by the formulas:
T(x)) = T (K1) = LA, (D), = L £, (Y,

FIX]) = £, (xz, G ([x]) = £ (xy,.

k(n) n

Since (xn,fn} is a basis in X and the seminorms r,q are adjusted, it
easily follows that the conditions (i) - (iv) of the lemma 4.3 are
met. The condition (4) is nothing else but the hypothesis (1).

Hence, applying the lemma with the specified above data, we get
the statement (n2).

(n2) == (nl). Obvious.

(n2) «<=>(n3). By 4.2, the two statements remain unchanged when
restricting fo p,ge¥(X), adjusted to the basis. Hence the following

observation completes the proof:

4.5 Let X be a Fréchet space with a basis (xn,fn). If p,ge?(X),

p=qg and q is adjusted to the basis then, for every neN,

ane) xn:xq — XPN p(xn)/q(xn) - (0/0 = 0).

Proof Fix nelN, denote F = fn® X . Since g is adjusted, we have

q(F(x)) = gq(x) for every xeX. Hence

p(f (x)x ) = a(f (x)x)-p(x)/q(x) = q(x) p(x)/d(x).

on the other hand, p(fn(xn)xn) = p(xn) = q(xn) -p(xn)/q(xn) . That means:
P(F(x)) = a(x)-p(x)/q(x) and p(F(x)) = a(x ) p(x)/q(x),
i.e., IIF:Xq —> Xpll = p(xn)/q(xn). -
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4.6 Corollary. Every basis in a nuclear Fréchet space is

absolute.

Proof. Assume that (xn,gj is a basis in a nuclear Fréchet space
X. Let pe¥(X). Choose g according to the condition (n2) of 4.4. Since,

for each xeX, the series ¥ gjx)xn is convergent, we conclude that
n

sup q(fn(x)xn) < o, whence by (n2) ¥ p(fn(x)xn) < 0. g

n

There is only one type of absolute bases of infinite-dimensional,
separable Banach spaces: the unit vector basis of the space %. More
precisely:

If (xn,fn)nefN is an absolute basis in a Banach space X with
nxnu = 1 fof all neN, then the map

X3 %X —> (fn(x)) € El

is an isomorphism which takes the basis (xn) of X onto the unit vector

basis (en) of the space Q.

Definition. Let A = (a be a Kothe matrix, i.e. a matrix

kn)k,nem

of real numbers such that, for every neN,

0=a =a = ... and 1lim a > O.
in 2n X kn

The Kothe space Q(A) is the linear space of all numerical sequences

x = {x(n)) such that, for each keN, pk(x) =Y Iaknx(n)l < o, regarded
n
as a Fréchet space with the grading § = P en -
Clearly, the sequence (em) of unit vectors, i.e., em(n) = amv is

an absolute basis of the space ﬂ(A) and the grading § is 8‘ adjusted
to this basis.

The theorem 4.7 below provides the complete description of

absolute bases in Fréchet spaces in terms of Kéthe spaces Q(A}.

4.7 Theorem. Let (xn,QJnew be an absolute basis in a Fréchet
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space X and let {p } a grading for X, and A = (a, )} = (pk(xn)). Then
the map

X > x —— (f (X)) € ¢ (a)
is an isomorphism which takes the basis (xn} of X onto the unit vector

basis (e) of the space %(A).

Proof. Obviously the linear mapping Tﬁx — Q(A) defined by  the
formula T(x) = (fn(x)) is bijective. Since, for, for every keN, pk(x)s

= ¥ pk(fn(x)xn), the operator 7! is continuous. And since
n

T(x) = YL fn(x)en for xeX,

n

the operator T is the limit of continuous linear mappings (the partial

sums of the series) and, by 0.2, is continuous. g

An immediate corollary of the last theorem is the following:

4.8 A basis (x )} of a Fréchet space X is absolute if and only if

'

X admits a grading Q adjusted to the basis.

§ 5. The uniqueness problem. Regular bases

In this section we consider only infinite-dimensional Fréchet
spaces.
Corollary 4.6 together with the observation concerning absolute

bases of Banach spaces, motivates the study of unigeness of bases in

nuclear Fréchet spaces. We precise the sense of the word "unique®:

Definition. Let (xn,fn) be a basis of a Fréchet space X. The
coordinate range of the basis is the set of coeficients:

Cr (xn) = ((tn); ¥ tnxn converges} = ((fn(x)); xeX}.

n

Bases (xn) and (yn) of Fréchet spaces X and Y, respectively, are said

to be equivalent if Cr (x ) = Cr (y }):; are said to be diagonally
n n
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eguivalent if there exists a sequence of non-zero scalars (tn) such
that the (xn) is equivalent to the basis {tnyn}; finally (xn) and (v}
n

are called guasi-equivalent if there is a permutation w:N -— N such

that (y ) is a basis diagonally equivalent to (% 1.

T (n)

We have

5.1 If (xn,fn) and {yn,qj are bases of Fréchet spaces X and VY,
respectively, and if Cr (%} =cCr (y), then the mapping W — Y,
n

n

nelN, uniquely extends to an isomorphism T:X — Y.

Proof. Let T(x) = I f(x)y, whence THy) = L9 (x)x . The

n n

continuity of T and T'' follows from 0.2. g

Let us note that the theorem 4.7 together with corollary 4.6 say
that every basis of an infinite-~dimensional nuclear Fréchet space is
equivalent to the unit vector basis of a space Q(A) with a suitable

matrix A.

Except the case where X is isomorphic to the space RN of all
numerical sequences, if {xn) is a basis in X one can always find a
sequence (tn) of positive scalars such that (xn) and (tnxn) are not
equivalent; also it can be proved that a permutation can change the
diagonal-equivalence type of the basis. Hence, the most convenient is
the concept of the quasi-equivalence. The general question of whether
in every nuclear Fréchet space with a basis all the bases are
quasi-equivalent is still open. One of the partial solutions is the
theorem, established independently by Xondakov and by Crone and

Robinson, related to the concept of a regular basis.

Definition. Assume that X is a locally radially bounded Fréchet

space and ¥(X) the fundamental set of seminorms consisting of all
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continuous norms. A basis (x ) of the space X is said to be regqular if
for every p € N (X) there is a g € #(X) such that

p(x)/a(x) = p(x )/d(x ) for all neNN.

5.2 Theorem. Any two reqgular absolute bases (xn) and (yn) of an

arbitrary Fréchet space are diagonally equivalent.

Proof. The argument presented here, based on the Kolmogorov
diameters, is due to Djakov [Dj].

We can take gradings § = (pk) ¢ N(X) and ¥ = (qk) < N(X) which
are % adjusted to the bases (xn) and (yn), respectively, and such
that

(1) the sequences (p (x)/p, (X))} and (g (v )/q

k+1'“n’ "nelN (yn) )nEIN are

k+1

non-increasing for all keN.
Without loss of generality we may assume that
P, S9q P, $q, 3 ...,
for otherwise, we pass to suitable subsequences of the norms and

replace them by their positive multiples.

Let W = Up and V= Uq, the unit balls of the normed spaces
K K

(X,pk) and (X,q,) respectively. The respective Kolmogorov diameters

are expressed by

d (W W) =p(x)/p, xX), d V) =qgy)/d, (),

k+h

for k,h,neN. This follows from the results of § 1 and the inclusions:

W c pw;—Z(n), PB

c W ,
k+h Z(n) k+h

1, B, = Wn z(n),

where p = P (x)/B, (X), Z(R) = [X,,...x_ .

k+h 1

and from the corresponding inclusions for Vk"h and v,
Therefore
(2) if k =3 then W>v > Vj: WJﬂ and dn(wyl,wk) = dn(VJ,Vk)

whence p (x)/p (X)) = q(y)/q,(y),
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(3) if k » j then VJD wju> WOV, and dn(y,VJ) = dn(wk’wjn)’
whence q (v )/q,(y) = P, (x)/p (X ).
By (2) and (3)
P (x)/q(y) = p  (x)/q(y) for all k,j,n < N.
Let r = sup (p (% )/q(y )ikeN}. Then p (x) = rq(y) = p_,(X) for
all k,n € WN.

Hence Cr {(x } = £ ((p (x)])) = ¢ ({rgq(y)}) =Cr (rvl. m

5.3 Theorem. Let X be a nuclear Fréchet space with a regular
basis (xn,fn). Then, for every basis (yn,gn) of the space X there is a

permutation mw:N — N such that (y } is a regular basis.

T(n)

Consequently all the bases in X are quasi-equivalent.

For the proof we need two lemmas concerning rank one projections.

5.4 Lemma. Let X be a Fréchet space with an absolute basis
(xn,f") and let § = (pk) be a grading % adjusted +to the basis and
such that

(1) P, = 2kpk for every keN.

k+1

Assume that F = g @ y:X — X is a rank one projection, i.e.,

(ii)  g(y) = 1,

such that

(iii) p,° F = Py for all kelN.

Then there exist an index m € Supp y := {nelN; fn(y) # 0) and a vector
ty in the range of F such that

p(x) =p,_ (ty) =p (x) for all keN.

Proof. Let velN be the first integer such that pvn(y) = 0. Then,

by (i) and the fact that the grading § is Q adjusted, we get
SO) £ ) Ip (x) = p (¥)/p,, (V) = 2™ for every k = v

n

P

k+1

whence
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(a) LI ()l sup p(x)/p  (y) = ¥ I£(y)I ¥ p(x)/p  (¥) =

n P74 Y k+1

=L, (M Ip(x)If = 1.

By (iii), lg(xn)l = phl(&J/pk(y) for every neN and k>v. Hence,

lg(x) 1 = inf p  (x)/p (¥)
k>V
Therefore, by (ii),

(B) 1 =% £(y)g(x) = EIf (y)Ilg(x)l =L If (y)| inf P,., (X )/p (¥)

n k>V

Comparing (A) and (B), we conclude that there is an m e Supp y such

that

f:g p (x)/p,, (Y) = i?f P, (x)/p (y) > 0.

Taking t = inf p,.,(x)/p (y) we get
v

k>

pk(xm) = tphl(y) = pbz(xm), for every k z v.

If k < v then pk(y) = p (y) = 0 and, since m € Supp y and (pk)

k+i

is ﬂ adjusted, also pkp%) = 0. Therefore the assertion is proved. g
We shall need the following concept

Definition Let X be a Fréchet space and let (xn), (yn) be
two arbitrary sequences of elements ‘of X. We say that (yn) is
pseudodominated by (xn) if there exist a sequence of indices (m(n)}
with m(n) — o, a sequence (tn) of positive numbers and a grading
g = {pn) for the space X such that

(x ) for all k,n € N.

(ty) =p

k+1 n~n k+2

(pd) p(x ) =p

k' m(n) m(n)

5.5 Lemma. Let X be a Fréchet space and Y a closed subspace with
dim Y = o such that there exists a continuous linear projection P of X
onto Y. Let (xn) and (yn) be bases of X and Y, respectively. If X does
not contain any subspace isomorphic to the Banach space Q, in

particular if X is nuclear, then (yn) is pseudodominated by (x }.
n
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Proof. Since all the rank one projections F = ge vy, are equi-
continuous (see (*) in § 4), there is a grading § = (pn) satisfying
the condition (i) of lemma 5.4 and such that each Fn, nelN, fulfills
(ii) and (iii). Hence, for each neN, we can select an m(n) and tn to
satisfy the condition (pd). It remains to show that mn(n) — o.
Otherwise there would exist an m with m(n) = m, for infinitely many
indices n, and the corresponding subsequence of the basis (tnyn} would

be equivalent to the unit vector basis of Q. Finally 1let wus remark
that, if X is nuclear, then so is Y and Y cannot be isomorphic to the

the infinite-dimensional Banach space L m

Now to complete the proof of the theorem 5.3 it is enough to make

the following trivial observation

5.6. If (xn) and (yn} are absolute bases in the spaces X and Y
respectively, {x ) is regular and (y ) is pseudodominated by {(x} and
if m:N — N is a permutation which makes the sequence {m(n)} appearing
in the condition (pd) to tend non-decreasingly to infinity, then

(ynm)) is a regular basis. g

Another conseguence of lemma 5.5 is the following fact (stated

already in [B] in terms of infinite systems of equations):

5.7 Theorem. Every basis (xq) of the space RW is equivalent to

the unit vector basis.

Proof. By 5.5, Cr{xn) = { (cn); ¥ cJ%emm) is convergent} = R ,
n

the set of all numerical sequences. g

§ 6 Nuclear Fréchet spaces without bases

Recall that, by the theorem 4.4, to each basis of a nuclear
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Fréchet space corresponds a sequence of rank one operators (f e x )
n n
such that

(npi) V pe#(X) 3 ge¥(X), gzp, such that } I!fne xn:Xq——> XP" < o.

n

Such a sequence of operators will be called an npi, the abbreviation

for nuclear partition of the identity.

We shall present a nuclear Fréchet space E without any npi, which
is a sleight modification of Djakov - Mitiagin example {DjM], cf. also
[Be] and [BeDu]. The construction is based on a geometrical property
of the 2-dimensional space R®.

Let (el,ez) be the canonical basis of R® and let e:,e; € (IRZ)'

. . ] 2 @ & ®
its coeficient functionals. Denote W= e1+ e, w = e1+ e, and

6.1 Lemma. For every u e IRZ, v e (IRZ)‘ the rank (=) one operator

T = v'eu: R® — R® satisfies the inequality

le;T(e)| = le]T(e)| + le[T(e)| + lw.T(w)I.

Proof. Assume that the left-hand side of the inequality is not
zero. The substitution s = Ie;(u)/e:(u) I, t= Iv‘(ez)/v‘(el)l reduces

the inequality to the elementary fact: 1 = s+t+(1l-s)(1-t) for s,tz0. g

For a fixed nelN define on the space R® the three norms:

Ixl.= le (x)! + 2"le (x) I
x| = el(x) 2 lez(x) ;

I b n *
lez— 4 Iel(x)l + 2 lez(x)i,
. ,n, * n @
les— 4 lwl(x)i + 8 Iwz(x)[.
For an operator T:R° — R° and i € {1,2,3) we denote

!TIH = sup (!T(x)li; lxlx = 1}.

It is straightforward to check that

x| = Ixl. = ix|. for all x € R®
1 2 3

and

& & 1 #* -n
leee | = |eee | = = |[weoew | = 2
1111 1 o222 2 2 133
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6.2, Lemma. Let TM:IRZ——> !RZ, meN, be rank one operators and let

T T (x) = x for every xeR. If there exists a constant C < o such
m
m

that

& ® 2x L 2 & .
vodv Tm(u)l = Clv ®u|” for every u € RX,v € (R%) , je{1,2,3)

m

then ¢C = 2"/4.

Proof. Taking vieu = e;eel, next e:®e2, and next w;eaw1 we get
*® -n @ ~-n # i-n
) Iesz(eI)I =2cCc, ¥ Iele(eZ)l =2 C, ¥ Iszm(wl)l =2 C

m m m

Hence by 1lemma 6.1, 1= e:(el) =7 e:Tm(el) =y Ie:’l‘m(el)l = 4c27",
m

m

Therefore C = 2"/4. =

Let K = ((i,j) € NxN; i+1 < j) and let o:N — K be a surjective
mapping such that, for every (i,j) e K, the set o*’l(i,j) is infinite.
With the same fixed neN we denote by Xn the space R® equipped

with the sequence of nomé (II~||k) defined by

fxl, for k = i
uxuk = Ixt2 for + 1 = k= j
Izl for 3 >k

where (i,j) = o(n).

Till this moment we have considered a fixed n e N and a fixed
space X , from now on we shall be dealing with the sequence (X ) en
Of course, if n,meN with o(n) # o(m), then the norms (Il llk) on the
space Xh are not the same as the norms on the space Xm denoted by
the same symbol. This should not create confusions !

Here is the promissed example:

6.3 Example. The space

E= (x = (xn); X € Xn and pk(x):= Y nkllxnllk< o for every kelN})
n

equipped with the grading § = {p,) is a nuclear Fréchet space which

does not admit any npi; therefore E has no basis in.
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We omit the routine verification that E is complete. The
nuclearity of E follows from the fact that, for each keN, the 1linking

operator T = I is a sum of a series ¥ T of rank two operators
Prea’ Py n
such. that llTnu = n> and therefore, by 2.3, the nuclear norms
v(Tn) = n'z, whence [ V(Tn) <w. Thus T 1is a nuclear operator.
n

Suppose that E has an npi (F}, F = y;e y for meN. Then

(1) ¥ Fm(y) =y for all y € E,

and acording to the condition (npi) we have:
(2) for p = P, there is q = P, (i > 1) such that

L Pp,(F,(¥)) = p(¥): L lyey:E —E I
m m i 1

(3) forp = P,., there is q = p (j > i+1) such that

bl
) PiH(Fm(Y)) = pJ(Y) ) Iy e Ym:Ep — Ep4"
" n i+l j
(4) for p=p

there is q = p (k > j+1) such that

j+1 k

(F,(¥)) = p(y): Liye y:E —E I.

m k

LP.,
m

Let i, j be those appearing in the last estimates. Take an
arbitrary fixed n e 0-1(i,j) and let J.n:Xn — E Dbe the canonical
embedding and Pn:E — Xn the canonical projection: Pn(y) = y.
Finally let ‘I‘m = PnFm'”n regarded as an operator acting on R, Then,
from the definition of the norms {p,) together with the statements
(1), (2), (3) we conclude that every x e R® is the sum

x =) T (x) and
o m
and
1+1 e d J+1 ek
ITm(x) |2_Cn lez, ¥ n le(x) |3_Cn lxla.

m

T nlfrm(x)llan‘xxll, T n
m

m

Hence, with s = max {i-1,j-i-1,k-j-1}, we have
S
¥ ITm(x)Ias cn lea for « € (1,2,3}),
m

s

and by lemma 6.2, C = 2"°n"°, and the last estimate must hold for all

n in the infinite set cr'l(i,j), a contradiction. g
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§ 7. Notes and comments

Ad § O

Locally convex spaces have been distinguished by Tychonoff [T].
Fréchet spaces (called BO) spaces have been defined by S. Mazur and
W. Orlicz in the context of summability theory and later re-discovered
by French mathematicians from the Bourbaki circle. On the best of my
knowledge the first published paper in which the term "B, space"
appears is Eidelheit’s [E), 1936; the treatise [MO] of Mazur and
Orlicz devoted to a systematic study of these spaces appeared only
after the Second World War. The French School, in contrast to Mazur
and Orlicz, put the emphasis on infinite-dimensional 1locally convex
spaces with such properties which are shared by Banach spaces of a
finite dimension only, rather than looking for analogies with the
general (infinite-dimensional) Banach space theory. 1In this context

the classes of Montel, Schwartz and nuclear spaces have been defined.

Theorem 0.1 expresses the well-known fact that Fréchet spaces are
barrelled.

Ad § 1

More about Kolmogorov diameters and their applications in the
approximation theory can be found in V. Tikhomirov’s paper (Ti]. For
relations of Kolmogorov diameters and numbers with similar parameters,

e.g. Gelfand diameters and numbers, see A. Pietsch [Pi].

Ad 8§ 2 & 3

Nuclear spaces and nuclear operators were introduced in early
fifties by A. Grothendieck in, see [G]. The attempts to understand the
so called Red Book [G] stimulated the study of nuclear spaces and
related topics of the operator theory in Eastern Europe, in G.D.R.,
Poland and the Soviet Union. The appearance of the beautiful monograph
{(P] of Albrecht Pietsch, helped to clarify the general notion of an

operator ideal (Pietsch [Pi]) and was a beginning of the intensive

research on absolutely summing operators (Kwapien, Lindenstrauss,

Pelczynski, Pietsch and others).

Ad § 4
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According to corollary 4.5 every basis in a nuclear Fréchet space
is absolute. This property characterizes nuclear Fréchet spaces among
Fréchet spaces ([Wo].

Every absolute basis is unconditional, i.e., the expansions with
respect to the basis are unconditionally convergent. For a discussion
on unconditional bases in Banach spaces and the existence and
uniqueness problems for them see [D].

Pelczynski and Singer [PS] found that every infinite-dimensional
Banach space with basis admits two bases which are not diagonally
equivalent and, at least, one of them is not unconditional.

* * *
For a Kéthe matrix A = (ahﬁ one can also define the spaces
ﬂa(A) = {x = (En); (amﬁn) € ed for every kelN}; pk(x) = "‘ﬁmgn“%a‘

for 1 = o« = o, and similarly c, (A). These spaces are nuclear, if and
only if the matrix A satisfies the additional condition

(Kn) VjeN JkeN such that ¥ ajn/akn < o.

n
Under this condition the unit vectors (en) constitute an absolute
basis in each of the spaces and therefore cO(A) = Za(A) = Q(A) for

every 1 = p = w; the spaces are isomorphic under the identity mapping.

Ad § 5

We do not know any "natural" example of a nuclear Fréchet space
without a basis. In this context it is important to be able to
represent a given functional nuclear Fréchet as a Kothe spaces Q(A)
with a relatively simple structure.

Specially interesting are the spaces Q(A) which are generated by
a single sequence, among them power series spaces of types « and 0.

Let (an) and (bn) be sequences of reals such that

(1) 1 = a=a, =...; 1= bxz bzz. .= 0.

Consider the Kéthe matrices A = (a:) and B = (b:m). The spaces Q(A)

and el(B) are called power series spaces of type ® and 0
respectively.

The nuclearity of power series spaces 1is characterized by the
conditions

dkeN with ¥ aj < @, and Vs>0 Y bf < ©, respectively.

n n
Observe that the unit vectors (e} of a power series space
n
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constitute an absolute and regular basis. Using 5.2 it is not
difficult to show that a power series space of type o is never
isomorphic to the one of type 0. We also have

7.1 Power series spaces X and Y of the same type are isomorphic
if and only if they are equal as sets of numerical sequences.

Proof (Sketch). Recall that W;=(x;pk(x)<1) for keN. By (1), if
i < j, then
-] k
dn(wj,wi) =a for the space 81((an)),
and

4 (W,,W) = bl/i-l/_] 17k
n j i n

for the space tl((bn 1)

Hence

n

El((a:)) ({t}: 3i Vj with [ e 1/d (W, W) < @) =

n

((t }: Ju VYV with ¥ It 1/d (V,U) < =),
and similarly
¢ ({b)) = ((t}; Vi 3j with } It 1+d (W, W) <) =

n

Il

{{t }; YU 3V with [ It 1-da (V,U) < o},
n
n
where V and U run over all zero-neighbourhoods. That means that the

two classes of numerical sequences can be described invariantly. g

The products X x Y of power series spaces of different types have
bases but no regular bases.

Standard examples of power series spaces are:

Ly, L@,

They isomorphically represent the functional spaces: Cm(T) of periodic
infinitely differentiable functions on the 1ine,> H(C) of entire
functions, H(D) of holomorphic functions on the open disk. To get the
representation we use the trigonometric system as the basis for the
first space and the sequence (z"q) for the second and third.

We notice that the spaces H(C') of entire functions of r
variables and H(D") of holomorphic functions on the r-dimensional open
polydisk are represented by the power series spaces Q(A) and EI(B),

knl/r -1 1/r
!
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The dimension r of the domain is an isomorphic invariant of the spaces
of holomorphic functions, while every space Cm(M) of all infinitely
differentiable functions on a smooth compact manifold, regardless of
the dimension of M, is isomorphic to Cm(T).

More information on the isomorphical classification of Banach and
Fréchet spaces of functions can be found in the survey article [Pe].

* % *

The concept of the quasi-equivalence of bases as well as the
first result relating this concept to nuclearity (all bases in each
H(C) and H(D) are quasi-equivalent) are due to Dragilev [Dr].

* * *

Let X be an infinite-dimensional Fréchet space with a basis. We
say that: X has the QE property if all the bases of X are
quasi-equivalent to each other; X has the CS property if every
complemented subspace of X has a basis; the basis (xn) of X has the
CBS property if every basis (v of a complemented subspace of X is
quasi-equivalent to a subsequence of (xn); X has the CBS property if
every basis of X does it.

The labels QE, CS and CBS stand for "quasi-equivalence",
"complemented subspace" and "“complemented basic sequence".

There are three fundamental problems concerning the uniqueness of

bases:

QE. Does every nuclear Fréchet space with a basis have the QE
property ?
CS. Does every nuclear Fréchet space with a basis have the

CS property ?

CBS. Does every basis of a nuclear Fréchet space have the CBS
property ?

One can also ask these questions for concrete spaces, concrete
bases or for complemented subspaces with certain special properties.
Mitiagin and Djakov have observed that using the Cantor-Bernstein

mapping to the sets of indices of the bases one gets:

7.2 If the two base (xn) and (yn) of the space X have the CBS

property then they are guasi-equivalent.

Hence it is natural to ask:
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CBS1. Assume that X has a basis with the CBS. Does every basis of
X have this property ?

The problems are rather difficult. During the last 25 years only
partial answers have been obtained. In particular, Mitiagin has proved
that power series spaces of type 0 have the CS property. Any new
partial result, as well as inventing a new technique of handling the
problems would be valuable.

For detailed information on these and other problems and an
extensive bibliography we refer to the survey [A-Z].

Ad § 6.

The first example of a nuclear Fréchet space without basis,
apparently under a psychological influence of Enflo’s negative answer
to the basis problem for Banach spaces, was given by Mitiagin and
Zobin [MZ] in 1974.

The space E presented here, although without bases, is obviously
the direct sum of its two-dimensional subspaces, in particular it has
the bounded approximation property (i.e., the identity operator is the
point-wise sum of a series of finite rank operators). The first

example of a nuclear Fréchet space without the b.a.p. was given by
Dubinsky (Du], and his construction was essentially simplified by Vogt
{Vi. The Vogt‘s example 1is approximately on the same level of
complexity as our space E. Another interesting technique of getting
nuclear spaces without bases is given by Moscatelli [M].
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