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PROLOGO

La presente Monografia de la Academia de Ciencias de Zarago-
za sirve de complemento a la publicacidn efectuada por la Edito-
rial Springer-Verlag (Berlin, Heidelberg, New York) en su colec-
cidn "Lecture Notes in Mathematics", con el titulo "Orthogonal
Polynomials and Applications" (Proceedings, XIII + 334 pp., Sego-
via 1986).

En dichas Actas figuran publicadas 9 conferencias plenarias,
13 comunicaciones y una coleccidn de problemas abiertos. En esta

Monografia se incluyen 18 de las comunicaciones restantes.

Todas estas conferencias y comunicaciones fueron presentadas -
en el "Second International Symposium on Orthogonal Polynomials
and their Applicationé", celebrado en Segovia (Espanha) los dias
22 a 27 de Septiembre de-1986, al que asistieron 102 congresistas

y del que fue Presidente de Honor el Profesor Luis Vigil Véazquez.

Se celebraron 12 sesiones plenarias de 1t 30", impartidas
por 10 Profesores invitados, 1 sesidn de problemas abiertos y
varias sesiones en las que se presentaron 50 comunicaciones. Las
19 comunicaciones restantes,. que ho figuran en la publicacidn de
Sprihger-Verlag, ni en &sta, fueron rechazadas o sus autores no

las entregaron para su publicacidn.

Entre las Instituciones que hicieron posible la celebracidn
‘del Symposium o la publicacién de sus resultados, debemos mencio-’

nar las siguientes:

Comisidn Asesora de Investigacidn Cientifica y Técnica

Consejo Superior de Investigaciones Cientificas

Confederacidn Espafola de Centros de Investigacidn Matemdti-
ca y Estadistica

Universidad Polité&cnica de Madrid

IBM-Espana S.A. .

Junta de Castilla y Leon

Diputacidn Provincial de Segovia



Ayuntamiento de Segovia
Caja de Ahorros y Monte de Piedad de Segovia
Editorial Springer-Verlag

Academia de Ciencias de Zaragoza.

La publicacidén de las Actas de Springer-Verlag y esta Mono-
grafia han sido dedicadas a la memoria del Profesor Jos& Luis
Rubio de Francia (+).

El Comité organizador del Congreso estaba compuesto por los
siguientes Profesores:

Manuel Alfaro

Jestlis Dehesa

Francisco Marcellédn

José L. Rubio de Francia

Jaime Vinuesa.

La Academia de Ciencias de Zaragoza se congratula de haber
podido contribuir a la publicacién de un cierto nfimero de comuni-
caciones del Symposium.

Rafael Cid Palacios
Editor
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ON EXTEMNSIONS OF FINITE SEQUENCES OF ORTHOGONAL POLYNOMIALS

M%. pilar ALFARO and Luis VIGIL

Dpto. de Matemdticas
Facultad de Ciencias
Universidad de Zaragoza
50009-ZARAGOZA (ESPAFNA)

Abstract

It is known that if {Ph(z)}g;l is a finite sequence of orthogonal
polynomials on the real line or on the unit circle, then, there exists a
unique (except for an arbitrary constant factor) polynomial P _(z)
having some prescribed zeros and which is orthogonal to the above
sequence. Here, we prove an extension of this theorem.

0. INTRODUCTION

o

Let {Pn(z)} be a sequence of orthogonal polynomials on an

algebraic curve 2 Oin € . In particular, y=T={z: |z] = 1} or
Y = R will be considered (in the latter case, the notation
{pn(x)}:zo will be used). For every n , P;(z) = znﬁ; (%) and the
reproducing kernel function Kn is defined by
n
K (z,v) = héb Py (¥)P (2) yec .

We will denote by L the linear subspace of ¢[z] (or R[x];
it depends on the case considered) of the polynomials of degree smaller

than n+1 ; m will be the matrix of moments and An = det moo.

For orthogonal polynomials on T it was proved in [3] that given
a finite family {Ph(Z)}E;é and o e € with |a] < 1 , there exists a
unique (except for an arbitrary positive constant factor) polynomial
P_(z) such that {Ph(z)}2=o is an orthogonal system on T and
Pn(a) =0 Yn = 1 . We will prove that this result can be extended to

the case |a| =1

For real orthogonal polynomials, if the inner product defined in
nn_l is known, a similar result will be furthermore proved; in this
case, o may he any real number different from the zeros of the
{(n-1)~th - polynomial ; this restriction is not surprising because of
the separation of the zeros of consecutive orthogonal polynomials on
R .

Both cases are related to a special kind of extensions which will
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be called Stieltjes extensions (S-extensions, for short). We begin by

making a short summary about them.

I. ORTHOGONAL POLYNOMIALS ON A FINITE SET OF POINTS

Let {ai}2=l be complex numbers non-zero and different pairwise,

provided of the respective positive weights {pi}?=l . We define in

el vectorial subspace of €[z] , an inner product by means of the
Riemann-Stieltjes sums
n
<P(z),0(z)> = hgl PP (o) Qo) PO e

In particular,

A n L
- 1 3. _ i-7 <L i 5 £ Ao
cij <z7,z7> = Z_ PLoh%, (0 i,3j n-1)
h=1
and we have a positive definite hermitian matrix m = (c..)?_%
n-1 ij’i,j=o

from which we can obtain {Ph(z)}g;é in terms of determinants; this
polynomials are an orthogonal basis for Mg - It is shownthat
-1

<Kn_1(z,ai),xn_l(z,aj)>A = ?i Gij (1

£ i,j € n)

and {Kn_l(z,ai)}?=l turns out to be another orthogonal basis for

ﬂn—l . The converse is true, so we have:
PROPOSITION 1. Given n complex numbers {ai};‘:l non zero and
different pairwise, and a positive definite hermitian matrix

_ n-1 n .
mo_q= (cij)i,j=o , the system {K__,(z,0;)};_, dis an orthogonal
basis for w . if, and only if ,

e ij Z <
cj4 = ggi P, oy 8 (0 ¢ i,i £ n-1)

where

_ -1
Py = Kn_l(ah,uh) >0

If we define

n .
= n =3 = -
cnj ;E; p;oy a3 j=0,1,2,...,n-1
we can construct a polynomial with degree n , Pn(z) , in the usual
form, whose zeros turn out to be {ui}§=l . If we define Son hy

means of the corresponding Riemann-Stieltijes sum

n
(o n -n
= E oL UL

cnn . i=1 pl 1 1

14



there results a singular matrix mo that is to say

Ah;éO h=20,1,...,n-1 H A =0

By defining

(0
= e
Shn €nn *teq ! n 0
i A = >'
it results n e, An—l 0

We have, so, an extension of mo_1 and, consequently, an inner
product defined on L Besides, {Pn(z)}2=o is an orthogonal basis
for w_ .

n

DEFINITION. We will name S-extension to any extension of mo_q
géfined by the ahove form, with e 2 0 . Such an extension will be

said terminal if el =0

It is easy to verify that
Pn(z) : )
e @) - Pi K- %0y i=12,...m

and so,

PROPOSITION 2. Given the matrix of moments m _, and n complex

numbers {a i}2=1 non-zero and different pairwise , Pn(z) =
‘n

= A, ) (z-a;) is the nth-orthogonal polynomial in the
i=1
S-extension of mo_q to mo if, and only if, the functional

coefficients of the Lagrange interpolation formula of Pn(z)
constitute an orthogonal bhasis for ﬁn—l with regard to the inner
product defined in it by mo_g
NOTE: A detailed study of the S-extensions can be seen in [7} .
For orthogonal polynomials on R and T , [1] and [2] .

II. STIELTJES-EXTENSIONS FOR ORTHOGONAL POLYNOMIALS ON ALGEBRAIC

CURVES
Let Yy be an algebraic curve of degree h and equation:
h .
z: a 2Pz9 = o , (a_ ) =4a_)
p,/q=o pa . Pq qap
i) A positive definite hermitian matrix m = (c.. ?_%
: n-1 ij’i,qj=o0

verifying the linear conditions

15



h

a cC. . =0 i, =0,1,...n-1
i+p,di+ :

P,g=0 pa Tl

is said to be amatrix of order n relative to vy

.. . r n-1
ii) The polynomials {Ph(z)}hzo

usual form, are called orthogonal on Yy

defined from m in the
n-1

iii) Any extension of mn that is itself relative to vy is a

-1
y-extension of mn-l .
One, naturally, wonders if there exist y-extensions of Stieltjes.

Concerning this, in [9] it is proved that the zeros of the

polynomial Pn(z) corresponding to a y-extension of Stieltjes are
simple and belonging to Yy . Conversely, qiven mo if its minor
mn—l verifies the condition of PROPOSITION 1, Pn(z) has simple
zeros on Yy , {ai}§:1 , which provided of the respective weigths
{Kn_l(ui,ul) l}? i determine a S-extension moo.

If m 1is a S-extension and {ai}?:l are the n zeros of
Pn(z) ;, the elements {cho}ﬁ;é are sufficient to determine the

L . n .
remaining elements of mn : in fact , the numbers {pi}i_l are

obtained as the solutions of the system

i=1 j
h=0,1,...,n-1

Consequently, not any matrix relative to a curve vy corresponds

to a S-extension.

III. THE CASES vy = R AND Y = T . EXTENSIONS WITH A FIXED ZERO

Let Yy = R and let {ph(x)}2=o be orthogonal polynomials on
the real line. If {ai}?:l are the zeros of pn(x) and in the

Christoffel-Darboux formula
kn—l pn_l(y)pn(x)—pn(y)pn_l(x)
kn ) x=-y )

K _q(xiy) =

([6] , p. 43 , form, 3.2.3).

J + = = i = i j

we put X o5 s Y uj , 1t results Kn_l(ui,dj) 0 vi # 3,
being Kn~7(ui’ai) > 0 ¥i . Hence, in orthogonal polynomials on the
real line any y-extension is a S-extension.

Let v =T and let {Ph(z)}gjo be orthogonal polynomials on

16



the unit circle. If Pn(z) corresponds to a S-extension, it has n

zeros {ai}?=l different pairwise, with ]ail =1 vi . So,
det mn = 0 . Conversely, if Pn(z) has its zeros of modulus 1 , they

are just the n zeros of P;(z) and the Christoffel-Darboux formula

P;(Y)P;(z)—Pn (y)Pn(z)

Kn_l(ZIY) = l-yz

( [6] , p. 293 , form.11.4.5),

by putting =z = oy 4 y'= oL yields Kn—l(ai'ai) =0, 1i# i so
that, we have a S-extension. In short, if y =7 then,a y—-extension

is a S-extension if and only if it is a terminal extension.

We will prove now the results mentioned at the beainning.

PROPOSITION 3. Let us consider an inner product in M1 + defined

by a n x n Hankel matrix , and its associated orthogonal polynomial
system {ph(x)}g;é . For everv o e R with pn_l(a) # 0 , there exists
a polynomial of degree n , pn(x) , (unique except for an arbitrary
positive constant factor) such that ‘{nh(x)}ﬁzo is an orthogonal
system on R and pn(a) =0 .
( n-1

h-1 = i35, 5=0
expression in terms of determinant for pn(x) , the condition pn(a)=0

Proof. Let m the Hankel matrix. By using the

can be written

S s, ce S.-1 s,
S1 Sy ° *n Sn+l
. . . . ~S5n-1Ppo1(@) =0 (1)
Sp-1 S e S2n-2
n-1 n
1 .. a a

Because the above determinant depends exclusively on o and on

the moments in nn_i ; we represent it by A(a) . Relation (1) implies

-1
Sope1 = () {?n_l(u)] (2)

and s 1 is determined provided that P (a) # 0 . So, the

2n- 1

17



v

determinant pn(x) is defined . #

Nevertheless, to construct mn we need to know S2n . The

relation An = An(SZn) = 0 can be interpreted as an equation in
Son whose solution S;n corresponds to a S-extension. Finallv, the
positive definite extensions are obtained for values
. )
SZn = S2n + en , en >0 .

We want to note that, accordina to PROPOSITIOM 3, the n-~th
polynomial pn(x) is obtained before the character of the extension
has been decided. So, the zeros of on(z) are the same whatever this
chatacter is; this situation is very different from the one of
orthogonal polynomials on T , and it is, probably, unique in the

theory of orthogonal polynomials on algebraic curves.

NOTE: PROPOSITION 3 completes the result about determination of
polynomials on the real line by some of their zeros that can be seen
in [5] and [10] .

n-1
h=0

PROPOSITION 4. Given the finite family {Ph(Z)}
polynomials on T and o e T , there exists a polynomial df degree

of orthogonal

n , Pn(z) , (unique except for an arbitrary positive constant factor)

such that {Ph(Z)}2=o is an orthogonal system on T and Pn(a) =0 .
The extension of m , to m = so obtained is a S-extension.

Proof. 1In this case the matrix of moments is a Toeplitz matrix,
_ n-1 - _ -
mn_l = (ch)h=—n—l with c_, =¢ .

Any Toenlitz extension is determined by cy - The S-extensions
t . . .
correspond to values cn such that the associated matrix, moo is

singular. Every ci belongs to the circle with centre ¢ and radius

e 1 ! [2] , p. 43 , form.(6.3)). So, for every Ve [0,2m) , we
obtaln a S-—extension determined by -cgy = c+en_lel$ , with n-th
polynomial
ie
e, cy . Cho1 cte e
Co1 o co ®n-2 “n-1
P lzip) = T
Con+1 -n+2 77 € €1
n-1 n
1 z z z

18



which, by a routine algebraic calculus ([2] , p. 45. form, (6.9)),

can be expressed

. - . Llon
Polzig) =ep,y 2Py g (2)-ey 47 PR 1 (2)
Since there must be Pn(a,tp) =0 for a=elerT , the
extension is completely determined by being
) ia,’
. . P__.(e7)
elw _ ela n-1 ] (3)
px (e '
n-1
Explicitly ,
n-1 ia .
=2 ) arg (e” -B.) - (n-2)a
= !
j=1
n-1
f .
where {Bj}ﬁ=l are the zeros of P__,(z) . #

Relations (2) and (3) define both of them functions Sonl1 =

= s2n_l(a) and = (p(a) . Their study furnish a simple geometric
interpretation of the known property about separation of zeros of

n-th polynomials associated to S-extensionson R or T ([1] , [2]).

IV. THE GENERAL PROBLEM OF EXISTEMCE OF S-EXTENSIONS

Such as we have explained in I , the existence of S-extensions
can be related to the problem of Lagrange interpolation. The
Christoffel-Darboux formulae clarify completely the question for
orthogonal polynomials on R or on T . It seems natural to wonder

what happens in the remaining cases.

We have Christoffel-Darboux formulae for others algebraic curves,
specifically for harmonic hyperbolas [8] 'and for cassinian curves
and lemniscates of Bernouilli, particularly, [4] . In this one, the
method employed in III, seems unuseful on account of the nature of
the formulae; in the former, the application of this method requires
some additional conditions; it is not surprision because, except for
the cases R and T , not any extension 1is a S-extension, but there

are S—extensions.

When one does not have Christoffel-Darboux formulae, another
method must be used. Since the following relation holds
n-1 .

(z,y) = S [T zlyj

X 3
n-1 i 3=0 i5

19



-1
n-1 _ [ n-1 1 s
where (Uij)i,j=o = (cij)i,j=o_ , one could start by determining
the values vy, for which the corresponding equations Kn_l(z,y) =0

iffer irwi r 2412750232
have d erent pairwise zeros 1727 1Zo 1

Then, one must choose the sets of different elements
(21'22""’zn+l’y) such that every possible pair of elements of every
one of them satisfies Kn_l(z,y) = 0 . Finally, that a S-extension has
been really obtained must be shown.

This technicue, simple in theory, does not seem easy to put into

practice, at least, in general.
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Abstract

The reduced Hausdorff moment problem is approached as a special case
of ‘a generalized underdetermined inverse problem.The Maximum Entropy (ME) Formalism
for these sort of problems is used:We choose between all the weight functions comp-
atible with the constraints imposed by their firs N+1 moments,the one which maxi -

mizes the entropy functional of the weight function.

The properties of the approximations to the weight function obtained
by this method are studied and a-theoretical and numerical comparative study is also
done with the more familiar methods as Orthogonal Polynomial expansions and Stielt-

jes-Chebyshev approximations to the weight function.
1.Introduction

The aim of this paper is not to apply Moment Theory or properties of
Orthogonal Polynomials (OP) to physical problems,but conversely,to use a very general
physical principle,the Maximum Entropy Principle,in order to obtain sequences of

solutions, XéN%x),to the reduced Hausdorff moment problem.

In section 2.ve briefly review the reduced moment problem and some of
the methods to solve it.In section 3. we introduce the ME method and finally in sect-

ion 4.some numerical results and'conclusions are presented and discussed.

2.The reduced Moment Problem.Methods.

Many physical quantities of great interest are related to integral

transforms of nonnegative functions.

a
¢m= |

b F(x) x{x)ax , x(x)20, xe[a,b] (2.1

The estimation of these quantities using only a limited number of pa-

rameters is an old and well known problem. In its usual form the known parameters
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consist of the moments of the weight ¥ (x)
m 2 n
W=y =[x x(x) dx, m=0,1,2,... o2

Moment theory provides rigorous bounds on the aver&ge of F,¢{FY ,by using
the properties of the OP system associated to the weight. [1] .Sometimes this is not

sufficient but information on the actual weight,y(x),is wanted.

Even in the theoretical case where moments of all orders exist and are

known,the complete set does not necessarily uniquely determine the weight [2,3] .The
practical (physical) situation is one where only a few moments are available,either

from experimental measurements or from theoretical calculations,so a unique reconstruc-

tion of x(x) is impossible in view of this limited information.

Nevertheless there are approximation procedures constructing sequences of
)
(

. N .
functions é x) such that their moments are the known ones

3
f x(x) « dx =y ,m=0,1,2,..,N
b m ! (2.3)

and which eventually converge to the true weight when N tends to infinity or such

that we have average convergence,

IR (N
£ FY= lim f F(x) x?x) dax (2.4)
N-poo b .

Perhaps the two best known methods for this sort of inverse problems are
the Orthogonal expanéion method and the Stieltjes-Chebyshev technique related to Pade

Approximants (PA) and continued fractions.

In the OP expansion method or the Reference weight method, [ 4] ,we expand

the unknown weight in this form :
© -
x(x)=W(x) I anPn(x) (2.5)
n=o
and we look for sequences of approximations %géx) such that

N N
X( {x)c Wix) I

op 3Py () (2.6)

n=o
where W(x) is a known weight and Pn(x) are OP with respect to W(x).Then we also have

the usual orthogonality property:
a
. P dx= §
fb Pn(x) m(x) W(x) dx om (2.7)

We can calculate the coefficients an

a

a = f Pn(x) ¥ ({x) dx n=0,1,2,...,N (2.8)

solving a (N+1)x{N+1) system of linear equations.
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The maig advantage of the method is that it is easy to solve and also
that the approximations are continuous functions.On the other hand some of the dif-
ficulties are that we have to chqose properly W(x) and to study the convergence of
equation (2.5),which depends on the abive choice.It is usual to have many oscillating

approximations ans sometimes we loose positivity in the interations.

In the Stieltjes-Chebyshev method we attempt to approximate the nonnega-

tive function x(x) by finite sums of delta functions

n
(N _ (N _ (n) (n)
Xg %x) dx = dWS {x) —i£1fi 6 (x~ N ) dx . (2.9)
where N+1=2n is the number of known moments and
: i ) ()
[n-1m] =1 —) eV €[0,7] ,fi“>o (2.10)

i=1 1+ze,
1
1

is the Pade Approximant to the Stieltjes function H(z)=j0 ¥ (x) /(1+xz)dx
(n) (n)

The relationship between the moments and the parameters fi €5 being, [ 2,57 :
bl (n) .k (n) .
= n .
" §=1(Ei UET . k=0,1,2,...,2n-1=N 2.1
This method yields a steps distribution approximationx(g) to x(x) :
(n) _
WS =0 , 0«< x<~5:n)
tn) 3 (n) (n) (n)
Yo o= 2 ; Ei< %< g, :
p=1 P ] j+1 (2.12)
(m)y - 2 (n) (n)
v - T £ CoePly (n) (n) P
s = P ‘ n v €S < Ej for i< j

Such distributions satisfiy the Chebyshev inequalities:

The main advantage is that we get rigorous upper and lower bounds on the distribution
x(x) ,and also on the averages of F, {F) .The main difficulty is that we have a dis-
continuous approximation to de distribution and a smoothing procedure is needed in
order to have continuous approximations to the weight X(x) .
In principle we only have bounds at the points relaﬁed to the poles of
the PA but by using the sequence of quasi-orthogonal polynomials we can arbitrarily

vary the position of one of the poles of the approximants.
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3.The Maximum Entropy Formalism

The non uniqueness of the solution of the reduced moment problem forces
the search of other alternative methods in order to compare the differeﬁt solutions.
In view of the main difficulties of the previous methods:the lack of positivity in the
first and the discontinuity in the second one,we are going to try and get approxima -

tions which automatically have positivity and continuity.

The ME method is based on a very general principle which is the foundation
of the Statistical Mechanics and has recently had a large number of succesful applica-
tions in other inverse problems including image reconstruction,data analysis and in -

formation theory.[ 6,7,8] .

For many years it has been recognized that entropy acts as a kind of mea-
sure in the space of probability distributions,in such a way that those distributions
of high entropy are in some sense favoured over others.Nature prefers distributions

of maximum entropy,so distributions of higher entropy are more likely than others.

We can state briefly the principle in this way [6] H
When we make inferences based on incomplete information we should draw
them from that probability distribution that has the maximum entropy permitted by the

information we actually have.

The incomplete information we have now is the set of N+1 first moments of
a function and the ME principle says that we have to choose between all the weight
functions compatible with the constraints imposed by their first N+1 moments the one
which maximizes the entropy functional of the weight:

1 N 1
SGo== ] xt0 Inx(x) ax + T A (- [ xx0 = ax)
' o

o n=o (3.1

The ME choice is the least biased choice we can do taking into account the
information we do have.We are going to see how this general physical principle leads

to sequences of approximations which have many interesting and concrete properties.

To calculate the ME solution to our problem,we have to solve this Lagran-

ge multiplier problem:Find the maximum of S(Xx) permitted by the constraints,

Functional variation with respect to the unknown X (x) gives this expresion

for the ME solutions:

N n
X(N')= exp(~- L .Xn x ) (3,2)
E n=0

suplemented by the conditions
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(1 .n (N)
l-ln-g X XE (x) dx ,n=0,1,...,N 3,3)

We can see how these approximations automatically incorporate positivity
and continuity.In order to get maximum entropy solutions we have to solve a non li-
near systemof N+1 equations with N+1 unknown Lagrange multigliers. This systeém can
not be solved analyticaly except for N=1. '

After normalization we have the following relation between AO and the
remaining Lagrange multipliers:

1 N n
dx exp(-I An x ) =2

exp (-A))= f
o n=1 (3,4)

Therefore we have to solve this system ofn.eqhations 3

3

n (3,5)
dx > =1y , n=1,2,..,N
n
where 1 N
. : n
¢ xk) = [ ax & exp(- T Ay X)) /3
° n=t (3,6)
) Now we introduce a potential function U(x1,A2, ,XN) [8] whose statio-
nary points are also the solutioris‘of ME.
N n , (3.7
U=ln 2+ £ v A, 0 =3U/3X =¢x >» =yu_,n=1,2,...N : ror
=t B . n .

There are some properties concerning the solutions of ME and the poten-
tial UG, 2, P .

First it can be proved that the potential U is everywhere convex.This
means that if a ststionary point is found it must be a unique absolute minimum,Con-
versely covexity alone does not guarantee the existence of a minimum.The existence

of ME solution depeds on the sequence of known moments,as can easily see in the an-
allytic case N=1.

1

7= ]odx exp(_x1%)=(1-exp(rl1)/l1 U =1n((1-exp(=2,)3/2,) +51u1 G.8)

U(x1) is a convex function but posseses a minimum at some finite A1-only

if u_ <i=u
1 o] °
The conditions the sequence of ll\O“lelltS{-‘ \} > 0 must satisfy in order

to guarantee the existence of a ME solution are given by the following theorem [ 9].
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T1.- A necessary and sufficient condition that the potential U should

have a unique minimum at some finite values of lambdas,for any N ,is that the moment
i n

sequence {u n} no should be a totally monotonic Sequence:

k
k m k
Au =T (-1 (m)un-!-m >0 ; n,k=0,1,2.. & {u n\] n),OéTM
- m=0 (3,9)
This theorem guarantees the existence of a ME solution X(g) for any N.

The solution is nonegative,absolutely continuous and satisfies the reduced moment pro-
blem.
There is also a theorem on convergence [9] H
T2.- A ME sequence %g) with the above general properties converges in the
following sense:
o !

1 .
Tiim [y E) F(x) dx = [ x(x) F(x) dx = {F) (3,10
N=p> o o

where F(x) is some continuous function.

4.,- Numerical results,comparisons and conclusions.

We have used a clasical Newton minimation procedure to find the parameters
A1, 12, ’XN where the potential U is minimum,that is to say,where there is a ME

solution to the reduced moment problem.

Figure 1 shows the ME sequences obtained by using 1,2,3 and 4 moments of
a polynomial weight.It can be seen how the ME approximations cut the true weight so

many times as moments we use.

Figure 2 shows the first ME approximations to a more complicated polynom-
ial.In fact the fifth approximation is already a very good one,taking into account -

the small number the parameters needed.

As PA are exact approximations to rational functions,i.e. when the weight
is a finite sum of delta functions,the ME method is also exact when we have the mo -
ments of an exponential of polynomials:Figure 3 shows the first three approximations
to an exponential of polynomial of degree 3.In fact the fourth appxoximation is just
the exact weight.If we insist and try higher polynomials the new lambdas are always

Zero.

Figure 4 shows a comparisoh between a Stieltjes and a ME approximation in
a physical case where we do not know the true weight function but its first eight mo-

ments.The  unknown weight is related to the imaginary part of the K_p scattering ampli-
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tude which is not accesible experimentally. [101 .

The Stieltjes histograms for the distribution function constructed by
means of the poles and residues of the PA can be seen.Also the interlazing proper-
ties of the zeros of the denominators ,which are OP with respect the weight, are

apparent.

We can also see how the ME distributions keep inside the bounds imposed
by the Chebyshev inequalities.On the right hand side we have the corresponding we -
ight functions obtained from the slopes of the segments joining the mid points of

the discontinuities of the Stieltjes distributions and the ME solutions.

And finally in figure 5 we have 'a comparison between a Stieltjes—Che -
byshev approximation obtained by using quasi-orthogonal polynomials and our ME we-

ight.Despite of using very different methods they are quite similar.

The conclusion is we nweed various alternative methods of inverting the
reduced moment problem owing to the non uniqueness of the solution.In this way we can
compare the differnt solutions.Each method has advantages and dificulties but some -
times they are complementary as in the case of Stieltjes-Chebyshev and Maximum Entro-
ny extrapolations.The first method provides rigorous bounds on the distribution func-
tion and the second one chooses between all the possible‘distributions,compatiblewith
the moments we have ,the one most reasonable in a certain sense:the least biased dis-

tribution on the base of the information we actually have.
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Figure Captions

Figure 1.-Maximum Entropy approximations obtained with 1,2,3 and 4

moments to the polynomial weight x(x)=2x

Figure 2.-Maximum Entropy distributions(above) and weights(below)
to the weight function X(x)=x2+2x3-—3x4 ,obtained with
2,3,4 moments.The fifth approximation is already very

near to the weight.

Figure 3.-Maximum Entropy weights for an exponential of a polynomial.
' The fourth approximation is exactly the weight function:
Maximum Entropy approximations are exact for this kind

of functions.

Figure 4.-Comparison between a Stieltjes and a Maximum Entropy
approximations obtained with 2,4,6 and 8 moments.The Maximum
Entropy distributions keep inside the bounds imposed by the
Chebyshev inequalities.

Figure 5.Comparison between a Stieltjes-Chebyshev approximation using

quasiorthogonal Polynomials and a Maximum Entropy approximation.
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I. INTRODUCTION

Some of the results presented here were published recently [1].
The others are new. We will start with some historical remarks.

In 1910, Pidduck [2] wused the polynomials un(z) generated by
4 L5
_d+e) > un(Z)tn (1)

(1-0) 2%t Ao

In 1940, Hardy [3] studied the orthoconal set P (x)

1
P (x) = (=) u (7 F +ix) (2)
+e0 P (x)P_(x)
n m _
/-w cosh 7mx ax =Sim - ' 3

Taking into account the relations

1 . 1. _ T A\
T( 5 +it) I ( 3 -it) = Sosh ot (4)

‘we can write the integral (3) as the Hermitian scalar product in

562 of the functions wn(t) and wm(t) with

_ =1/2 1 . I
wn(t) =T r(s3 +1t)nn( 3 +it) . (5)
The polynomials Pn(x) are a particular case of those introduced in

1950 by Pollaczek [4] .
We suggest referring to the polynomials Pn(x) as the Hardy-

Pollaczek polynomials. We note that the Mn(x) = n!Pn(§) are called

Meixner [5-6] polynomials and have integral coefficients. The

moments of the polynomials un’Pn'Mn are related in a simple way to
the Bernoulli and Euler numbers.

In 1982, the Authors (H.B. and M.B.) were led to the following
polynomials in X , ¥ , 2-:
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n

_ 2 I'(z+1) e _ Lo 1l-x
un(x,y,z) = E——,:— m ZFI( n,-n-y,z+1l-n ; 5 ). (6)

More precisely, the values taken by those polynomials for Y,z € N
appear as matrix entries for elements of boson algebra in a harmonic
oscillator basis [7-8] . The generating function of the

no(x,y,2)  is

0

L+(14x)£] ® -y
[1- (-0 ]2 =

o (x,y,2)t" _ (7)

The Pollaczek and Pidduck polynomials correspond to the following.

particular cases:

pék)(g) = (<D™ u_(0,22-1,-2r+iE) (8)
uo(z) = un(O,O,Z). (9)

The Pidduck polynomials take integral values for z e N with the

nice symmetry property

- _ »(n=-%,0)

By (3) = ng (n) Py (3) (lQ)
where Pia’s) stand for the Jacobi polynomials. The un(&) are known
in Combiratorics as Delannoy numbers [9-10] : u (¥)  is the number of
ways to go in N2 from (0,0) to (n,1) by steps of (1,0) , (0,1)
or (1,1) (a consequence of Eq.(14) below).

II. SOME OF THE MAIN PROPERTIES OF THE H-P POLYNOMIALS

a) Generating functions

0 Z
Z u (z)tn = % (11)
n=o " (1-t)
) n
2w () Er=e® Moz, 1,-20) (12)
n=o :
(M: confluent hypergeometric function).
b) Recurrence relations
D)y 1 (2) = (224D (2) + np_,(2) (13)
Mogqp(2t) = un+l(z)‘+ wolz+1) + u (2) ‘ (14)

c) Contour integrals
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1 [ gz _(s+n”

(2 =g s —ny1 9s (15)
(s-1)
1. 1 / 2i62 (coth 8)"
M3 R =y e sinno. 90 - (16)
the integrals being around s = 1 and 6 = 0 , respectively.

d)° Relations with Laguerre polynomials

()T (z41)u_(2) = j et Ln(2t)tz_ldt ) (17)

[e]

III. THE T FINCTIONS AND H-P POLYNOMIALS

The 1link between the T function and the Riemann ¢ function
and H-P_ polynomials can be given a group theoretical interpretation
via a representation of SL(2,R) investigated by Itzykson [11] . We
shall not present these arguments here, however. We proceed in another

way .
First, we introduce the Laplace transforh
on(p) = fm e Pt —LE:E%;T dt (18)
o (t+1)

From’ .
—(Ei-llnil—l = fcvc T (EFDY 1 (2y) au (19)
(t+1) o

we get - 7Y (2u)
cn(p) = ‘/o ———51%———— du (20)

From recurrence relation of Laguerre polynomials, it is easy to see

that

o () - Ln(-2p)co(p) (21)

is a polynomial of degree n-1 . This means that an(p) is rationally

related with oo(p) . Moreover,
- N n_ 1 1+x
S(p,x) = ﬁ; o (P)x" = 7 oy (P 1oy - (22)

Now, from

r(z) = /ﬁ e™S 5% 1as
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and

s n
z-1 © (= =-1)
S P
= = 2 z-1 —_——
(p) éé% Un( ) (5 +1)n+l
p
if follows-that
L2 o5 2 o (pu (z-1). (23)
n
P n=0
The properties
-1% (p) > 0 » for o= 1 (24)
X N
lo (p+1) | < lan(p)] for p>1 (25)
make the following series convergent for p 2 1
yn(p) = On(p) + on(p+1) + on(o+2) + ... (26)

Another expression can be obtained from the orthoconality property for

o_(p) , namely
n .

re Lo -1 S,
(;1)n j.+m ( 5 +1L)un(. 3 +it) 571

P at (27)

cosh7t

IV. THE RIEMANN ZETA FUNCTION

Three expansions have been given in feference [1] for the ¢

function. Let us add the following one

Tz)glz) =2 3y udz=1) s (28)
n=o
where
® (s=1)™
Y = — ¥ ds . (29)
n jo eSo1 (s+1)Ptl

We see that Yn is nothing else than the value taken by the function
yn(p) of (26) for p =1 . It follows that

ﬁi © e_uLn(Zu) .
TR SR G LT (30
n =1 ° k+u

Moreover, From (27):

+o T ( . +i ( 1 +1
- = - =
- j ) 1t)un 5 +it)
n 2 coshmt

-0

1
r( 5 +it)dt (31)
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All these equations, and especially (28), suagest the use of
expansions of < (z) (or related functions) in polynomials pn(z—l),
since the zeros of the un's are all on the line Re z = -1/2 .
However, the expansion (28) does not use the symmetry property of

the un's , namely
_ ,_\n
un(—z—l) = (=)7u, (2) (32)

It is then more natural to use, instead of 1z (z) , Riemann's function

z(z) which has the required symmetry

£(z) = Z—(gﬂ n72/2 r % z(z) (33)
g(z) = g(1-z) . . (34)

It is not very difficult to pro&e that

E(z) = 2 B_u, (z-1) (35)
n=o n 2n
with
0 2n . L .
(t-1) a ,,2
B8 =4 —_— = (tTy'(t))dt (36)
n fl (t+l)2n+1 dat .
where . ) 2 2 .
Pix) = 1/2+ p & ™M (37)
n=1

Note that the expansion (35) seems very promising for the proof of
Riemanns's conjecture (& has allits zeros on the line Re z = 1/2).
:Thé fact that the 8  are all positive and rapidly decreasing is
encouraging. A natural idea is to investigate the properties of
expansions of type (35) . We present some results in the next
section. But first we give some properties about Mellin transforms and

H-P polynomials.

The functions

’ 2n
d 2 (t-1)
vit) = [t%v' ()] . N S TrS (38)
dt [ (t+l)2n+l
satisfy the common property
£ = x £(x) (39)

Any function £ satisfying (39) has a Mellin transform ¥ such
that
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= . ° at _ % n
f((1/2)+ix) = f(t)cos (x logt) — = a 1P (x) (40)
. J'i vt ngo n n
f°° (t-1)"
with a =2 ——  f(t)dt
n ° (t+l)n+l

(the proof is easy).

V. THE RIEMANN CONJECTURE?

Here we present three propositions which help us to prove that
£ has no real zero in the critical strip, a very weak result since

it is a wéll-known provmerty, but the sinqularity of the method (using

the expansion (35)) seems to be nromising.
Consider a polynomial R2n(x) of deoree 2n of the type
n 1 .
_ ~ = +ix)
R, (x) = Z_: aglse 2 (41)
$=0
Define
n 24 .
an(tanh'u) = 2; ai(tanh u) e, (42)
4=0
It is easy to prove that
an(tanh u) _ '{+w Rzn(x) 2ixu . (43)
cos h u coshmx %

)

and the Fourier inverse

Ry, (%) 1 ./ © F, (tanh u) o-2ixu
coshnx T cosh u " °

From here, using arguments similar to these in work of Polya [12] ,

follow the three propositions:

Prop. 1. The number of zeros of R, (x) in the interval ] —%,%[ is

not greater than the number of real zeros of R n(tanh u) .

2

Prop. 2. The number of real zeros of RZn(x) is at least equal to.
. i i
the number of zeros of F2n(tanh u) in ] -5 3 [

Prop. 3. If the ag satlsfz 0 < a441 < a$ , Fn(tanh u) has no

. ; e T in -] 1 %
zero in the strip |Im u] =37 and R2n has no zero in ] 5 13 [.
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UNE CARACTERISATION DES POLYNOMES ORTHOGONAUX SEMI-CLASSIQUES

S. BELMEHDI

Dept. de Mathématiques
73011 Chambéry. France

Abstract
Let | be a regular linear functional and {Pn}néo the orthogo-
“nalpolynomials associated with L. Let define: Qn(x)=P$(x) + Pn(x).

We characterize L , in the case when there exists a fixed nonnegative
integer s such that {Qn}néo is a quasi-orthogonal sequence, of or-
der s , with respect to a linear functional H .

1. INTRODUCTION

. Les polyndmes classiques (Jacobi, Bessel, Laguerre, Hermite) peu-
vent 8tre caractérisés comme &tant des suites orthogonales dont la sui-
te des dérivées est aussi orthogonale [1], [2]. Récemment MARONI ([3],
[4]) a présenté une théorie générale des polynbmes semi-classiques c'est
5—dire des polynémes orthogonaux dont la suite des dérivées est quasi-or
thogonale d'un certain ordre; en ce sens, les pdlynbmes semi-classiques
généralisent immédiatement les polyn6mes classiques.

L'objet de cet article est de caractériser les suites {Pn}
tels que la suite {Qn}

n>0

=g définie par: Qn(x) = P (x) + Pn(x)

L
n
soit quasi-orthogonale d'un certain ordre.

- ®
{Qn}néo se présente comme une perturbation de P et de P..

En imposant une hypoth&se aussi peu contraignante que la faible or-
thogonalité sur la suite {Qn}néo on démontre que la suite {Pn}néo
est semi-classique. Ce point de vue permet de réorganiser, autrement,
les suites semi-classiques. Introduisons certaines définitions qu'on

utilisera dans la suite:

Définition 1.1 (1] La suite libre {B_} y, est dite faiblement ortho-
gonale d'index 1p,q) par rapport & L , s'il existe un couple d'en-
tiers p,g®l tels que:

Ls__,) #0, L) =0 si n3>p

p-1

L(x Bq_l(x)) #0, L(xB (x) =0 si n > g .



péfinition 1.2 ([3], [5], [6]). ©La suite libre {Bn}néo est dite quasi

orthogonale d'ordre s relativement 4 L si elle vérifie:

L(xmBn(x)) =0 , 0<£mé%n-(s+l) , n 2 s+l
il existe T 2 s tel que: L(x""5B(x)) # 0.
Définition 1.3 ( [3] ). La suite libre {Bn}néo est dite strictement

quasi-orthogonale d'ordre s relativement a L si elle wérifie:

L(XmBn(X)) =0 , 0%m¢%£n-(s+l) , s > s+l
)

¥n=3s, (xS

2. L'OPERATEUR D

Considérons 1l'opérateur D: P——> P  dé&fini par:
D =D+ id (2.1)
ou P = m[x] et D = d/dx.

Il est aisé de voir que D vérifie les résultats donnés par:

Lemme 2.1 Soit o, e C et P,R e P

D(aP+BR) = o D(P) + BD(R) . (2.2)
D(PR) = P D(R) + R D(P) - PR (2.3)
Dix) = 1+x (2.4)

Soit maintenant Pn(x) un polyn®me normalisé&, on notera:

= > '
Qn D(Pn) pour n 0 . (2.5)

Considérons une suite normalisée {Pn}n>0 régulierément orthogo-
nale par rapport & L . Introduisons la récurrence d'ordre deux véri-

fiée par la suite {Pn}néo

(%) = - . - e}
(x) (x Bn+l)Pn+l(x) Ype1Pp (X 0Ty

(2.6)

Po(x) =1 , Pl(x) =x - B

On a de (2.6) en faisant n — n-1 et tenant compte du lemme 2.1

= - - >
Pox) =0 (%) (x -8 Q0 (x)+y 0o (x , n=0 (2.7)
avec la convention suivante: tout polyn®me d'indice négatif sera consi-
déré comme nul. On va caractériser certaines suites réqulierd@ment or-

thogonales {Pn}néo d l'aide d'une propietéd de la suite {Qn}néo
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3. LES D-POLYNOMES ORTHOGONAUX SEMI-CLASSIQUES

On se place dans les conditions décrites a la fin du paragraphe 2.
Théoreme 3.1 “"Les propositions suivantes son équivalentes:

(Pl) il existe une forme linéaire H telle que la suite {Qn}

n>0
>

soit faiblement orthogonale d'index (p,q) par rapport a H , p,g 1.
(Pz) les formes linéaires L et H vérifient les conditions:

a) il existe un polynbme V¥ unique de degré p-1 tel que:

H(D(P)) = L(¥P) , PeP (3.1)
b) il existe un polyn®me A unique de degré g-1 tel que: :
H(XD(P)(X)) = L(AP), P e P (3.2)

Définissant l'entier s 2 0 par s+l = max(p,g-1), il existe un entier
r (0 £ r € s+1) et un polyndbme ¢ unigue de degré s+l-r tels que:
H(P) = L(eP) PepP (3.3)

de plus on a: ¢(x) = xy(x) - A(x).

(P3) il existe s et r deux entiers, s =0 , 0 £ r £ &+1 et une
forme linéaire H tels que: la suite {Pn}néo est strictement quasi-
orthogonale d'ordre (s+l-r) par rapport & H . La suite {Qn}néo est

quasi-orthogonale d'ordre s par rapport & #H
(P3bis) il existe une forme linéaire H telle gue la suite {Qn}néo

soit quasi-orthogonale d'ordre s par rapport a H

(P,) il existe s >0 et 0 £ t £ $+1 entiers et un polyndme ¢
4 ‘ p
de degré t tels que:
nt+t
#(x) Q (x) = I Oy P (x) ) nzs (3.4)
V=n-s
‘ ' ' (3.5)
3 tzo0 tel que BT’T_S #0
Pypis) il existe s,t > 0 entiers et un polynbme ¢ de degré t

tels que (3.4) et (3.5) soient vérifiés.

(PS) il existe un polynBme ¥ de degré (p-1) et un polynbme AN
de degré (g-1) tels que:

L(yp) = L([8¥(x) - A(x)] D(P)(x)) , PeP (3.6)"

Théoreme 3.2 {Pnjnéo suite régulierdment orthogonale par rapport a L

: _ N L0 - . . A 1 .
Soit Qn = W(Pn) , n 0 ; D D + ldP et LQanéO faiblement ortho

gonale d'index (p,g), p.qg > 1 , par rapport & #H . Alors: {P_} ., est
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une D-suite orthogonale semi-classique de classe s [4] , o s + 1

= max (p,qg-1).

4. SUITES SEMI-CLASSIQUES

Comme on l'a signalé dans l'introduction. D = D + idP est un opé-

rateur qui peut s'interpréter comme une double perturbation soit de 1l'o-

pérateur D , soit de 1l'opérateur idP . Dans ce paragraphe on va montrer

qu'effectivement, sous les hypoth&ses du théoréme 3.2 {Pn} est une

n3Q
suite semi-classigue tout court.

Théoréme 4.1 "Soit {Pn}néo réguliérement orthogonale par rapport a L

et {D(Pn)}néo faiblement orthogonale d'index (p,q), p,g = 1, relati-

vement a H . Alors:
VPer?P H(D(P)) = L(¥p) (4.1)
H(xD(P) (x)) = L(XP) (4.2)
H(P) = L(3p). (4.3)
Avec, ¥=v-5 (4.4)
Yo = ax) - xo(x) (4.5)
¥=0=xv(x) - A(x), (4.86)

oi ¥ , A et ¢ sont les polynfmes énoncés dans le th&ordme 3.1.

-De plus on a: . A
L¥p) = L([x¥(x) - Xx)]P" ())."
La démonstration de ce théoréme est -immédiate; en prenant (3.1),

(3.2) et (3.3) et en explicitant l'expression de D =D + idP .

Théoreme 4.2 Soit {Pn} régulierdment orthogonale par rapport a L,

n20

{Qn}néo faiblement orthogonale d'index (p,q) -relativement 3 H et

v o re s - T > -
{an}néo définie par (n+1)an = Pn+l , n=20 . Alors:

si A9 -1, {Bn}néo est strictement quasi-orthogonale d'ordre s et

donc {Pn}néo est une suite semi-classique de classe §.

si =q -~ 1, degré ¢ = s + 1 -r , 0£r€s +1
*r=20, {an}néo est strictement quasi-orthogonale d'ordre s et
donc {Pn}néo est une suite semi-classique de classe S.

*rx 2, {Qn}néo est strictement quasi-orthogonale d'ordre s-1 et

donc {Pn}n*O est une suite semi-classique de classe s-1.
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* r =1,

- degré V= , degré ¥=s+1 , {an}néo est strictement
quasi-orthogonale d'ordre (s-1) et donc {Pn}néo est une sui-

te semi-classique de classe (s-1).

- degré Vs -1 , degré Y=3s5 , {én}néo est quasi-orthogona
le d'ordre (s-2) et donc {Pn}néo est de classe (s-2) .

- degré Y =s-1, degré A€ s .

5. MOMENTS ET FORMES DES SUITES SEMI-CLASSIQUES

En vertu du théo;éme 4.1 , toutes les formes L régulidres asso-

éiées aux suites semi-classiques sont données par:
L¥p) = L([x Y(x) - K(x)] P(x) ) , PeP (5.1)

oll les polynémes ¥ et X sont donnés paf les expressions (4.4) et

(4.5), le degré de ¥ et X dépend de la position de ¢ par rapport

da (g-1) . Ainsi on a :

A-1Sp<ag-1 ,stl=gq-l
¥(x) =ki§i1 kak + (Ap - ﬁp_l)xp +Eéi Oy 0 - o) &+ (bt A (5.2)
Ax) = Ay x*2 +:§:+2 A+ Ak_l)xk «{E; Ot Ak_l-wk_'z)xk O+ )X+ A (5.3)
o(x) =k§:d S RN RN (5.4)

ou Ak R wk sont, respectivement, les coefficients de A et V¥ . Si

1l'on pose u, = L™ , no, (5.1) devient:

s+l _ P p-1
: - - +
Eooen MG et 0 ) F 2 O i) Gt ianey) o Vi Mnak *
Xo( B,o-n un_l) =0 , n=o.
c'est une relation de recurrence a (s+3) termes.
B-o0s$q-1<Xp . s+l =p
~ N s+l . S k41 N
¥(x) = »x s (W = 0% I (= b+ A%+ (u o+ A ) (5.5)
Y s+2 k q-1 k
A = -3 - q - +
G =l Yk X P Qg T ) X HE Ok Aty )
(5.6)
(Al+ Ao)x + Ao.
s+1 -1
(x) =1 ¥ xk +qX €] - A) xk - A 5.7
k=q k-1 k=l k-1 u ° t5.7)
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En faisant P(x) : ™ dans (5.1) on a:

s q-1
Vsl Mapsart M by ki Mo O g F T Oy - Y1)
( + 3 >0
Matk™ ™ Hie) H IV mpg A e ) =0 » 2
encore une fois on a une relation de recurrence a (s+3) termes.
C-p=g-1 , stl =p=gq-1
v s+1 s y Uk
¥(x) = O - ¥ )x + E=1(“’k' b P X A+ ) (5.8)
~ 42 stl k
Mx) = Qg = v 7+ T Chk A ooy p)xt + Oy )‘o_)x 2 (5.9)
s+l A) k N 5.1
&(x) -kzl (¢k_1* WX A . (5.10)
ainsi en remplagant P(x) par xn dans (5.1) on obtient:
s
- - +
Qi ¥) Gippgrr * 0 g d F 5 Oy v ) G v )
s >
k£° P Hnag t '\o( by t 0 un-l} = > nEO

C'est une relation de recurrence & (s+3) ou & (s+2)

termes selon que
r=0 ou r=1 .

On remarque que les trois relations obtenues sont des équations aux
différences dont les coefficients sont des fonctions affines en n et

cGonc relativement faciles & resoudre, ainsi on obtiendrait les moments

gui déterminent la forme linéaire associée. On ne traitera pas ici la
-résolution de ces équations mais on va chercher une représentation inté
‘grale (si elle existe) de la forme L selon l'expression:

L(P) = f Z(x) P(x) dx ) (5.11)
C
oi C wun chemin, éventuellement pris dans le champ complexe, 2 une
fonction assez réguliére, seront précisés plus loin.
-On & donc pour (5.1) d'aprés (5.11)
j 2(x) ¥(x) P(x) ax +f [6(x) 2(x)]P (x) dx = 2(x) 9 (x)P (x)
c - : c ¢
si la fonction 2 et le chemin C sont tels que:
(ez)' + ¥z =0 (5.12)
o 2 Pi =0 (5.13)
C
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ils fournissent. au moins formellement, une solution de 1l'équation (5.1)

par l'intérmédiaire de (5.11).

Ecrivons (5.12) autrement, en se rappelant que ¥ , Y et ¢ sont

liés par % = y-0 . Ainsi on divisant (5.12) par ¢ on obtient:
(02) ' _ _ Y
Y =1 - - (5.14)
od degré ¥ = p-1, p31, degré ¢ = s+l-r , 04rés+1 ,

cette équation géneralise l'équation différentielle de K.Pearson ( [7],
[8]); On va traiter le cas o ¥ et ‘A sont des polynbmes & coeffi-

cients réels.

ler cas: p # g -1

Conformement & ce qui est donné& en (5.4) et (5.7) Ie degré de
® est strictement plus grand que celui de V¥
sip#g~-1 on a: degré ¢ = s+1 , ¢ peut s'écrire alors:

h.
o(x) = K I (x-py) T (x-ny) T T (x-6;) (x-5)
1eIl, 1e12 1e13
ou o, sont des racines réelles simples, n; ‘sont des racines réelles

de multiplicité hi et 6i sont des racines complexes -on a supposé

qu'elles sont simples- avec I + h, + 2|1 = s + 1.
1 ier., * 3
2

Ainsi on a:

h.
a i c. .

¥ix) _ ) i + 3 i + 3 ) i3 +
olx)  yer *7ey ier, X Mg iel 22 (x-n,)7

1 2 2 i

d; Ei
¥ iczal (e T x=5 o
3 i .
ol a;, = Résidu( ¥/0, pi), bi = Résidul( V¥/0, ni), di = Résidu( W/@,si)

et donc (5.14) a pour solution:

~ -1-ui -bi-hi hi (i-j) C;
Z(x) =K e 1l (x - pi) 1 U1.H (x- ni) bi-hi T exp { _;lgll_i%l__ }
iel, iel, i=2 (x =" i).‘l'l

R .J)-R 164
Xp (——Eiélz——fgéi—ll Arc tg

Jm($ )
i

x 1 (x% - 2x§e(5i)_+ s, [2)-1-Re(di)

x - Re (éi)
Jm(s,)
i

(5.15)

( K est une constante ) .
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Le choix de C dépend des positions de p; + My et des signes de
s . .
l+ai B bi+hi B Ci,j . Supposons par exemple qu 11‘ex1ste 1OeIl tel
que p;,<py . LF L, eI, et l+a, < 0, alors C = (=,0;]

convient et (5.13) est bien vérifiée.

On remarque que Z donnée par (5.15) géneralise 3 la fois les

fonctions poids:. associées aux polyndmes de Laguerre et Jacobi.

2° cas p=g -1

Dans ce cas le degré de ¢ peut devenir plus petit que celui de V¥
c'est-d-dire degré ¢ = s+l-r , 0 < r £ s+l. Pour r = 0 on trouve

pour Z la méme expression que celle donnée en (5.14). Si r®1 on a:

’

Y/ = A+ ( B/d) avec degré A = r-1 , degré B < degré o
plus précisement: h
o B i Yo
R R ) e
ieJ, i ied, i ied, j=2 (x—ni)
. E 2x Re\)i - 2Re\)iﬁi
. 2 2
ieg; x" - 2xRe5i +|5i|
avec a; = Résidu(B/@,pi) R Bi = Résidu(B/¢,ni) A Résidu(B/@,éi)
et ]Jll + »E hi + 2|J3I =s + 1 - r.
1eJ2

Soit . R(x) = J [1 - A(x)] dx , R(x) est un polynSme de degré r.

-l-aq, -8,-h, hji (1-3)v.j
Z{x) =¥ eR(x) T (x—pi) 1 TI’(X_n.) 1 l’ﬁ exp(——ﬁ}
ie}‘l 172 1 i=2 (x-n. )J
. i
(5.16)
-ljye(v ) {?e(d.)fye(v.é.) xfje(é.)
T 24 2 i i i°i i
e, (x ZXLe(éi)'Héil ) exp{2. Tn(s)) Arctg(Jm(éi) )

Les expressions (5.15) et (5.16) peuvent &tre considérées comme
une généralisation des fonctions poids &tudifes par AMUNDSEN, DAMGAARD
([10]) et NEVAI, BONAN et LUBINSKY ([11]). Aussi RONVEAUX ([12]) donne
un cas particulier de (5.16). ‘

6. ETUDE D'UN CAS PARTICULIER

(p,qQ) = (1,2) autrement s = 0

On a: VY(x) = wo , Mx) = Alx + AO , Oo(x) = (wo—Kl)x —AO

( on suppose wo # Al , c'est-a-dire degré ¢ = 1 ).
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Ainsi

A (29 =2,) /(A =0,)

Z (%) ___§T—_ e ((x - 0 ) 071 170 , keR ,
Yo~ry Yoy

® , alors on choisit comme chemin d'intégration

\'2

si wo/(Xl-wo)

(== h g/ (V=2 )]

L®)=——7 ‘ —) P(x) dx
vom Ay Yoot
ainsi on voit que L est la forme linéaire associée aux polynOmes de
Laguerre. -Pour retrouver l'expression classique de L , on va procéder
3 un changement de la variable; on pose: u=-(x - AO/(wO—xl) ) et
la forme devient _ e
L(p) =¥ J e ™ u* p(u) du
. 0
. Ao/ (Ba=2y) 2y =2
VoA 17%

et donc {Pn}néo est constituée des polynOmes de Laguerre en u :

_ 5%y - O
‘Pn(x) = Pn(u) = Ln(U) -

De (4.3) et (4.5) on tire:
xo/(wo—xf

o+l
e

te +1 )
H(P) = (¢P) = (-1) kJ e™ u*t p(u) au ,

0

on voit que les Qn sont aussi de "Laguerre" d'un ordre supérieur

N . , P
a celui des {Pn}néO d'une unité.

Finalement,
] = — s "
Pn Qn Pn se traduit par:
a
dLn(X) a+l a
—gg— = - Ln + Ln(u)

ainsi on voit que la derivée d'un polynome de Laguerre est égale a la
différence de deux polynBmes de Laguerre de méme degré et dont l'ordre
varie d'une unité. Cette relation peut &tre aisément retrouvée a par-

tir de relations connues ([9]).
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ORTHOGONAL POLYNOMIALS AND GEOMETRIC
CONVERGENCE OF PADE-TYPE APPROXIMANTS

Luis Casasfs
Pablo Gonzdlez-Vera

Departamento de Andlisis Matem&tico
Universidad de La Laguna
Tenerife (Spain)

I. Introduction

In this article we are concerned with Padé-type Approximants [1]
both in one and two points (PTA's and 2PTA's).

The problem of a (precisely defined) optimal velocity of conver-
gence is considered for sequences of these approximants and the answer
is found in terms of the Tchebycheff polynomials. of the region where the
function is dpproximated over.

Our results refer to regular regions, i.e. those with a Green’é

function G(x,y) with pole at infinity [2]-
In the sequel, we call "uniformly distributed points' on a curve
I to those equidistant on T with respect to the metric du = ggldty

where @ represents the Green's funtion of Ext(T) and n is the exterior
normal to T [2].

The following result will be useful later.

Lemma 1 ([2])

Let E be an open connected of @. Let 3E be an analytic Jordan
curve and assume that K = € E is regular. Let G(z) represent the Green's
function of K with pole ‘at infinity and {Bj}' are points uniformly -

distributed on 3E. In these conditions, by’ taking

m
Q,(2) = .21(2_Bj)' one has
- 1/m J
1 Ifm |o (z)| = cap(E), \fzeE and
m->co )
o 1/m
2 iiz lQm(z)I = eG(z)cap(E);\/zeK.
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II. One Point Padé - Type Approximants

Let £({(z) be an analytic funtion defined on DU3D, D is a region
of € containing the origtn. Hence f admits a Taylor expansion of the
form ® .

. £(z) = § c.z’
. j=o0

- 1 o ' - = =

We shall consider sequences of PTA's (m 1/m) ¢ (2) P (2)/0, (2) R, (2),

such that Qm(z) # 0, k/zED.

Definition

A sequence Pm/Qm of PTA's to £(z) has "optimal velocity of con

Il/m

vergence" when lim |5m(2)|—l/m upfam(t) (an upper bound of the

.S
-0 ter

contour integral error formula) attains its minimum value for Qm = Qm.

Baumel et al. [3] essentially used this concept in a problem of
approximation in presence of branch points.
For sequences of this kind, it can be proved the following

Theorem 1

Let D be a Jordan region with boundary 5D = C and Green's func-
tion G. The optimal xelocity of convergence of {Rm(z)} is attained when
their poles are uniformly distributed on C.

Proof

The contour error formula for these approximants is

2™ { £(v)op(v)at
2:1Qm(2) tm+l(t-z)
T
By taking limits and using Lemma 1, one has

f(z) - Rm(z) =

— 1/n z| 1
;iglf(z) - P (2)/Q (2)] < la—-—TaZTT where

- eG+iH

d = min {t]} and ¢(2) (i the armonic conjugate of G in D)

e
€ FOn the other hand, taking a different sequence of approximants

§m(z)/5m(z) , yields

—_— - - = 1/m
T |£(z) - B (2 /0, (2) | Y™ ¢ L2l 1y suplGu®)]
m-o° . da
]@m(qu/m
since Tin |sup o (0)]/ o ()] [ —2—
m+e tel o (z)]

we get the desired result.
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The next Theorem makes use of the properties of the conformal
mapping in order to select the poles of the approximants of T heorem 1.
Our approach is simply to follow the images of the Tchebycheff knots in
a map from [-1,1] to U = {z:|z| = 1} and then to the boundary of the re
gion under consideration.

Theorem 2

Let C be a_Jordan curve in the z-plane and £(z) the conformal
map carwying the interior of C onto the unit disk in the w-plane and C
onto U.

Let G,(w) be differentiable on U and such thatJ %gé]dtzldepends

only on the length of y c U. In these conditions J—%lldtl]depeﬁds only
1

©r @fox

on the length of 6 cC, where Gl = Gzof, and ny and n, are the normals

to C and U respectively.

Proof

The analytié function f(z) maps the curve C in the z-plane (z =
x+iy) onto the curve U in the w-plane (w=u+iv). Let Vg be any point on

U. Define the function

- 3G
h(w) = [ - [(%Hdtzl
T J
r, T N
Fl and F2 are the arcs of C from to Wy to w and from Yo to w with

Arg(w—wo) = Arg(wo—w). Under these conditions, h = 0.

Let z = z(r) and w = w{s) be parametric representations of res-
pectively C and U.

The function H(z) = h(f(z)) is given by fhe integration on the
3G1

arcs c, and c, (preimages of T, and T',) of the function 3
1 2 2 cnl

"1

tify the last statement, we make use of the property of f being confor-

|dt,| . To Jus

mal. Then the function corresponding to Gl(z) through the map f£: z + W
is G2(w) and grad(Gl) = grad(Gz).f'. Where grad(.) denotes gradient of (.).

anl 3

a a0
But 81 =grad(Gl).E§ and 9%; = grad(G,). g
Since f is conformal, o = §

. s .
Moreover, |dt,| = z' (r) |dr| = 3% |ar| , and

' a

lat,| = w'(s)|as| = 55 las].
#ence |dt,|= |dt,|/f'. It follows that
G
H(z) = - c2llde, | =0
Jcl Jep Tt
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which is equivalent to the result to be proved.

Corollary
Let D be a Jordan region with boundary C. T%en,theré exists a func-
tion f(x) from [—l,l] to C such that the images of the zeros of the
Tchebycheff polynomials are uniformly distributed on C.

This result constitutes a practical choice of the poles in the

optimal sequence oI PTA's in Theorem 1.

II.1 Uncompletely known function on the unit circle

A slightly more complicate situation is the following one, where
the coefficients of the power series of a function are not exactly known.

It is well known that the values of a function on a circle con-
tained in its region of holomorphy determine the function on the whole
disk. We are interested in the following problem: "Let U = {x:|x|=1}
and assume that an analytic function f(x) on UVUInt(U) can be known
(e.3., by measurements) only on U.- We. seek a rational approximation to f (x)
for Int(U)". This kind of problems is frequently found in practice [4],
and 1if, as usually happens, one is interested in the behaviour of f(x)
near the origin, PTA's are candidates for a solution.

Formally, (m-1,m)-PTA's are required interpolating at the the
points (xj,f(xj))€Uxf(U) (3=1,2,...,m) optimally, i.e. with asymptotic

velocity of convergence.
Existence and uniqueness of such approximants (for a given

set of xss) are derived from the conditions

Rm(xj) = f(xj) ;3 =1, ..., m (1)
m-1 i m 3
where R (x) = ] ayx /1 byx = Py, (x) / Q9 (x)
j=o i=o
Note that the coefficients of the power series f£(x) = ] cjxj

j=o
are not known and the approximate coefficients used to define the appro

ximants are

m) _ 1 |f(t) L1 T f(xy) - -
Cn = 2———~ ———n+—l dt = H Z -—nﬂ-— (n = 0, 1,...,m 1)
i |t 3=1xj

The coefficients of the numerator are
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m=1-1
= (m)
a; = Jec b

1 1+n+1
n=o

Since, the error in the estimation of the cés corresponds to the

trapezoidal formula, we have

lim c(m)
m-o n

= cn (n =0,1,...,m-1)

It can be proved that the error formula for this class of ratio-
nal interpolation is ([2] p. 169)

1 WL ()0 () E(E) g

= PEFTONEY W_(E) (£-x)
Cl

£(x) - R_(x) xeD

where (' represents an integration path close to U and containing ﬁ in

m
its interior. Also Wm(x) = I (x-x.)

j=1

The next result is used in Theorem 3

Lemma 2 o : 8

Let the sequence {Rm(x)} be defined by (1). Then there is a neN
such that Rm(x) has no poleé 6n U for m > n.
Theorem 3

The optimal asymptotic velocity of (geometric) convergence ofthe
approximants {Rm}_is attained when the interpolating knots are equidis-
tant with respect to arc length on U.

II.2 Another special.case: an interval of R

We now study the case of an interval I of R; for simplicity the
interval [-1,1] will be considered. Here Int(I) = ¢, then Theorem 1 can
give no answer about the location of the poles of the approximants and
one has to resort to interpolating PTA's. Our main result is

Theorem 4

Let f(x) be analytic on I = [—I,ll. The optimal velocity of con-

vergence of the approximants {RW} given by (1) is attained when the in

terpolating knots are the zeros of the m= th polynomial Tm(x)'

Proof (Sketch)

It is enough to see that the images of the zeros of Tm(x)through
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the conformal mapping from [-1,1] to U = {z:]z|=1} are uniformly distri
buted points on U.

Remark
This result can be extended to any bounded interval by using trans
lated Tchebycheff polynomials.

Example

-In the computation of the function f(x) = arctg(x) with the
McLaurin series in §xj§= 1, and an accuracy of eight figures, a number

k of terms is required, such that

(_1)2k-l

2k+1 )
i.e., k > 108. The interpolating ATP Rk(X) with k = 13, gives also 8

< 0.5.1078

exact figures.

III. Two-Point Pade-Type Approximants

Let us assume now that f£{z) represents an analytic function in a
region or set of regions p =UDj , containing the origin and the infini-

1]
ty, where the Djs are limited by Jordan curve (rj), nonintersecting mu-

tually.

Let fo = 7 c.z? ana £, =} cbj.z—j be the Taylor and Laurent
: j=0 J 521
expansions of f(z) on neighbourhoods of the origin and infinity.
pr we determine sequences of 2PTA's with respect to (fo,fm) of

the form (k(m)/m)(fo,fw)(z) =‘Pm(z) / Qm(z) = Rm(z), where Qm(z) # 0 in

D, (0< k(m) < m) and lim k(m)/m = 1/2, with asymptotically "optimal”

m-ree
convergence to £(z) in D. For this purppose, it will be useful, to re-

zall the following expression of the error for 2PTA's [5]

X (m)
z Q_(t)
. £() g¢ (2)

f(z) - Rm(Z) = t—z

ZuiJ’tk(m)Qm(z)
T

stj, XKp
First, we shall consider the case where D is defined by D=Ext (T)

I being a closed Jordan curve such that 0 ¢Int(l ).
Furthermore, we assume that D is connected and regular. Making
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use of |2|, we can establish
Theorem 5

m
Let Q (z) = 1 (z—Bj), where the points {Bj} are uniformly dis-
i=1

tributed on the boundary I'. Then, the seguence {Rm(z)} with denomina-
tors {Qm} satisfies

1/m

< 1/2

Iim |f(z) - 3m(z)

m--e

H V z€D

z
4

where d = min{ |t]|}
ter
Usually T represents a circle; then geometric convergence is gua

ranteed in certain neighbourhoods of z = 0 and z = .

The next result can be proved making use of Lemma 1 and (2) ahd

the fact that, in this case ¢(z) = (z-a)/r.

Theorem 6
JIf £ is an analyfic function in D = C {z: |z-a] < r} with |a|>x,
then the sequence{ (kx(m)/m)}(0 < k(m) £ m) with uniformly distributed
poles on ]z—a| = r, converges geometrically to £(z) in
{z: |zkplulz : [z]|>p"}
where p < |a|-r and p' > (|a|+r)2/(]a[—r)
Remark

When r is sufficiently small, p and p' are close to |a|, and
this allows to extend at will the ‘domain of geometrical convergence.
Thié is the case of the fuﬁction f(z) = exp(l/kz—l)),which is analytic
in T\{1}. Hence, taking a circle with center z = 1 and radius e(e close
to zero), we get geometric convergence on the whole extended complex

plane except on an arbitrarily narrow annulus (C\M l-e< |z]|< 1+e}),

Let us prove now that the uniform distribution of the poles of
the approximants on the boundary of the domain yields optimal asympto-

tic degree of convergence. More precisely,
Theorem 7

Let D = Ext(l'), where T is a closed Jordan curve, such that
04Int(l) and D is regular. Then, optimal velocity of convergence is at-

tained when the poles are uniformly distributed on T.

59



Proof

Let 6m be an arbitrary polynomial of degree m, such that ém(z)

does not vanish \fzeD. Then
12, (2) |

lim ————————< sup lim
MT ter mew |o_(2) |

la_(t)] =
n T/m = SuP Tim |9 (®)

Eel M>® b (Int (1))

Therefore, by using Lemma 1

sup Iim [Q (t)]| 2z Tim |Q (2)[/]s(2)] (3)
tel mro m--o
_ _G+iH . ' . . .
where ¢ = e ;, G is the Green's function of D and H is conjugate to
G in D. '

So, if Ry and ﬁm are the (k(m)/m) approximants with denominators
Q_ and ém respectively, one has

n .
Iim ]f(z)-Rm(z)ll/m = (i%l>l/2_r¢(;) , Vzen.

m-o

where d = min{ |[t]}.
tel

Similarly, by (3)
_ 1/ 1172
Tim [£(z) - R_(2) [V Iim —2
oo m-eo iQ (Z)l
m
> (J z])1/2 1
fe(z) |
Hence, the proof is concluded.

Finally, let's study: the case of an unconnected domain of the

form D = Int(leJExt(Tz), such that OEInt(Fl)CInt(FZ).
Let us suppose that the poles are uniformly distributed on Fl

and T,, that is
) ) 1(m) ’
(z—Bj) i (2—83); 1(m) =m - k(m) (4)

j=1

k(m
Q,(z) =

(
n :

j=1

where the {Bj} are on Tl and the {B%} are on Fz.

In these conditions, by using again Lemma 1, one has

i) If zemnt(r)), Tim lf(z)—Rm(z)]l/m < (lgl—)l/z (5)
X 1

m-oo

where d, = min{ |t]}.
terl
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ii) If z€Ext(T),

- 1/2
L 12 sup o (8)]
Tim [f(Z)—Rm(Z) ll/m_<. (lzl/dZ) t TZ 73 (6)
m-> [6, (£) 0, () |
whére 4, = min{ |[t]} and ¢. = exp(G.+iH.) ; j = 1,2.
teT J J J
2

In.the usual case of circular domains the geometric convergence
is assured by the following

Theorem 8

Let Pl and Fz be circles centered at the origin with radii r

and R respectively (r < R); the sequence Rm(z) = Pm(z)/Qm(z), where Qm
is given by (4), converges geometrically in the domain Int(Fl)Uth(Tz).

Proof

In this case dl = r and d2 = R. Hence, from (5) one has

TEE |f(z)—Rm(z)|l/m </]z|/r < 1 for zeInt(T,)

m-o .
On the other hand, if zeExt(Fz), then |z| > R, therefore, as

¢l(z) = z/r and ¢2(z) = z/R, from (6) we get

Tim |£(2)-R_(2) Y™ < /R/Tz] < 1,

m-+

and the proof is completed.
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COUVERGENCE OF SOME MATRIX PADE-TYPE APPROXIMANTS
TO THE EXPONENTIAL

C. GONZALEZ-CONCEPCION
Dpto. de Ecuaciones Funcionales
Universidad de La Laguna

Tenerife ( Spain ).

Abstract.

In this paper, we study the uniform and geometric convergence on compact
sets of the complex plane of matrix (k-1/k) Padé-type approximants
(Brezinski,1980; Draux, 1983) to the exponential such that their sca-
lar analogous have as a single pole the inverse of a root of the k-th

Laguerre polynomial of order zero.

The interest of these results lies in the fact that, in general, a
seqﬁence of approximants of the above mentioned class does not nece-
ssarily converge, not even punctually to the exponential (Ngrsett,
1978). '

We also give a condition for the pole of the (k/k) approximants to

the exponential whose single poles are the values of certain roots

of the derivative of the kil~th Laguerre polynomial of order zero.

1. Introduction.

The Padé-type approximation was introduced by Brezinski [1] and has
been object of many papers in the last years, among them the generali-

zation to the matricial case [3] and to non -conmutative algebras [2].

It is well known that given a formal power series in one complex va-
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variable z

£(z) = § c, 2z : 1)

1

where the C;'s are nxa-matrices, it is possible to define B, and P

polynomials in z of degree m whose matrix coefficients are associated
to another polynomial Q, of degree k, such that

£(z) Q. (z) = P, (z) + o("") z+0 (2)

Q (z) £(z) = B (z) + o(z™*} z+0 (3)
k m

Thus, if Qy is invertible, one can define the so called matrix (m/k)

Padé-type approximants (MPTA) at the right (and respectively at the
left) associated to f and Q, as:

(m/k) (z) = P_(2) Q;l (z) = £(z) + 0(z™?) z+0 (4)

]
1)

(m/k)_(z) = Q;l(z) B (2) = £(z) + o(z™%) Z*0 (5)

Since one has to compute Q;l, it seems necessary to select a Qk such
that the number of operations is minimized and the resulting approxi-
mant verifies certain properties of order, stability, and convergen-

ce.

.. In this paper we study the uniform and geometric convergence of a MPTA

to the exponential which is obtained after certain choice of Q The
punctual convergence of the corresponding scalar case has been studied
by Ndrsett [4].

Thus, let the matrix exponential be defined by the power series

R e (6)

exp(-Az) = § atzt | aec

Let
Qk(2)=(1+yAz)k (7)

where Yy is a real number. We denote by
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Y)
(m/k)exp(—Az)

the MPTA associated to exp(-Az) and Qy (in this case the right and

the left approximants are identics).

(y) ’
It is well known that for a fixed Y, the (m/k)Y y converge punctual-

exp(-Az

ly to exp(-Az) and uniformly for Re z > 0.

Further, the results of Ndrsett [4] reveal that if we chooée Y to maxi-
mize the order of the approximant, that is, if

Y=Yx,y
in Qy is the inverse of the V -th root of the Laguerre polynomial L

of degree k and order zero ( L]é1/ K )=0 ,Vv=1,...,k ), then the

Y

sequence of scalar approximants

o = '
{ (k_1/k)ex;Lz)} . 8
k=1

does not necessarily converge, not even punctually to the exponential.

More precisely, for a fixed v, the corresponding sequence does not

converge to the exponential.

‘The same remark can be make for the matrix approximant, since the eigen-

values do not converge.

Therefore, we will determine a "good" choice of v = k) such that the

sequence

(Y. Y\ ® -
~ K, V() }
{ (k=1/k) exp(-az) k=1

converges uniformly and geometrically to exp(-Az) on every compact

of the complex plane.

The derivation of these properties is based on the following result
[3]:

"Let f(t) =

It &~1 8

i . .
c;t , c¢;,teC be an analytic function in a domain

i=0

D of the complex plane which contains the origin. Further, let A be
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a nxn-matrix and t20, such that the eigenvalues of At are in D. Let
I'' be a simple closed path in D which contains in its interior the
eigenvalues of At and the origin. Let I' represent the image of I'' by
the map z »~ 1/z. If

2 i i
. £,08) = [ At
‘then ' i=0
& -1 -1 A -1 -1
£, (E)-(k-1/k), (£) = o5 Uz £.027) G (z) (1-zt)  dz| 0, (t) (9)
T
£ (0 TR, (6) = £ 0t (o 2 G Paa (10)
, (E) - (k- )fA( ) = 3 Q, (t) FZ £.0z7) 9 (z) (1-zt) " dz |

where N
qQ (z) = 2" Qk(z—l) ".

We new summarize, ourresults for the uniform and geometric convergence
of MPTA's of the class
[==]

Y )
(k—1/k) k, k)
exp(-Az) k=1

2. Uniform convergence. -

Theorem 1. Let A be a nxXxn-matrix. Let 1/ka be the v-th root of L.
and {Yk V(k)};il a sequence such that there is a k, >0 so that

Yi v ) éc/k for any kzko, where ¢ is a positive constant. In thése

conditions, the sequence of MPTA's

O, wxy? 17
exp(~Az)

{ (k=1/k)
k=1

converges uniformly to exp(-Az) in every compact of the complex plane.

Proof.

g (X) = (T +Y Ly Ax)"

k

i

N
Q,(x) (x I+ Yk, uik) A )
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From (9) and (10):

(, ) ko _ _ v _
exp(-Az)-(k-1/k)_ *+ V) (2) = Zr 0 t(z) J (x"exp(-2x""Q, (x)) (1-x2) "'ax ,

exp(-2az)
r
where T ={teCc / |t]| =1/} , [z | <r.
We get the following inequalities ( ||.| is here any matrix norm):

Y
lo, Golls flxT+vy, o 2 % si/c + |aje/x) * s
s exp( |afjer) / c*¥ . Yk z k,
|1 - xz]z 1 - |z]|/c
lexp(-2x71) || s exp(]a]xr)
x ; x Y
azl%z |1 - clpllzl /% |7 Viek,

o GOl T+ v e

Further, there is a ki>0 such that
|1 - clalllzl /% [* = exp(-c[plllz]) , Yok
Hence, if k' = max {k,, k; } then
lexp(-az) - (k—1/k)::’;z\_’;:) I s exptall(csizs 2]1) (|2 /D) / (1- |z |x)

for any k>k'.

If z is any point of a compact K of the complex plane and |z| = r, < I,
then

(Yk.\)(k))“ .

33? llexp(-2z) - (k—1/k)exvaz)

s exp(a[[(c+)r + £ 1) (xr /e)¥ (1 - 5, /x) (11)

By fixing r and r, the uniform convergence is obtained.
o
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3. Geometric convergence.

Theorem 2. For every compact K of the complex plane, there is an inte-

ger k' (depending on K), such that the sequence

94 @
{(k—l/k) K,V (x) }
exp(-Az) K=k !

converges geometrically on K.
Proof.
Let g(r,ro) be the right hand of (11)
g(r,m ) = exp(Jalll(c+1)rsr ]) (ry/r)*/(1-r,/x)
with the variable x=r/x, >1, one has
g(r,ﬁ)) S F(x) = exp(”Aﬂg}{(Cf1)x+1))/[(x—1)xk_l} ; xe]l, +oof
The minimum of this function is obtained when
]IA”(cH)roxz - {”A"(cﬂ)i +k] x + k=1 = 0 | (12)

There are two positive roots of (12), since their sum and product are

both positive.

Since.-

lim F'(X) = +o and limp F'{X) = -, .
X+ +oo x+1

the unique root greater than 1 is the minimum value of F(x), i.e.,

x, = (allte+r + k + /B 1/12]Af(c+1)z, )

Let
x' = {UA![(cH)ro + kI1/tAaf(e+rz 1 = 1+ k/Mallte+1)r_Te 11, + o

then we have
F(x') = [(c+1)”A”rO/k]kexp(”An% +k){1+{(c+1)”A”ro/k3(1+o(1/k)]}
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and, hence

1/k
lim  |F(x")] =0

k -+
Therefore,
. (Yk\)(k)) : '
g = sup |exp(-Az) - (k-1/k). "’ (z) I s ing [F(x)] = |F(x")]|
k exp(-Az) xell,®[ .
z6 K
Thus
lim gl/* =0
k ad

I l/kS

hence, there is a k, =k, (K) such that Iek < q for any g<1 and

k 2 max {ko, ko k, }, where kv k1 are given by Theorem 1.

Finally, the geometric convergence on the compact K is visualized by

setting k' = max{k_, k,; k, }.

Note that the integer k, and, consequently k', are increasing functions

of r , because for sufficiently large values of k one has

ll/k

| € = [(c+1) [a]r, el/k

k

and given a g<1 then it is enough to take kz(c+1)HAﬂ% e/q to attain

geometric convergence of ratio q.

An example.

As example, in the follbwing tables, we show the error bounds ¢ asso-

ciated to k, Yy (k) and 1/x=ro/r (r,=0.5).

This bound. is an increasing function of r.
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Error bound

=
<<
w

1/x

1 1 ".125 0.12D+03

2 1 .021 0.77D+02

3 2 .011 . 0.12D+02

4 2 .078 0.73D+02

5 3 .081 0.93D+00

6 3 .065 0.16D+01

7 4 .062 0.37D-01

8 4 .053 0.37D-01

9 5 .050 : 0.86D-03
10 5 .044 0.66D-03

Table 1

_k Vi(k) /= Error bound

1 1 .421 0.17D+02

2 1 .392 : 0.70D+03

3 2 .255 0.34D+01

4 2 .236 0.51D+01

5 3 .169 0.22D+00

6 3 .159 0.16D+00

7 4 . 125 0.67D+02
8 4 L1190 0.32D-02
‘9 5 .098 0.11D-03
10 5 .095 0.42D-04

Table 2
, o 00y?
Similar results have seen obtained for the MPTA's (k/k)eprmz)
where 1/Yk,v(k) is the y-th root of L;+1 .
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ON THE BEHAVIOUR OF THE ZEROS OF SOME S-ORTHOGONAL POLYNOMIALS

LAURA GORI NICOLO'-AMATI
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Universita” "La Sapienza"
Roma

ABSTRACT

Monotonicity properties of the zeros of some n-orthogonal
polynomials, as well as comparison theorems, are given.

17 INTRODUCTION

The class of s-orthogonal polynomials is of considerable interest
for a number of @&pplications, like, e.g., boundary problems for o.d.e.
[l] hipergaussian or quasi-gaussian quadrature rules with multiple
nodes [2,3,4,5] . Polynomials s-orthogonal in [a,b] with respect to

a given weight w(x), are defined by means of the following conditions

b
J w(x)xk [Pm S(x)}25+ldx =0 k=0,1,...,m-1
‘a , _

where m denotes the degree of the polynomial P S(x) and s e N
Aty

In spite of the importance of these nolynomials, only a few of
their properties have been established so far [7 : ll] . In relation
to the order of convergence of the above mentioned guadrature rules,
the following guestion is of particular interest. If we denote by
xi (i =1,...,m) the gaussian nodgs (i.e., the zeros of suitable
s-orthogonal polynomials), do the following relations (where C does

not depend on m ):

(1.1) X | <c/m , i=1,...,m1

X . - .
I m,i+1 m, i

hold? An affirmative answer has been found in [12] for the case s=0

and in [13] for some forms of the weight function, when s = 0 .

In this paver, we shall consider the behaviour of the zeros of
the polynomials {Pmls(x)} that are s-orthogonal in [-1,1] when the
weight function has certain forms to be specified later. In Section 2,
some comparison theorems for these zeros are given. In Sections 3 and
4 the behaviour, with respect to s , of the zeros of the {Pmls(xﬂ
is studied for the cases m = 2 and m = 3 and for the following
weight functions

wl(x) = l—x2 . wz(x) = (l—xz)2 7 X e [—1,11
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The results obtained in this paner cive a first answer to a
question asked in [14] that the shall discuss in Section 2. A summary
of results is as follows. Monotonicity oroperties with respect to s
are shown to hold for the zeros of the sets {Péf;(x)} , {Péf;(xA}

(i = 1,2) when the weight function is ‘wi(x) (i=1,2). ;t is further
proved that the positive zeroes of {Péf;(x)} and {Péfi(x)} , s eN,
(i = 1,2) form increasing sequences. In the theorems needed to prove
these properties, upper and lower bounds for the zeros are also found.

Finally, pertinent numerical tables are given in Section 5.

II. SUMMARY OF PREVIOUS RESULTS

Let us consider a typical quasi—gaussiaﬁ quadrature rule [14]
of the form

(2.1)

e
i
el
i
h
kJ
o
x
]
Me

(IJ"
(k)
> B £ (v +
1 %=o kJ J

!
[y
-
o

I

3 j{ (h)
+ A Lf (x,)+R_(f)
i=1 h=s M itm

Here, y ¢ (-1,1) are pre-assigned multiple nodes and x, are
gaussian multiple nodes. In the studv of the convergence of the above
rule, the distance between the gaussian nodes plays an imnortaht role.
It is well known [5] that the maximum degree of precision

v = 3;& aJ + m(2s+2)-1 is obtained when the nodes Xy (i=1,2,...,m)

coincide with the zeros of the polynomials that are s-orthogonal with
~respect to the weight function

1 o
(2.2) wix) =p(x) , [ | (x=y_) 7
o J=1 J

It has been proved in [14] that the remainder Rm(f) in (2.1) has
the property

(2.3 R (D = b/m]*S £(x) e ¢ [y, ,v3]

provided that (1.1) is met. In the same paper, upper and lower bounds
‘are established for the zeros X of the polynomials {Pm S(x)},

ir 7
s-orthogonal with respect to the weight (2.2). In particular, assuming

that the nodes Yy o1 j=1,1 are symmetrical with resnect to the origin

and that p(x) = 1 , the following theorem is proved.
Theorem 1. "The positive zeros x_ . of P (x) , satisfy the
— m, i m, s
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inequalities

(2.4) x5 < x o <vls)
m, i m, i m, 1
where Xész and Y;i) are the positive zeros of the polynomials ﬁhat
14
are s-orthogonal in [—1,1] with respect to the weights
) 1
(1—x2)P ’ P= s
" =1
(1-x% *

respectively".

It is known [8] that thevpositive zeros of the polynomials
s-orthogonal in [—l,l] with respect to.the weight functions (l—xz)s,
B > -1 , are decreasing functions of B8 . Taking into account this
property, as well as the fact that the Tchebicheff polynomials of the

first kind are s-orthogonal with respect to (1-—x2)_1/2 , the following
theorem is easily established:
Theorem 2. "The positive zeros of P (x) satisfy the inequalities

m,s

(2.5) x8) < x <o |
m, i mi m, i

where the Tm i's are the positive zeros of the Tchebicheff polynomials
r
of the first kind".

Furthermore, if

(2.6) s >P - 1/2

then the following theorem ensues from (2.5) :

Theorem 3. "The positive zeros of Pms(x) satisfy the inequalities
(2.7) vV . < X(g) < X_.
mi mi mi

where the Vm i's are the positive zeros of the Tchebicheff polynomials
14

of the second kind".

The proof of (2.7) follows from (2.4) taking into account the
property of the Tchebiche ff polynomials of the second kind of“being

s-orthogonal with respect to the weight function (l—xz)s+l/2

Suppose now that condition (2.6) 1is hot met. In order to deduce

from (2.5) a further lower bound for the X i‘s involving the zeros
’
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of orthogonal (instead of s-orthoaonal) nolynomials, it is to be
inquired whether the zeros Xéf) behave as increasina functions of s

Finally we note that (2.3) can be considered as a convergence

result, pertaining to (2.2) for fixed m and increasing s .

It is in this context, that the problems.treated in the Sections

that follow, acquire their meaning.

III. BEHAVIOUR OF THE ZEROS OF THE POLYNOMIALS {Pz(;)(x)}, and
{P(l)(x)}, S~ORTHOGONAL W.R.T. THE WEIGHT w(x).

(l)

For the polynomials {P (x)}, of degree m , s-orthogonal in

[-1,1] w.r.t. the weight

(3.1) w (%) = 1-x2

the following conditions hold

1 .
(3.2) j =K 012 ax = 0, x=0,1,...,m1
-1

where seN

Because of the symmetry of the interval [—l,l] and of the
weight Wy (x) , it is known that the positive and negative zeros of
(l)(x) are symmetrical with respect to the origin, whereas

m

Pél;(o) =0, if m is odd . So, if the coefficient of x" , in
Péi)(x) is thought to be equal 1 , we may write
- N
_ o m—2v 2_
(3.3) P (¥) =x - [ & % s,k

k=1
_ - ) (1) .
where v = [m/2] and + V on s,k are the zeros of Pm,s(x) which

7

are different from origin.

When m=2 .or m= 3, it follows from (3.2) and (3.3) that

(1) (1)

the location of the only positive zero of P.-{x) and P3S (x)

(respectively) is led to the solution of the equations, respectlvely

1
(3.4) f (1-%2) (azs—x2)25+l dx = 0
o

(3.5)

1
f (1-x2) (GSS_X2)25+1XZS+26X -0 ,

o
. . S e s _ L2 .2 .
in which it is intended that Oog = 825 1 O3y = 635 . Before going on
with the treatment of this subiject, it is convenient to give here some

recurrence relation for the function Ga b (t) , defined by means of:
’
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1 a 2. b
(3.6) Ga b(t) = J X (t-x") 7 dx R a,beN .
! o

It is easy to recognize a connection between Ga b(t) and the integrals
’
in (3.4) and (3.5).

The mentioned recurrence relations are the following:

(a-1).£.6,_, , (B +(-1)P(1-6)>*!
(3.7) G, b(t) = L
! a+2b+1
2btG () +(-1)P b
a,b-1¢ +(-1)7.(1-t)
(3.8) G, b(t) = !
4 _a+2b+1
) . . . 2, b-1
The relation (3.7) is deduced from (3.6), assuming d(t-x") as
differential factor and integrating by part; whereas (3.8) is

derived from (3.6) by inteqrating by part with dx as differential

factor. Now we may proceed to prove the theorem 4 .

Theorem 4. The sequence {azs}, s € N , of the solutions of equations
(3.4) 1is increasing as § increases ; moreover for the positive
zeros Bés of the polynomials Péé)(x)', s-orthogonal w.r.t the

weight (3.1), the following bounds

1/V5 < By < \(4s+1)/(8s+5) , s eN

hold.

Proof. It is immediate to prove that (3.4) has, for a fixed s e N,

only one solution a e (0,1). Indeed, the function
2s )

1 .
(3.9) £, _(t) = f (1-x2) (t-x2) 25*1 ax
o
is increasing as t increases, t e [O,l] ; moreover flS(O) <0,
fls(l) > 0 . Then, we may derive a recurrence relation between
N .
fls(t) and fl,s—l(t) , s 21, making use of (3.7) and (3.8) .

putting n=2s+1 , from (3.9) and (3.6) , we get
fls(t) = Go,n(t)_GZ,n(t)
and this becames, by (3.7),
- _ _,yn+l
(3.10) fls(t) = Go,n(t)'(l t/(2n+3) )+ (1-t) /(2n+3)
Consequently, for s 2 1 , we may write

- n-1
(3.11) Go,n_z(t)(l~t/(2n—l)) = flls_l(t)~(l—t) /(2n-1)
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Applying twice (3.8) , G (t) may be connected to G L (t)
o,n o,n-2

according to

Gy o (8) = 4n(n-1)/(4n°-1).t%.q (t) +

c,n-2

+ (-6 [ (4n-1) - (2n-1)] / (4n%-1)

which may also be written as follows

_ 2 n-1
(3.12) Go,n(t) = Cgtie, | o) + (1-6)"7 TP, (¢)

If we put, for the sake of short notation

C = 4(n2—n)/(4n2—l)

3

(3.13) Pls(t)

1

[(4n-1) £ (2n-1)] / (4n°-1)

Rls(t) 1-t/(2n+3)

Now putting (3.12) in (3.10) , we obtain

2

£1508) = Cot Ry (8).G, o (8)

+ (=0 R, (0 .pp_ () + (1-9)%/(2n+3)]

and from this, by the aid of (3.11), we finally get the following

recurrence relation

_ 2
Rig-1 (B £ (8) = C.t Rls(t)'fl,s~l(t) *
Ve -1 2 »
SERET) + (1-6)" T [-c e Ryg (£)/(2n-1) 4Py (£) Ry (£)R) __, (£)+
+ (1-t) 2R (t)/(2n+3)]
1,s-1

The polyaomial in the brackets is only apparently of degree three;

in fact, it reduces to

~R, _(t) [t?(2n+1)~4nt+ (2n-1)]/ (4n?-1) 4 (1-¢) 2 (t)/(2n+3)

Ri,s-1

The obvious divisibility by (1-t) of the first term allows us to pass
from (3.14). to the following (3.15)

- 2 eyl
(3.15) fls(t) = Cst Rls(t)fls~l(t)/Rls—l(t)+(l t) le(t)/Rl,s—l(t)

where it is intended that:

0,5(t) = 2[(4n+1) t=(2n-1)1/[(4n°-1) . (2n+3)]

76



Now, let be {vy_}, s e N7 the sequence of the zeros of 0, (8) 5 it

is easy matter to verify that

+ . i v =
Vg1 Y v s eN ; lim yg = 1/2

S+

with v = = 0.2

0L20

Moreover from (3.15), written for s =1, t = Y, one gets

" (3.16) f.0ypD >0

Consequently, and because of the Ffact that fls(t) increases for
t e [0,1], s eN , we obtain

+
(3.17) fls( YS) > 0 P s eN

To. the aim to proﬁe (3.17), let us take s=2, t= Yy ¢ then (3.1)
gives

£120r5) = Covy Ryp vy - £15 0 ) /Ry L)
so, in view of (3.13), it is possible deduce that

£120vy) >0

holds; going on in the samé way, we get (3.17). Then, from this, it
follows

(3.18) ag_q < Ygo1 , s =2,3,...

so that we reach the thesis

Ogoq <a ’ s eN

putting t = a in (3.15) and taking into account that (3.18)

s-1
implies that:

QlS(aS“l) <0

We have already noticed that we may derive, from (3.4) , o, 0=0.27
;

this remark and (3.17) lead to the bounds for 825' of the thesis.
Concerning the case m = 3 , still for the .weight wl(x) given

in (3.1), it is possible to prove theorem 5 , which deals with the

behaviour of the positive zeros of {Pé;)(x)}, s € N ; in the same

time an upper bound for those zeros is supplied.

Theorem 5. The sequence {835} , s € N, of the positive zeros of the
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polynomials {P;i)(x)}, s-orthogonal in [-1,1] w.r.t the weight

. ; +
wi(x) ; ilncreases as s increases ; moreover, for s e N ,

%3/7 < 835 < Vs ’ 65 = (3o0s+7- V324(52+s)+49)/165

s
hold.

Proof. The zeros BBs are given by

B3s = YO3g ! sen

where O3g solves the equation

: 1
(3.19) F, _(t) = j (1-x2) (£-x?) 28+l 2842

(o]

dx = 0 , s €N

Now (3.7), (3.8) can be used to obtain a recurrence relation for
Fl s(t) . For the sake of shert, let us put
r

g () = Gpp1,n(®) s n = 2s+1
4 = 6s+7-2k k =0,1,2,3
(3.20)
Tls(t) = l—-(2s+3)t/do ; Tl,s—l(t) = l—(25+l)t~/d3
-1 -1
S1s = 4 v S1,s-1 = 93
Making use of (3.20), (3.7), (3,8), from (3.19) one qgets
= _ey D+l
.(3.21) By g(8) = Js(t)Tlls(t) + (1-t) “Siq
from which we deduce
(3.22) I () .T, . (t) = F (t)-(1-0)™* t.s
° . s-1 TT1s-1 1,s-1 F1l,s-1

Js(t) and Js—l(t) may be connected according the following relation
(see (3.7) , (3.8))

3 1

(3.23) g () = A t7 (0 +(1-6)" T (o)
where
a, = 4n®(n-1)/4,4,a,
(3.24) My, o (6) = 4. (n-1)e-5a;.t+3a,]/a, 6,4,
Inserting (3.22) into (3.23) , and the obtained result in (3.21),

we reach the following recurrence relation for Fls(t)
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(3.25) F._(t).T

_ 3
1s (t) = Agt

(B)T) L (8) +

1s-1 F1,s—1

3

+(1—t)23{[—ASS £oy ()T, _(0)]Ty (B)+

1,s-1
+ (i—t)zs .T (£)}
1s" " 1s-1
To the aim of investigating the behaviour of the sequence {u3s} of

the zeros of F3S(t), s € N , let us analyze the polynomial in the
brackets of (3.25).

In view of (3.24), it is easy to verify that the coefficient of
the term of highest degree is given by

2 2
AS(25+3)/dod3 4s(2s+1) (28+3)/dod1d2d3 =0
Moreover

-As Sls--l + Ml,s(l)Tl,s¥1(1) =0

so that the above polynomial is divisible by 1-t and we may pass
from (3.25) to )

- 3 '

(3.26) Fls(t)Tl,s—l(t) = As.t ’Fl,é-l(t)Tls(t) +
2s+1

+ (1-t) 'Sl,s—lslsvls<t)

where"
2
(3.27) v (€)= [(8-8)t+(30 -16)t- (18 -12)]/3d,
For every fixed s, Vls (t) has a zero 55 e (0,1), being also
(3.28) F,_(8) >0 e nt
: 1s s ! s

In fact, note that from (3.20) it follows

Osy = 3/7 < 81

and so, putting s =1, t =26, in (3.26) , we get

(s,) > 0

Fi1'%y

for Fls(t) is increasing . As the sequence {SS} of the zeros
of V (t) , s e Nt , namely
1,s

(3.29) s, = (15n-8- \/81n°-32)/(8n-8)

is increasing (as far as Fls(t) , s e N) , then, from Fll(62)> 0

79



it follows: Flz(éz) > 0 and so on, to (3.28).
Note that (3.28) implies

03 5.1 “8g.1 <85 v

then, in view of (3.26), it results

( ) <0

F1s 0L3,s-l

that is the same as saying that {a3s} is increasing. Finally, let us
remark that from (3.29) and (3.26) it follows that

Fyylagg) <0

so we may conclude that also the second vart of the thesis holds:

v 3/7 <63s < 465

2
IV. BEHAVIOUR OF THE ZEROS OF THE POLYNOMIALS {Pé?(x)}v,{Pés(Xﬂ
$-ORTHOGONAL w.r.t. THE WEIGHT w2(X)

Concerning the weight
(4.1) wy (%) = (1-x%)2

we will be able to demonstrate the following theorem 6, and theorem 7.
First some remark. The positive zeros u,  of {Péi)(X)L s eN, are

related to the zeros A2s of the equations:

1
(4.2) £, () = J (1-x%) 2 (e-xH) 25t gy = o, seN
o

. by means of: Moy = szs

S0, we are interested in the study of the behaviour of the
seguence {AZS} ; s e N ; then it is convenient to connect the

funcions f S(t) and f (t) , s e Nt . This can be made, writing,

2, 2,s~-1
first of all, f2s(t) by means of (3.6); having
fzs(t) = Go'n(t) - 2G

(t) + ¢ (t)

2,n 4,n

the repeated use of (3.7) allows us to establish the following relation

(where n = 2s+1 , as usual)

£ (8 =6 (%) 3t%-2(2n+5) t+(2n+3) (2n+5) o (1m6) M (-3e42n47
2s o,n (2n+3) (2n+5) T (3 (zmEs)

this can be written in a more synthetical form: introducing the

notations
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[3t2—2(2n+5)£ + (2n+3) (2n+5)]/[(2n+3) (2n+5)]

{— R2s(t)

(4.3)

Woe(e) = (-3t+2n+7) / [(2n+3) (2n+5) ]
we may wiite

(4.4) £,.(8) = Go,n(t)R2s(t) + W

25 s(t)

2
and this, taking into account (3.12), gives rise to

2
(4.5? fZS(t) = C_t"G

s O,n—Z(t)RZS(t) +

+ (=" L (DR, (0+(1-0) W, (0)].

Making use of (4.4) with the index s-1 , we may derive-a relation

between Go,n—Z(t) and f2,s—l(t) , reaching so the recurrence
relation »
_ 2
(4.6) R2,s-l(t)f2,s(t) = Cst st(t)fzs_l(t) +
+(1-0" [, _(6) R,_(6) + (1-t)°R )W, (6)]
g 2,s 2s 2,s-1 2s

where it is intended that H, S(t) is given by
7

_ 2
st(t) = -Cgt st(t)w (t) + Pls(t)R (t)

2,s-1 2,s-1

The polynomial in the brackets of (4.6) is only apparently of degree
five; in fact, with some calculation, it is possible to verify that the
coefficients of the terms of degreee five and four, egual zero,vwhen
taking into account (3.13) and (4.3) . By means of the same
‘relations, we can also verify that the mentioned polynomial is divisible

by (l—t)2 ; as a consequence, from (4.6) we pass to

2 n+1
(4.7) £y (B) Ry (4 (8) = C t les_l(t)RZS(t)' + (1-t) 7T, (f)
where
(4.8) Q, (t) =8 [(4n+3)t-(2n—1)]/[(4n2—1) (2n+3) (2n+5)]

For a fixed s = 1 , (4.8) 1is solved by
Ay = (2n-1) / (4n+3)
and the sequence {AS} is increasing ; moreover

Al =1/3 , lim AS = 1/2
S0

81



Now we are able to prove the following properties:

(4.9) the sequence {AZS} , s eN 1is increasing ,

4.10 A, < A *

(4.10) 2s 5 , s eN

Rematk, first of all, that the functions st(t) ; s eN (4.3) are

positive in [0,1], and that the functions f£
t e [O,lj ; then, from (4.7), one gets

(t) increase as
2,s

~ 2
Fa0 (M) = Ry (A CoATE, (M) /Ry (A)) > 0

for (4.2), written with s = 0 , implies

Ay = /7 < Ay .

This allows us to derive that

foo (M) >0

2s'’'s
so that
+
AZS < Jé s eN

that is to say (4.10) holds; then from (4{7), written with
t= AZ,s—l‘

(X

we derive also that

£ ) <0 7

2s 2;5—1

hence (4.9) holds.

Taking into account that Yoo = VXZS ; the above conclusions

give rise to the following.

Theorem 6. -The positive zeros p of the polynomials {Pézi(x)} ’
14

s € N , s-orthogonal in [—l,l] w.r.t. the weight w,(x) , form an

2
increasing sequence, moreover the following bounds from below and

from above
/N7 <y, < JEs+D)/(8s+7)

hold.

Dealing with the case of the poiynomials {Péi)(x)} , of degree
three, s-orthogonal in [—1,1] w.r.t. the weight (4.1), we may study
the sequence {A3S} ;, 8 € N, of the zeros of equations

(4.11) F

1
2
2S(t) = / (l—x“)z(t—x2)25+l.xzs+2dx =0 , s e N
o
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Also for the functions F2S(t) it is mossible derive a recurrence
relation, as well as for the functions fzs(t) . Starting from (4.11)

and recalling (3.6) , we get

F,.(t) =G

2s ”n+1,n(t)_2Gn+3,n(t) + Gn+5,n(t)

and acting on this, by means of (3.7), (3.8), (3.23), we reach

. o 3 _p 0+l
(4.12) P (B1T, () = atdr, (0T, (0410 oy (0
where
= 2 —_

Ty, s (8) = (ntd) (2 £%/d,a 22 e/ H

(4.13) v, () = 8n[-a(n-Dt*r(15n-6)t-(9n-6)1/ [] 4
: ! k=0
d4 = 3n+6

with A, ., d given by (3.20).
In this case, as well as for the weight wl(x) =1-x" , V S(t) has,

for fixed s , a zero Aé e (0,1), namely

2
(4.14) b, = (15n-6- \/ 8102460 (n-1))/8 (n-1)
and it is easy to see that

As < As+l ? s e N ; lim AS = 3/4
S >

Because of the fact that T, S(t) are positive - (for a fixed s e N)
’
as t e [0,1] , the same reasoning seen in the above theorem, brings

to the conclusion that
(4.15) F
when one starts from the remark that (cfr. (4.12))

B 3
Fpp (b)) = B ATF, (A )T,  (8,)/T, (8)) > 0,

for, as it follows from (4.11) and (4.14),

)30 = 1/3 < Al

From (4.15) we deduce

+
< A ' s e N

(4.16) >‘35 s

so that, if we put +t = k3 in (4.12) we get
,s—1
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F (A ) <0

3;s’ 3,s-1
that is to say that it results:
*3,6-1 < M3

Hence, the following theorem holds, in which {u3s} = { VK3S} is the
sequence of the positive zeros of the polynomials {P3§ (x)}, s eN,
s-orthogonal in [-1,1] w.r.t the weight W, (%)

Theorem 7. The sequence {”35} » S € N , increase as s increases,
moreover
(4.17) V3 <y < Vi, (b given by (4.14)).

Finally, let us remark that upper bounds in (4.17) as well as the
analoque upper bounds given in theorems 4,5,6, improve the result of

theorem 2.
Investigation about the weights

w(x) = %20 , ne N

is in progress.

V. SOME NUMERICAL RESULTS.

Now we give here four tables, pertaining respectively the

following cases:

wl(x) = l—X2 ‘m =2 s = 1,2,...;6

'wl(x) = 2-%? m= 3 s =1,2,...,6

wy(x) = (1-x%)? m=2 s =1,2,...,6

wy(x) = (1-x%)2 m=3 s=1,2,...,6

TABLE 1 TABLE 2

s =1 Bp1 = 0-33337636 s =1 By, = 0.73767913
s =2 By, =0.57388977 s = 2 Byy = 0.77216309
s=3 Bo3 = 0.59794803 s =3 B4 = 0.79131391
s =4 Boy = 0-61406030 s =4 Byy = 0.80359643
s =75 Bog = 0.62553402 s =5 Byg = 0.81219012
s =06 B, = 0.63450644 s =5 Byg = 0-81856423
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10.

11.

12.

13.

14.

TABLE 3 ' TABLE 4

=1 . Uyq = 0.47234141 s =1 Uzq = 0.68016296

= 2 Uyy = 0.52119385 s =2 U3y = 0.72679937

= 3 Uyy = 0.55177365 s =3 U3y = 0.75378323

= 4 Uyy = 0.57295105 s = 4 U3y = 0.77150029

=5 Vg = 0.58858818 s =5 M3y = 0.7840?238

=5 Mog = N.60067479 s = 6‘ M3 = 0.79351251
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A note on the summability of the Riesz means
of multiple Fourier series
By

Shigehiko Kuratsubo

1. Let Rk denote the k-dimensional Euclidean space, Tk

the

k-dimensional torus ( identified with the cube Qk ={ x = (Xl’XZ’

k 1 1 . k
”Xk) e R : - 3 %<3 (3=1.2,...,k )} ) and 2z° the
integral lattice of Rk Through this paper we assume k > 2
Let f(x) be a Lebesgue integrable function on Tk . We denote
the Fourier series of f(x)
f(x)~ ¥ f(m) e(mx)
meZk
with
f(m) = [ £(x) e(-mx) dx (me z¥ ),
' k
T
where e(t) = e2ﬂit (teR ) and mx = m,ox,+m.x. + +m, x
o 171 7272 TRk

We next denote the Riesz means of order o of f(x)

2 ~
Sz(f:x) = To(- l%L ) £(m) e(mx)

2 2 2
where |m| = (my Tkl tm 7))

Further for o > 0, t > 0 and x = <X1""’Xk)’ y = (yl,‘.

€ Rk, we introduce the following functions

Au(t:x,y) = Ty ¥ (t—{m-y]Z)u e((m-y)x)

»¥y)



and

Ea(t:x,y) = Aq(t:x,y) - Ck,a e(-xy) (x) ,

where g(x) = 1 or 0 according as X ¢ Zk or not and
ko ko,
1 N n2 t2
c = — (t=]z|°)” dz = ——~F——
Koo - TTatI) r(£ +a+l)
2 2
|z] "<t

For instance, in.the case of k=2 , x =y =0 and o =0,

P (t) = P (t:0,0) = 71 -at,

Im| 2t

that is, Po(t) = the difference between the number of lattice

points in the open disk centered at the origin and having radius

/T and the area of this disk ( lattice remainder term ). The
estimating problem for PO(t) is called Gauss's circle problem.
The following estimates are well known standard ones. ( We note

that some better estimates have been known. )

-

2
+e
[

-
In
Q( £t log t ) and

]

(1) Upper estimate : Po(t) o( t for any - ¢ > 0 ,

e W

(2) Lower estimate : Po(t)

(3) What is the best possible estimate ? There is a conjec-

1/4 +¢

ture that Po(t) =0( ¢t ) for any € > 0

( Hardy's conjecture )

(In (2) , o(t) = q(y(t)) dimplies ¢(t) # oly(t)) . )

Generally, the estimating problems for Pa(t:x,y) are called

the lattice point problem with weight in a k-dimensional sphere.

( See Fricker [6].)
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2. The theme of our paper is on some relations between the
pointwise convergence problem of multiple Fourier series and the
lattice poin£ problem. ( See also Kuratsubo [9]. )

The following equality shows a closed relation between two

problems.

S%(f:x) = Ei%gll [ N f(x-2) Pa(t:z,O) dz
T

Next, we shall recall well known results on pointwise convergence

of S8%(f:x) to f(x) -: Suppose 1 <p <2 and o > 0 and
t =P = =

put ay = K%i - =+ where . p' = E%T-. Then we have the following

’UIN‘

(1) If o > oy + %T , then for any function f(x) ¢ Lp(Tk)

f(x) almost everywhere. ( Stein [11] )

1lim S%(f:x)

£+

(2) If (i) a=0 and TSP < 2 , or (ii) o = ap and
l<ps é%f , then there exists a function f(x) ¢ Lp(Tk) such
that S:(f:x) diverges almost everywhere. ( (i) Fefferman [5] and

Babenko [3], (ii) Babenko [3] and Stein [12] )

(3) If o < ap and 1 <p < %%— , then there exists a function
f(x) € Lp(Tk) such that 1lim sup ISz(f=X)| = » almost everywhere,
tro

the function fg(x)

3
k k-1
ST <0< S5 -

where we can.take for such a function f(x)
1 ’
{m|

such that 'fo(m) = ( Im| > 1) with

(¢}

kel

( Babenko.[3] ) ( See also Alimov, Il'in and Nikishin [2, §5] and

Kuratsubo [8]. )

Now, what is the case of max{ O, aD} <a < ap+ %T ? It is un-
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known yet. ( See Stein [13, Problem 47.)

We got recently the following result as a corollary of our main

theorem on the strong summability. ( Kuratsubo [10] )

THEOREM If 0 <o < a_ an 1 <pc< 2k _ , then for any 1 > L
B T2 S 2 P2y o bhen tor any p
there exists a function f(x) ¢ Lp(Tk) such that
1
5(a_=-a) _ .
S%(f:x) = q( t2 P log™'t ) as tee , everywhere ,

where we can take for such a function f(x)

, the function f (x)
== TDp,T
such that

_ 1

o e = g CInl > 1)
pl

Im[®" log|m|

This is better than (3) of this section by having an explicit

divergent order and being valid not almost everywhere but everywhere.

Our main result in this paper is an improvement of this divergent

order.

3. Our main theorem is the following

THEOREM Suppose T > 0 , O o < K21 0

[EQ
T
1

y
y

Then we have

1,k-1 1 k-1
2 Ll o) L g)en
To(1- J_rgl C—L —e(mx) = a( t? 2 (10g ©)¥
5 Im|"log” |m]|
1<|m|“<t
everywhere.
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Now, let g (x) be a function whose Fourier coefficients are

0,1
given by C T(m) = T—F;—éLfFr-; ( |Im] > 1) , that is,
2 m log |m
C .
g T(X) — + ¢(x) ,

=
[%]%79 10g =T

where C 1s a positive constant number and ¢(x) is a function

in ¢™(T%) . Then g, .(x) e L°(T) if and only ir o > ET , or
o = %T and T > L ( Wainger [15, Theorem 7, p.39] )

Therfore, we have directly the follcwing corollary from our

main theorem.

COROLLARY If 0 < a < ap and 1 <p <

T > % there exists a function f(x) e Lp(T

T o then for any
) such that

l( -a) l(&i& —a)-
Sa(f- ~ 5 ap o ) a)-T
¢ :x) = Q( t (log t) ) as tw»= | everywhere,

where we can take for 'such a function f(x) , the function fp T(x)
Lace functlion s

such that

Epﬂ(m -1 (ml >1).

at
Im|P" 1og"|m]|

We need two lemmas for the proof of our theorem.

LEMMA 1 For 0 < o < %51 | we nave
1 k-1 1,k-1
2 (=== -a) (== -a)
Yy (1= L%L )% e(mx) = a( t° ° (log gyl 2 ) as  toe
jm|2<t
everywhere.
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The proof of Lemma 1 is based on the following equality

x
Pl +°‘)(ﬂ21m+x]2€)

K, e (my)
o

(
H

1 -t 2
iT [ e "t Pa(gt:x,y) at = & ) L

m+x#0 |m+x]§

8
where HEB)(u) = u2 e v LéB>(u) and Lés)(u) is Laguerre

polynomial of order -8 . The proof of lemma was obtained for the

case o =0 and x = 0 by Szegd [14] , for the case a = 0 and
any x by Berndt [4] and for the general case by Hafner [7]
The next lemma is a generalization of Alimov and Il'in ( [1,

lemma 2.2] ). ( Kuratsubo [10] )

LEMMA 2 Suppose s > -1 and s = r+x where r 1is an integer

and « satisfies 0 <k <1 . For B >0 and T > 0 , define a
function b(x) as AB log'a or 0 according as A > e, or not
respectively. Further, for any numerical series 2 a_, let
‘n=1
s s n,s _ n.s .
oy » 0y be ] (1-3)7a , ] (1-3)° b(n) a  respectively.
n<i n<x-
Then we have
—_ 1 r+l
s s L+l t r+l ,d \r+2 PN S
oy = O ox + (DTS gy oty (Gg)7 [0 G A-6)7T
and, for some positive constant C ,
1 r+1
t d \r+2 s
fo o (@) T[eE)-p(G))(1-£)7]] dt < € b(A), A > 0.
4. The proof of theorem. Assume the existence of x such that
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2
2 (1- L%L ) ———E—l—?———~e(mx) = o(t
, | O Log" [n]
1<|m|“<t

Next, applying lemma 2 to the case s = a , B = % , T = T and

1
a, = ) - e(mx) ,
5 Im|%10g"|m|
[m| “=n
then we have
s m 2 o 1
o = ¥ (1- ) e(mx)
A A g, T
2 Im|"log" |m]
1<|m| "< :

and

It

— : 12 .
IS4 2T (1- L%L )% e(mx)

> w

1<|m] 2

Therefore, we have

o]
— = 1 r+2 .
s 2 T s 2 t d \r+2 3 s
Joyl < A% log'a |oy| + Iolctl wroT |G [ -p0)) (1-8)7]] at
5 o FOR e b o
= A% log x o( A (log )
=o( A (log X)
This is inconsistent with lemma 1.
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INTERPOLATION DE LAGRANGE

Alain Lascoux

Nous rappelons gque l'interpolation d'une fonction d'une varia-
ble par¥ un polyn®me est intimement liée au calcul du reste de la
division de deux polyn®mes. Nous donnons i'extension a plusieurs va-
riables dans la Proposition 8 . Les différences divisées se révélent
8tre le concept approprié. Comme applications immédiates, citons
l'interpolation rationnelle, les restes successifs de la division
euclidienne, le P.G.C.D. de deux polyndmes, les décompositions dans
Jla base canonique des éléments de la cohomologie d'une grasmannien-
ne, etc... Dans tous ces exemples que nous ne développerons pas, il
s'agit de calculer l'action du méme produit de différences divisées.
Les Fonctions de Schur suffiraient 3 exprimer la solution de tous les
problémes évoqués ci-dessus, car ceux-ci sont symétriques en les
points d'interpolation, ou les racines des polyn®mes en cause; néan-
moins, les différences divisées fournisssent un point de vue et des
algorithmes différents : plutdt que de calculer dans 1'anneau des
fonctions symétriques, on utilise l'action du groupe symétrique sur

1'anneau des polyn®mes.

L'auteur ne disposait que d'une machine a traiter le frangais
du xx1°™ sidcle, ce qui explique la gestion aléatoire des signes dia-

critiques.

Etant donnée une fonction f : € -—> € , "interpoler" £f en
l'ensemble ‘de "points" B = {b, c,..., d} consiste & trouver une
autre fonction g , par exemple un polyndme, telle que f et g
coincident en B et telle que f-g soit un "reste" négligeable, ce
dernier terme ayant un sens précis suivant la catégorie choisie.

Newton et Lagrange interpolent f par le méme polynome (de
degre € n-1 si n est le cardinal de B ) , trouvant fort

heureusement le méme reste, mais présentent différemment leurs calculs.

Newton ordonne totalement B = {b <c < ... < d} , écrivant

(1) f(x) - £(b) - (£3).(x-b) - (£33).(x-b)(x-c) - ... =
ReSte/Newton

les coefficients (£f983...) é&tant ses fameuses différences divisées
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que nous expliciterons plus loin.

Lagrange, quant & lui, conserve la symétrie des &lé&ments de B ,

et méme, divisant par le produit (x-b) (x-c)...(x-d) , trouve une
expression symétrique en {x,b,c,...,d}
(2) f(x)/(x-b) (x-c) ... (x-d) + £(b)/(b-x) (b-c)...(b=4) +...+

+ £(d)/(d-x) (d-b) (d-c) ... = Reste

/Lagranae .

Cést en fait sur le reste qu'il est intéressant de porter son

effort. On pose:

T N S ¢
(3) D = . :

1 an” £(a)

1 xn_l f(x)

Le calcul de Lagrange consiste simplement en la remarque que le
membre de gauche de (2) est le développement du déterminant O
suivant sa derniere colonne. Posant A = Vandermonde = produit des

différences deux a deux, on a en effet

(2") ReSt?Lagrange =D / Mx,b,c,...,d)
Newton, ayant quant & lui conservé le facteur (x-b)...(x-d) , obtient
le reste:
(1) ReSte/Newton =D / Alh,c,...,d) =
ReSte/Lagrange . (x=b) ... (x-d)

Euclide é&change droite et gauche dans les équations précédentes

et prend comme reste de sa fameuse division de f par le polyndme

(x-b)...(x-d) le polyndme interpolant f
(4) £f- 2  _ (x-b)...(x-d) = Reste =
Mx,b,...,d) ~ o /Euclide
= * x°4 ** x% Follk FEF xn—l '

les coefficients *...* pouvant se calculer a l'aide des differences

divisées ainsi gqu'il est expliqué en (10) .

Reprenons le¢ membre de gauche de la formule de Lagrange (2) ,
en adoptant une écriture qui respecte la symétrie entre les éléments
de A = {x,b,...,d} et en notant R(a, A-a) 1le produit des différen

ces de a e A avec tous les autres éléments de A
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(5) Z f(a) / R(a,A-a) = Reste

2el Lagrange

Comme une fonction symétrique des éléments de A-a est une
fonction de a ayant pour coefficients des fonctions symétriques en
A et gque la formule (5) reste valable par extension déé scalaires
aux fonctions symétriques en A , on peut introduire une fonction
symétrique g de n variables et donner au membre de gauche de (5)

la forme suivante :

(6) > g(A-a).f(a) / R(a, A-a)
aeA
On est ainsi conduit, a la suite de Sylvester, & sommer sur tous
les sous-ensembles de méme cardinal : soient .p , g deux entiers
positifs, A un ensemble d'intéterminées de cardinal p+q ; pour
tout sous-ensemble B de cardinal p , on note R(B, A-B) le produit
des différences des éléments de B avec ceux de l'ensemble complémen-—

taire A-B : R(B, A-B) = r1 (b-c) . Soient enfin deux
’ beB , ceA-B
fonctions symétriques f,g de p,q variables respectivement . On

peut alors énoncer :

. La somme

(7) > g(A-B).£(B) / R(B, A-B) = v(g, £, A, p, Q)
BcA
est une fonction symétrique en A .

La sommation précédent&peﬁt 8tre considérée comme un opérateur
fbilinéaire Gnm (p) x Gnm (q) -—>» Gnm (p+g) sur l'espace des
.Ifbnctions symétriques Gnm (.) . Cet opérateur a la propriété essen-—
tielle de préserver les fonctions de Schur , c'est & dire d'envoyer
le produit direct de deux fonctions de Schur sur une fonction de
Schur ; cette proprieté se trouve a la base de maintes identités de
Cauchy, Jacobi, Sylvester, Borchardt, etc... et s'interpréte comme le
théoreme de Bott pour la cohomologie des grassmanniennes. D&composant
f et g dans la base des fonctions de Schur, on obtient ainsi une

expression de la fonction cherchée Y (g,f,A,p,q).

Une méthode plus puissante consiste a décomposer cet opérateur
en produit de différences divisées. Pour cela, il nous faut ordonner
totalement A : a; <a; < ... <a . On note o la transposition

2 P+q

de a, et a et ht l'image par o d'une fonction h des

B | i+l
variables A .
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DEFINITION. La i-iéme différence divisée Bi est l'opérateur, noté

G-
3 droite, h —b hai =(h-h?M / (ai—ai+1) ; plus généralement,
pour toute coupure de A en A' = {al < ... < ap} A" =
= {§p+1 < .. < ap+q} , la différence divisée QA“A‘ est le produit
(353,01 <+ Fpuge1) Qpog oo dppgeg) +o- (3 =ead) o
et la différence divisée maximum aAw est le produit
(8132 "'ap+q~l) (3, ... ap+q—2) <. (39)

Proposition 8. Etant donnés deux fonctions symétriques f,g de P
resp g variables, et un ensemble de variables A de cardinal p+g ,
on a l'egalité

(8) 2, ) 9(A-B).£(B) / R(B,A-B) = g(A").£(A")3,.,,
Preuve. Comme R(B,A-B) = A(A) / A(B).A(A-B) et que A(a) est &gal

a la somme alternée des mon®mes en A de multidegré 0,1,2,...,p+g-1,
la somme Y g(A-B)f(B)/R(B,A-B) est éqgale & -

u
F
ZE {g(ap+l"'"ap+q)”(al""'aE)A(al'""aD)A(éP+l'.."ap+q)}
o - " 1 1 - N
H [SHIGH A(al,...,ap+q)
somme sur toutes les permutations yu des &€léments de A . Comme par
ailleurs, A(A')BA'w = p! , on est réduit a vérifier gque aAw =
- 1t ARA u .
=3p1, * dan, © dawpr st llopérateur f —p _ZEU (£/M)" . Ceci
résulte, si l'on veut, de ce que les deux opérateurs envoient le
‘méme monBme sur la mdme fonction de Schur ; &tant linéaires, ils
coincident donc [ cf. [Dem], [B/G/G] ; la décomposition de

1'opérateur 3 en produit de Bi raméne en définitive'a vérifier

Aw
que l'opérateur Bi est linéaire en les fonctions de a; ""’ao+q
symétrigues en a; et a1 7 et envoie l/(l~ai) sur
l/(l—ai)(l—ai+l) ; ce gui est trés exactement la formule de Lagrange
pour un ensemble de cardinal 2 ] . #

La sommation (8) ‘a &té étudiée par Cauchy et Jacobi pour
1l'interpolation rationnelle (cf.[Ros]), par Sylvester [Syl] ,
Borchardt, et pour les modernes, outre les géométres des grassmannien-
nes et variétés de drapeaux, Milne [Mil] . La Physique moderne recon-
nait &en le cas particulier f = aP de 1a formule de Lagrange (5) une
proprieté essentielle des groupes unitaires et des niveaux d'énergie

atomique [Bied] .
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.

On peut maintenant terminer le calcul d'Euclide, a l'aide des
fonctions symétriques élémentaires /A (A) définies par [Mac] -

Y @ = (1+za) .

_
aeA

Proposition 9. Soient f£(x) un polyndme en une variable,
A= {al,az,...,an+l} . Alors, modulo le polynOme r&(x—ai) , on a
1'égalité

_ 1 o _,yn-1 1
(9) f(x) = (-1) An(B).f(a) aBa X + (-1) An_l(B) .f(a) aBa X+
n-1 n
es = l\l(B).f(a)aBa X + f(a)aBa X,
en notant a, =a et (az,---,an+l) =B .

Preuve. Les deux membres sont linéaires en £ , il suffit de vérifier
la formule pour la base {xé,xl,...,xn} . Dans ce cas, l'on a
An_i(B).ajaBa = (-1)"% ou 0,0€4i, i£n, selonque i= 74 ou
non; c’est bien 1'égalité demandée.
#
Un exemple illustrera 1l'identité€ des calculs de Lagrange, Newton,
Euclide. Soit £ un polynGme d'une variable, A = {a,b,c} un

ensemble d'interpolation. Alors, modulo (x-a) (x-b) (x-c) , on a pour

Lagrange,
_ (x-b) (x-c) (x-a).(x-c) (x-a) (x-b)
f‘*? = f(a) (a-b) (a-c) + £(b) 1b-a) (b-c) + £(e) (c-a) (c-b)
pour Newton,
f(x) = f(a) + f(a)al (x-a) + f(a)al_a2 (x-a) (x-b) K

pour Euclide,

£(x) = bof(a)d 3, x° + (b+c)£(a)d b, x1 + £(a)3, 8, x°

172 172 172

Nous avons déjd mentionné que la somme (8) se rencontre dans
l'interpolation d'une fonction d'une variable par une fanction ra-
tionnelle (probléme résolu par Cauchy et Jacobi et que a donné lieu
3 tous les beaux développements connus sous le nom d'Approximantes de
Padé [Brez] ). Soient A un ensemble de cardinal p+q , £ une
fonction d'une variable. On Cherche‘deux polyn8mes ncec(x—c) = R(x,C)
et nng(x—d) = R(x,D) de degrés respectifs p et g-1 tels que les
fonctions f et R(x,C) / R(x,D) coincident sur A . Donnons par
exemple le numérateur R(x,C) , en E&crivant £ (B) pour le produit

nchf(b) ; le dénominateur est fourni para une expression analogue.
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Proposition 10. (Cauchy). Le numérateur de l'interpolante rationnelle

est & un facteur prés
- T
(10) Zpea f (B).R(x,A-b)/R(B,A-B)

la somme étant &tendue a tous les sous-ensembles B de cardinal g .

L'énoncé ci-dessus est stricto-sensu incorrect, il faut ajoutei
une hypothése de qénéricité pour s'assurer que le facteur parasite
n'est pas nul et que l'interpolation est possible.

Il est clair que l'expression (10) est un polyn®me de degré
4 p et gudre difficile de montrer que ce polyn®me répond a la ques-
tion. La Proposition 8 permet de retrouver la forme déterminantale
classique [Brez] , les différences divisées agissant simplement sur
les déterminants en cause. Rosenhain [Ros] montre que le calcul de

Cauchy permet d'exprimer le résultant de deux polyndmes.

Sylvester a considéré des sommes plus élaborées que (10) ; c'est
ainsi qu'il obtient par exemple le P.G.C.D. de deux polyn®mes.

Proposition 11 (Sylvester). Soient p et g deux entiers positifs
tels que p+q est &gal au degré du P.G.C.D. de deux polynOmes
R(x,A) et R(x,B).. Alors le dit P.G.C.D. est &égal a

R(x,A').R(x,B') .R(A',B').R(A-A',B-B"')
' ) R(Af,A—A'Y.R(B‘,B;B')

A'CA,B'CB
somme sur tous les sous-ensembles A' de cardinal p et B' de

cardinal g .

Nous renvoyons & [Syl. I, b. 58] pour cette affirmation (la
démonstration peut bien entendu se faire par une chafne de différences
divisées). Le méme auteur généralise l1'interpolation de Lagrange au
cas de plusieurs polyndmes d'une variable dans [Syl , I p. 645-646].

Pour 1'interpolation de Newton & plusieurs variables, voir Eﬂ&s 2].

Remarque. Tous les calculs précédents peuvent s'interpréter geométri-
quement. Dans le cas de Lagrange/Euclide, on a affaire & un espace
projectif, dont 1'anneau de cohomologie est le quotient de l'anneau
des polynBmes en x par un polynbme unitaire, 1'opérateur

81.32 A SBa s'interprétant comme le morphisme de projection sur
la base (morphisme de Gysin). Le cas plus général de la Proposition 8
correspond a la grassmannienne relative des quotients de rang p d'un

fibré vectorial de rang p+g , et l'operateur 9...3 est la projec-
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tion de la cohomologie de la grassmannienne sur sa base. Pour plus de
détails sur les différences divisées et leur usage en cohomologie des

grassmannienses et variétés de drapeaux, voir [L&S 1] .
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i
AN ULTRASPHERICAL GENERALIZATION OF KRALL'S JACOBI TYPE POLYNOMIALS

H.G. Meijer and H. Bavinck \

University of Technology, Delft b

1. INTRODUCTION

In [3] , [4] H.L. Krall introduced orthogonal polynoﬁﬁals for
which the weight function is the Jacobi weight function combiﬁed with
a delta function at the end point(s) of the interval of orthoépnality.
These polynomials were described in more details by A.M. Krall% [2] .
Recently Koornwinder [1] studied orthogonal polynomials$ withiweiéht
function (1—x)a(1+x)B + MS{x-1) + NS (x+1) . It was shown that these
polynomials, which include Krall's Jacobi type polynomials, can:be
expressed in terms of Jacobi polynomials as

([anx + bn]£§ + cn)Péu'B)(x) for certain coefficients a ,b aéd c_.

n n

We guessed that a second order linear differential operator working
on' the Jacobi polynomials might give the polynomials which are
orthogonal with respect to a weight functioh being a linear
combination of the Jacobi weight functions, two delta functions and
two derivatives of delta.functions at the points 1 and -1

But we realized that in )
<5 '(x-l),(f(X))2 > = =<8 (x-1),2f(x)£'(x)> = -2£(1) £' (1)

the sign depends on the function. Therefore such a linear combination
~ would not lead to an inner product.

Instead we considered the following two inner products:

a) The symmetric case

1

I (204 2) 2
(1.1) <f,g> = Lo+ 2) f £(x)g(x) (1-x)a dx +
22 (pgr1)? o1

+ M[£(1)g(1) + £(-1)g(-1)] + N[£'(1)g' (1) +

+ £'(-1)g'(-1)] , a> -1, M20,N=0 .

b) The asymmetric ease

1

(1.2) <€,qo = —Lla*p *2) f £(x) g(x) (1-x) % (14x)Bax +
29" (1) T (g41) -1
+ PE(1)g(l) + Qf'(1)g' (1), a> -1, g> -1, » =0, 0=0.
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It is obvious that the inner mroducts (1.1) and (1.2) cannot be
obtained by aweight function because in both cases <x,x> # <l,x2>.
Since many of the known properties of orthogonal pélynomials (such as
the three terms recurrence relation, the zeros inside of the interval
of integration etc.) depend on the existence of a weight function, we
canhot expect the polynomials, orthogonal with respect to these inner
producﬁs, to satisfy these properties. They constitute an orthogonal
system of functions, which are oolynomials, but they are not

orthogonal polynomials in the ordinary sense.

Here we report on the symmetric case. For the details we refer
to [5] and [6] .

2. THE POLYNOMIALS

We have shown that the polynomials Sg’M’N(x) = —(a,l)Yg ’
s3 N0 = -y Ee
(2.1) SEMN (G = s () = [a xS 4 b Ly ¢ IR (), 22
: n N - 2 n* ax n' n X oe n=sy
ax
where Réa)(x) = Rn(X) are ultraspherical polynomials normalized
Réu)(l) = 1, areorthogonal with respect to the inner product (1.1)
if .
2R" (1)
a = -w[—2—wu+ v R,
n a+1 nn
- " (n+a) (n+a+1) _
b = 4MNR"(1) ['TaiiTTgiiT‘ 1] +2(o+1)y M +
13 - - -
+ an(l)yn [(n-1) (n+20+2) -20-2]
and -4MNR"' (1) R (1) 5
c = - - 2(a+1)R'(1)y_M - (o+l)y~ +
n a+2 n n n
2
- 2wy _RY' (1) [(0+2)n“+(0+2) (20+1) n+20+2] )
n (n-1) (n+20+2)
; _ n:T(20+2) ' _ n(n+2a+1)
vhere Yn = Tmr2erd) ¢ ‘Y = SiD ’
RY(1) = n(n-1) (n+20+1) (n+2a+2)
n 4 (a+1) (a+2) !
R"' (1) = n(n-1) (n-2) (n+20c+l) (n+20+2) (n+2a+3)
n 8 (a+1) (a+2) (a+3)
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The coefficients an,bn,cn have been determined from the orthogonality
relation <Sn,pm> = 0 , where Pn is a polynomial of degree m < n .
The differential equation for ultraspherical polynomials was applied
frequently in order to rewrite the terms properly. Furthermore from
the symmetry of the weight function it follows that S2n is an even

function and S is an odd function.

2n+1
3. SOME PROPERTIES OF Sn(x)

a) The values Sh(l) and SA(L

These values can be computed in a much shorter way than by
substituting ' x = 1 1in the definition above. Also the results are
less complicated than the coefficientes b5 and cy would suggest.
We obtain

- - 2 w1y
s, (1) = -(a+l)y, + 2Ny R*' (1)
2R" (1)
S)(L) = —(a+D)y [y M+ Yan(l)] .
b) Zeros

As was mentioned, the polynomials Sn(x) are not ordinary
orthogonal polynomials. This can be seen by the fact that Sn(l) may
vanish for certain values of N and o . However, Sé(l) # 0 for
all n = 1 , which implies that the polynomials Sn are not

identically zero.

C) Another representation for Sn(X)

The fact that the values of Sn(l) and Sg(l) are so much
easier than the coefficient bn and h inspired the first author to

look for another, less complicated representation for the polynomials

Sn(x) . The result is
2.2
a_ (1-x7) 4 2
n d: a™ (a)
5,0 = [ ey P a, (1-x7) 2 e JR, (%)
where
2R! (1)
ay = W [prM o R
RY (1R (1)

dn = N'Yn ——R;;TIT—' + 'YnM '
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-— -_ - 2 "
e, = Sn(l) = (a+l)yn + ZNYan (1)

Especially in the case N = 0 (the case treated by Koornwinder) we

obtain a simple formula (in Koornwinder's notation)

Pg'a'M'M‘X) -MT (n+2a+1) 2. &% _(a) (a)
p & ) = Gt (2ary (7% o2 (x) + R 7700

d) Recurrence relation

From the definition of the inner oroduct (1.1) we derive

<xS_,5.> - <S8 _,xS.> =
n’"i n’ "o
{(J , i1f n+i 1is even ,
] -N . . .
an[s (1)s;(1) s (1), (1)] , if n+i is odd
Hence we can choose on such that Sn+l(x) - pnxsn(x) is a polynomial
of degree at most n . Thus we must write
n
Sy (¥) = o xS (x) = éé; c;8; (%)

Obviously c; = 0 if- n+i. is even . In particular c, = 0-.

For n+i odd and i £ n-3 we have

ci<Si,Si> = <Sn+l(x) - pnxSn(x) , Si(x)>

]

=0, X8, (), §; (x)> =-20 N[s (1)s;(1)-s!(1)s, (1)]

1
1
In general c; # 0 . This implies that for the polynomials Sn in

general no three term recurrence relation exists as is the case for

ordinary polynomials.

4. SECOND ORDER DIFFERENTIAL EQUATION

From (2.1), the differential equation for ultraspherical

- polynomials

(4.1) ‘ (1—x2)R£(x)—2(a+1)xRﬂ(x)+n(n+2a+l)Rn(x) =0

and the derivatives of these two relations we eliminate Rn’RS and

R;' and obtain

(4.2) P3(x)8, (0)-p, () (1-x7)S! (x) = a, IR () ,
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where P3P, and q, are polynomials of the degree given by their

index and p3(l) = 2(a+2)p2(1) # 0 . Furthermore q4(l) = 0 1if and
only if Sn(l) = 0 . By differentiating (4.2) we easily derive ‘that
in the case Sn(l) = 0 we have

) — L L}
2(a+3)p2(l).sn(l) = q4(l)Rn(l)
Since Rﬁ(l) # 0 and Sé(l) # 0 (see 3b) it follows that
qa(l) # 0 . Thus, qy is not identically zero.

We finally obtain a second order linear differential equation of
the following form

2 " 1 ’ — :
(4.3) a(x) (1-x )Sn(x) + xB(x)Sn(x) + Y(X)Sn(X) =0 ,

where a(x) , 8(x) and Y(x) are even polynomials of the degree #£8

and oa(x) is not identically zero.

5. EXPRESSION AS HYPERGEOMETRIC SERIES

From the formulas for ultraspherical polynomials .(SzegB [7] ’
(4.7.3), (4.7.30) and (4.21.2))

(1/2)
Réa)(X) = (-7 . F, (- n,n+a+l/2;1/2;x2) ,
n 271
(a+l)n
(3/2)
(a) _ (_1yD n _ 3.3 . .2
Ropp1 (¥} = (=1) D XpFy (npntat 5 55 X0
a (a) _ n(n+20+1) (a+1)
ax tn (x) = 2 (a+1) R ( )

we obtain the following results
(1/2)n

v _ _.n (/2
S n(x) = (-1) (a+l)h Con 4 3( n,n+u+l/2 A+l u+l 1/2,2,u:x )
where we have written

D), (u+l)y

[2k(2k-1)a, +2kb, +c, ] = da, (k+}) (k+p) = c2n"777£‘ [
and

Son+1 (¥ = (';)nré;éééi Sons1 43 n+“+3 X*S'“+g g'“*%'“+%’xz)
with

(2x (2x+1)a, , +(2k+D)b, o +c, 1] = da, ) (kideg) (krpdg) =
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3 3
. (A+ 2')k(U+ §')k
2n+1 1, 1
) (ut 5)
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SOME REMARKS ON THE STRUCTURE OF THE ERROR
OF TAU METHOD APPROXIMATIONS

S. Namasivayam and E. L. Ortiz

Pure Mathematics Section
- Mathematics Department
Imperial Colleae,
London, England

1. INTRODUCTION

"In a paper published in 1983 Ortiz and Rivlin [1] showed that if
the Chebyshev polynomials of the first kind defined on [a,b] are

2, a £'x,y £ b} , a series of

plotted in the square S := {x,vy e R
characteristic patterns appear, which are aenerated by their mutual

intersections. They also showedtthat such property is shared by other
polynomials, in particular by Legendre polynomials defined on [a,b} '

if appropriate shape functions or envelopes are applied to them.

More recently, Freilich and Ortiz [2] , Onumanyi and Ortiz [3]
and Namasivayam and Ortiz [4] - [5] discussed the properties of
polynomial approximations of degree n of a given function y(x) ,
implicitly defined by a differential equation, when the solution of

such equation is approximated by using the Tau Method (see Lanczos

[6] and oOrtiz [7]) ; we call these approximate solutions Tau
polynomials.
These authors showed in = [2] - [5] that for certain classes of

ordinary and partial differential eqguations the order of approximation
of Tau polynomials is close to that of best uniform approximations of

y(x) by polynomials of the same degree n .

Namasivayam and Ortiz [8] discussed the problem of intersection
patterns in the case of normalized error curves of Tau polynomials when
the function y(x) 1s defined by a differential equation with constant
coefficients. In this case Tau polynomiéls are constrained by the
requirement that they must satisfy exactly the given supplementary
conditions, therefore they must have zero error at the point where the

initial condition is given.

These authors showed also that in this case an envelope curve L ,
which pases through the origin, encapsulates the normalized error curves
inside the squatre S . This result gives some information about the

structure of the error of Tay polynomials: their normalized error curves
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can be decomposed into the product of two factors. One of them is a
highly oscillating function and the other is the envelope L , which
"modulated"” these oscillations. Another interesting feature of Tau
polynomials, consistent with the fact that they are close to best
uniform approximations of y(x) , is the presence of patterns which,
although similar to those discussed by Ortiz and Rivliin in [1] for
best uniform apnroximations of zero in [a,b] , are now compressed

inside the domain defined by the envelope L .

2. ANALYSIS OF A CASE WHERE THE COEFFICIENTS ARE VARIABLE

In this note we show that a similar result is true when y(x) is
implicitly defined by a differential equation with variable coefficients;

we construct the envelope curve L for the concrete case considered.
Let us consider the differential equation
A(x)y'(x) + B{x)y(x) =0, for a<sx%b,

with A(x) = 2x ; B(x) = -1 ; a = 0.5 ; b= 1.0 and with the
supplementary condition y(1) = 17
. ‘ ()
Let Tn(x) be the Chebyshev polynomial of the first k;nd and
degree n defined on -1.0 £ x £ 1.0 and let T*n(x) stand for these

polynomials when defined on 0.5 4 x £ 1.0
We consider the Tau Problem associated with (1) and definied by ' -
' - = * 4y £
2xy n<X) yn(x) =17 n(x) , for 0.5 x££ 1.0 ,

‘with the condition yn(l) = 1.
) (2)

It follows that the error function en(x) i= yn(x)—y(x) satisfies
the same differential equation as yn(x) , but with an homogenous

initial condition. Therefore,

3/2

1
= 1/2
e (x) := 1 x /‘4X—3 [T*n(t)/(t+3) Jat .

The last integral is given by

{n sin[n cos™(4x-3)] sin[cos ™t (4x-3)]/[8x>/ 2 (n%-1)]}+0(1/n?),
thus, ‘
[8(n-1/n)e (x)]/7  := {sin[n cos—l(4x~3)] sin[cos_l(4x~3)]}/x

+ o(l/nz).

110



Therefore the curves defined by
[B(nv—l/n)en(x)]/rn
have the envelope L defined by

+ sin [cos_l(4x—3)]/x .

. 3. FIGURES

Figures 1-4 display the normalized error curves of Tau pélynomials
of degrees n = 6(1)10 ; n = 11(1)14 and n = 15(1)19 and n = 20(1) 24,
while Figure 5 shows them for n=6(1)24. The envelope curve L of the
normalized error curves of Tau polynomiais is clearly visible in these
figures. The patterns of intersections became visible, as white lines,

only in the last Figure.

Figure 3:-n = 15(1)19 Figure 4: n = 20(1)24)
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Figure 5:n = 6(1)24
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KERNELS AND POLYNOMIC MODIFICATIONS IN LEMNISCATES

Isabel Pérez-Grasa

Departamento de Analisis Matemé&tico
Facultad de CC.EE. y Empresariales
50005-ZARAGOZA (Spain)

1.- INTRODUCEION

Let T: |A(z)| = R be a lemniscate, where A(z) = a. z"J is a monic

=3

0

are simples. We J consicder the ortho

h
i=1
normal polynomials sequence (0.N.P.S.){ Pn(z)}ne o with respect to' a m-distribu

complex polynomial, whose roots {gi}

tion function p{z) defined over the curve.

As we know the following ihner product associated with u{z) is defined

k J _ k = _
<z, z >p = IF z  z° du(z) = °kj
The descomposition
4 n .
IPn = A Pn—h S A IPn_h] A , (nzh)., where IPn is the linear space

of complex polynomials whose degree -is iesé than n+l, is central in the study
of the recurrence properties of such a sequence. In a particular case, a basis
of the orthogonal complement subspace ([A'Pn—h ] Ln ) is given in [ 1], and sa-

tisfies some interpolation properties.

In this paper, we study a new basis related to a problem of polynomic

modifications of wu(z).

2.- POLYNOMIC MODIFICATIONS OF A M-DISTRIBUTION FUNCTION

Let u(z) be a m-distribution function defined over T .

The m-distribution functions u(l)(z) are defined from #(z) in the

following way:
4 u(l)(z) = |z - “1[2 d u(z) i=1,...,h
These transformations are similar to those realized in [4].

We call {Pil)(z) Y the 0.N.P.S. associated with . u(l)(z) (see

. € N
[2] ana [6] ).

Then, we have:
' n-1

. is an orthonormatized basis of (z-a, )P
j=0 i n

5(i)
1) The sequence {(z- ui) Pj (z)} 1
related to u(z).
n

related to u(z), where Kn(z,Y) is

2) K (z, «;) is a.basis of [(z=a )P ]
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We then define the polynomic modifications Ti(z) of u(z) by:

~ 2
A(z) .
4 Ti(Z)- = l T(;—.— d u(z) i=1l,..., h,
i
where A(z) = Alz)
R
2
Obviusly, these m-distributions satisfy: {z—&il d Ti(z) = d ¥ (z),
because the operator K(z) is isometric.
We call {Q(i)(z)} Cana 1P, y), the O.N.P.S. and n-Kernel -
n n €N n ’ ’ )

associated with ri(z).

It is very easy to prove the following:

3 i .N.P.S. {(z-a,)P
1) If {Pn(z)}n e Is an 0.N.P.S. related to H(z), then {(z ai)Pn(Z)}ruelN is
an O0.N.P.S. related to Ti(z).
. : . n-1
2) L(l)(z, a.) is orthogonal to {(z-ca.) P.(z)} . related to T, ¢z).
n i i J j=0 i
Further, L(;)(z, o.) is a basis of [(z-0a, ) IP ] Ln
n i i n-1
Proposition 1
» The sequence 1 EiZl_ (1) (z, a,)} X is orthogonal to the sequence
ooy oee z—o “nchel % %500 o & In a
{K(z)?j(z)) =0 related to u(z), and it is a basis of [ AZPn_h] S
Proof:
The polynomial Lél)(z,y) verifies the reproductive property of n-Kernels:
< P(z), L(l)(z,y) > = P(y), ¥ P(y) e
n . n
Then, for all j=0,1,... h—h, we have:
PN A(z) (1)
a8z > =
<A(Z)Pj(z), Lper (z0) y
z—a
i
Az) 4 A(z) (1) _
= <(z- a;) Pj(z), Lope (250 )>» =
z- a, Z— o,
i i
5 (1)
= - P 4 ) > =
<(z °i) J.(Z), Llnatz o) X 0
. A(z) (i) | n i
Thus: ——ij—— nihsl (z, ai) G.[A IPn_h] (i=1, ..., h)
i .
On the other hand, if
h . ~y ’
Alz) (i) ( _
'Z Ay Ln~ h+1. % ul) =0,
i=1 z— O,
i
then A, =0 (i=1,2,~.. h)
Since [ A E%_h }_Ln is a h-dimensional vector space, proposition 1
is proved.
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Corollary (1)
n-h+1

(z—ai)KWGQL

A(z) L (z, @) h
i

}
(1)

n-ns1@3y) 17

The basis {

defined in [s]
i=1

of [ATP L

] is the same as the basis {¢(1)(z)}
n-h n

n

; N
3.- AN ORTHOGONAL BASIS OF [ATPn_h]

From u(z), we define the following. m-distribution functions:

2 o 12 -
d o (z) = |z - ol duz), duylz) = |z - e |% au, (2),... au (2)=
2
= - <
|z akl duk_l(Z) (k<h)
(3) . . (o) _
We call K_ (z,y) the n-Kernel associated with uj(z), K (z,y)=
= Kn(Z,y) and  p o(Z) = u(z).
Proposition 2
k. (k) h-1
The sequenlcer1 { ifl (z - o) K ) (2,00 ) Yoo . is an(o?rthogonal
basis of [A P ]+ "~ related to H(z), where a (z=a) K (z, @,) =
n-h . i 'n i
k . i=1
= - - _ - Q
= Kn(z, ai) and 11;1(2, Gi) (z= . )(z o). (z- @)
Proof':
If  j=0,1,... n-h, then
‘ k
~ (k)
- > =
<A(z) ﬁj(z), (2 @) K T (2, *een) "
i=1
" h k : k
= < L . m (z- al) T (z- ai)?,(z), T (z- a,)Kéfi(z, uk+1)>u
R 1=k+l i=1 J i=1 *
h
—< T (aa) B(2), k) (g,a > = 0
R 1=k+1 1 J ’ n-k T k+1 H K -
Thus
k | n
(k) —
ilrl(Z— ui) Kn—-k (Z,*a k+l) e [ A ]Pn—h]

Finally, the orthogonality of the polynomials is easily demonstrated.
Thus, proposition 2 is proved.
It is also possible to solve an orthogonal basis of [a Pn—h ]—J— n

when A(z) has multiple zeros.
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RECURSIVE INVERSION OF HANKEL MATRICES

M. A. Pifiar and V. Ramirez
Departamento de MatemAtica Aplicada
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Spain

Abstract

In this paper we obtain a recursive method for inversing Hankel
matrices. This procedure generalizes the algarithm by Trench, for the
inversion of positive definite Hankel matriées, to the case of arbitra-
ry Hankel matrices. The algoritﬁm that we describe is related with the
formal orthogonal polynomials introduced by Brezinski and Draux, and
with the reproducing kernels defined by the authours in a preceding pa-

.per..We conclude with some applications to the Padé approximants-and to

the e-algorithm.

1 Introduction

Let ( cy }ieN be a sequence of real numbers. By a Hankel matrix
: _ k-1 _ _ _
we mean a matrix Ak = (aij)i,J=O - such that aij = ci+J for 1i,j=0...k-1

The main goal in this paper is to propose a recursive algorithm
“for the inversion of a Hankel matrix, assuming that it is invertible.
The algorithm by W.F. Trench described in [6] is the base that inspires
this work. In practice, Trench's algorithm is based in the application
of a bordering method and the special structure of the Hankel matrix.

‘For the inversion of A this algorithm requires that the matrices Ak

k+1’
and Ak_l"are invertible too.In this paper we get going over this condi-
tion and we obtain a similar algorithm relating the inverses of two
consecutive regular Hankel matrices: Ak and As(k) ¢ where s(k) denotes

the smallest interger j, such that j>k and A is regular).

In section 4 we relate this algoriihm with concepts as the
formal orthogonal polynomials with respect to the functional associated
with the moments ci‘s, which were introduced by C. Brezinski [2] and A.
Draux [3], the recurrence relation and the Christoffel-Darboux relation
for orthogonal polynomials given by Draux and the reproducing Kernels

for non-definite linear functionals , which were introduced by the au-
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thors in [4] . This relation have been noted in Trench's paper for the
case of positive definite Hankel matrices and Lanczos' orthogonal poly-
nomials associated with. We want to remark that one of the steps of the
recursion described in the algorithm provides a new method for the com—
putation of the coefficients of the recurrence formula for the formal
orthogonal polynomiais.Finally in section 5, we show some applications
of this algorithm to the formal orthogonal polynomials, Padé approxi-

mants associated with a formal power series, the e-algorithm, etc.

2 Obtaining the algorithm

Let <« Ci )ieN‘ be a sequence of real numbers and let us consi-
der the secuence of Hankel matrices { A.- ) .
n " nelN
Let us suppose that Ak is invertible and denote the inverse
_ [$’9) .
matrix of Ak by Bk = (brs )r,s=0,...,k—l . Obviously, Bk is symmetric.
We will denote by p(k), the greatest integer j, such that j<k
and AJ is invertible. s(k)> will denote the smallest integer j , such

that j>k and Aj is invertible and h will be equal to h=s(k)-k.
We have by definition, ‘ :

k-1
P N 0¢r, s¢k-1 5D
= r+j “Js rs
3=0 )
Definition. For O¢stk-1 and k¢i¢(s(k)-1 we define the coefficients
k-1
ull = -k S5 44 b;i’ >
. 3=0
It 1s evident that u;§> are the only solution of the systems
k-1 <> S _ ' .
z c u = - C_,. O<r<k-1 keiss(kd-1 3>
3=0 r+j ~3i r+i

The elements defined in (2) are not independent, but all of them
are related. To show this, we need the following lemma, which proof is
an easy exercise.

¢
‘Lemma 1. The elements uék> verify the following equations:

s kK
k-1
(k> .
== <rg -
L Cri3 Yy, x Crtie 0¢r{s -2 )
=0
From now on, we will write u;k; = u;k> for e=0,...,%k-1 and
’
U§k; =1  for k¢jtsUo-1, u;k; =0 for rej kresdo-1
: ' . ' 5>
b;g) =0 if either r>k-1 or sdk-1 or r=-1 or s=-1

Now, let us see that the elements defined in (2) are related

with the u(k) .
s,k
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X h-1

Lemma 2. If Uh = (uij)i 3=0 denote the lower triangular matrix with
, 3= .
elements u = u(k? : then, for O¢s<s(k), it is satisfied that
ij k+j-1i
[ u(k) u(k) T - U(k>_1[ U(k) u(k) T )
s,k ' Ts,sk)-1 h s " " Ts—htl

Proof. Writing matricially the equatigns (4> and multiplying to the
left this equation by the matrix U;k), we obtain a matricial equation
équivalent to (3). And we can obtain the above mentioned relation only

by identifying the columns of the matrices involved in these equations.

Let us return now to the deduction of the algorithm. Ve define

k
x(k) = I c U<k> for sk)-1¢j¢sk)+h-2 7
3 r=0 Jj+r r
Theorem 1. For 0¢r,s¢s(k)-1 it is satisfied that
. B0 p® T [
b(s(k)) - b(k) + X(k) (u(k) u(k) 5 . . B
rs rs so)-1 " r ‘T Tr—h+1 . : .
. [¢'9] (k>
Bh .. . 0 Uo n+1
J
where if we write D = I AL for k-1¢j<k+h-2 then
3 = r s(k)-J+r
i r=s(k>-1
the B;k> are the solution of the following triangular system
k> k> 1
0 -+ Dogo-1 By 1 o
k> > [¢'9] i
Ds(k)*l' : Ds(k)+h— : Bh 0
Proof. By substracting (1) and (2) and by using (5) we have that
sky)-1
e _ _ G 3
jio Cr+j bjs - Srs S rkYsk e Srs(k)—lus,s(k)—l @
for 0¢r¢s(k)-1 and O¢s<k-1. For a fixed s, (8) can be considered as a
system of s(k) equations with the unknows b;g) 0¢j<k—-1, which solution
k) _ (s(k))> _ (s(k>) (k) _ _ (s(k)) (k> .
brs = Prs Pri Ysk T braor-1Y%s, s -1 @
for O¢r¢{s(k>-1 and O¢stk-1.
For k¢r¢{s(k>-1 we have that b;g) = 0 and therefore
(s(k>) _ (s(k)) (k) (s(k)) [¢:9]
Pre =P Ysk Tt T Prgao-i1Ys,sao-1 o>
for O¢s¢k-1 and by (7) we have that
(s(k)) _ (s(k)) (s (k) ¢ x> T_
b = Chby S R e REREE .
-1
_ (s(kd> (s{k)) k) (¢'9] > T
= ( brk ""’brs(k)—1> Uh (us L Y > (11a>

for O¢s¢k-1
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(s(k>)> (s(k)) (s(k)) T

brS = < brk ""’brs(k)—l) o ,..., 1 ,..., 0> =
-1
(s(k)) (s(k))> (k> [$:9) (k) [T
(_brk ""'brs(k>*1) Uh < 0,,.,1,uk_1,..,uS > (11b>
for k¢s¢sk>-1.
By multiplying (11> by cr+j and summing for j=0,...,s(k)-1 and
for r=k,...,s(k)-1, we can obtain that '
-1

(s(k)) (s(k))> (k> [¢:9) (k> T _ :
< brk ""’brs(k>—1) Uh < O'"'O'xs(k)—l""xs+h—1) = srs(12>

for k¢r,s<s(k>-1 and where 6rs is the Kronecker symbol.

And in this way, (11) can be written as follows
1

(s (k) ') N ¢')
Py, s O - Aaao- Us
_b(k) x(k) x(k) u(k)
s{k)-1, s{k>-1" ° s(k)+h~-2 s—h+1
By sustituting in (9), we have that
(13> :_1_ ) B;k? o B;k) u;k) 1
b(s(k))= b(k) +'x(k) (U(k) u(k) 5 . . . B
rs rs sk)-1 " "r T “r-h+1 . L N . J
- (¢'9) (¢:9)
Bh .. . 0 Uo h+1

The quantities B;k) of theorem 1 can be computed with a diffe-
rent way as the following theorem shows.

Theorem 2. The coefficients Bik),...,Bék) satisfy the equations

a0 o (P>
0 ... B x
ao ! . Lostent ] [ t ] _ [ koL 1 Lot

sk -1 D : J L : J [ : J k-1
X 13) A 1) (plx>)
s -1 As (k) +h-2 By Merh-2

Proof. From lemma 2, we have that
X p o

X

D uF 20 cosresan-2) £ oo, ulPE o5 oerek-2)
. r+j 7J P r+j 73
i=0 j=0
and by summing we can see that
x $:9 (pkd>
z uy a o 0 for 0¢igh-1 s>
J=k-1-1 ? : :
If we add the equation u;k) x;?§k>) = xéffk’> the system of equa-
tions (15) can be written in matricial form as follows
) (p)) (P> T _ Pk T
U, CMZy s NG 2 = B 00 0
and therefore ng) is the inverse matrix of the lower triangular ma-
-1
L 7 (PUO) h-1 : C (PO (pE
trix Lh (1ij)i,j=0 with elements lij %k+J—i—l Meq

So, by using the equality (13>, we have that the coefficients
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B;k>,...,Bék) satisfy the equation (14).

Theorems 1 and 2 provide a method to compute from B,.

s .
sk k
But we can reduce the problem of computing Bk to a simpler form, becau-
se, as the next theorem states, the elements of each anti-diagonal in

the matrix B, ‘are related by an easy formula

Xk
Theorem 3. By using the notation (5) for O¢r,st¢k it is satisfied that
-1
() _ . (pCk)) (pCk)) (k> _  (pkd)) (k)
Pre’ = br-l,s+1 * A1 Qup Us+l s+1 v ?

Proof.From (1), and by shifting the indices and operating conveniently
we can obtain that

k-1 '
e _ _ S N '3}
jio Cr+j Py-1,e+1 = Sre T Srk-1 Ys+1 T Sker Pk-1,s+1 (16>

for 0¢r<k-1 O¢st¢k-2 )
For a fixed s,the solution of the system (16) can be written as follows

k-1

(k> _ L () _ & (k>
r-1,s+1 be br,k~1 Ys+1 bk—l,s+l jio brj Ck+3
NS SN ¢ '] (k> (k> (k>
= Prg br,k—l MUe+1 +-bk—1,s+1 Ur a7
By using theorem 1 for k instead of s(k), we can obtain that
- 1 -
b(k) = x(p(k)) u<P(k)) and in this way, (17) can be written as
r, k-1 k-1 r
. -1 L
G _ (k) (p<kd>> (p<kd>) (& _  (pk) (¢:9)
brs br—l.s+1 * xk—l (Ur Yst+1 Ust1 Ur ’ (18>

Therefore, the problem of inversing A can be reduced to com-

k
;p(k)) and u;k? but, as we will see next, these quantities can be

computed with a recurrence formula.

Theorem 4.The coefficients u;k)satisfy the recurrence relation

u(s(k)) - ? B(k) u(k) _ )\(p(k))_—1 x(k) u(p(k))
s+h 3 s+h—-j k-1 s(k)-1 “s+h

j=0
For s=-h,..., %k, where the coefficients B(k) for Jj=1,...,h are the

J
quantities of theorem 1 and Bék)is given by:

h
G o
jil By Msao+s-1

Proof. The equation (18) can also be written as follows

> (k> (p(}s))_1 h (p(k)> (> _  (pkd> (99

Pre = Proh,sth 7 M1 351 Wrlyer Ysey T VYsty Yr-ge

By sustituting (17> in the equation (2) we can obtain

w _ STt e ST )
Us - - k+r ‘rs - Csk)+r-r,s+h
: r=0 r=0

. pute u

-1
ey _ | (pCkd) 1 (pl))

By TF Mg k+h—-1

> a1

123



-1 h -1
(p k) ') (pCkdd (pkd)d (P k>
Me-1 P R T ! Ys+n *sao-1 (20
But by the theorem 1, sustituting in <(20), we have that.
r oG (¢'9] k>
B.,70 . . B u
WO Jsay . aoTtao ReS N . * sth
s s+h s(k)-1 s(k> "' "s(k)+h-1 I . .
(k> k>
Bh . . . 0 u5+1
u(k)
-1 s+h -1 .
(pkd) (pkd)d (p<xd)> (p k) ¢ (px))>
-1 ¢y o Mern-1 2 | N *s -1 Ys+n e
u(k)
s+1
a0 pao Lpany A w0 _w tao
and if we write B0 = Xk—l xk+h~1 - jil Bj xs(k)—l xs(k)+h-1
we have that )
k> (k> (p(kd)>
-1 O - M- Bo Me-1 -1
>\(k) . . . . _ . x(p(k)) 22>
s(k>-1 [ . M . k-1 ’
k> [¢:9) [$:9] (pCkr>
s -1 s o +h-1 By Me+h-1
Therefore, the equation (21) can be rewritten as follows:
h -1
(s(k)> _ (k> (k> _ (pkd> k> (pkd)
Yetn - T L% Yetny Mem1 *sao-1 Ys+hn 23
which is valid for s = 0,...,k, and a similar proof shows that this
equation is alsoc valid for s = -h,...,-1. '

The equations (13> , (16> , (18) and (23) are the basis of our
generalization of Trench's algorithm. In the next section these equa-

" tions are placed in an order which is convenient for the computation.

3 Stating the algorithm

Let us suppose that we need to inverse'An, then we will compute

the elements b;:> as follows:
1. Initialization of the method.
W oo jen 5 ul® =1 and ul® o 5#0
3 Y J
x;—lj = 6_1 3 and determine s(0)-1 = min { ieN; c; # (O
3
compute A;O) = cj for J=s0>-1,...,2s5(0>-1
2. Recursion:Awe know the coefficients < u;p(k>> } and u;k> X,
with the convention u;i) = 0 for either Jj<0 or j>i. Then we compute
k .
x‘k) = I c u(k> for jzk
3 =0 j+r r
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and we determine s(k)> from the condition s(k>-1 = min { j?k-; §k) # 0 )

3
If s> = n go to 3. Otherwise compute x;k> and AP
for i=s(k>-1,...,s(k>+h-1 and j=k-1,...,k+h-1 and compute the B;k) for

3=0,...,h solving the system (22)

Next,compute the coefficients {U;S(k)) by using the recurrence relation

Leao B ao o _ et o $p o)
+ “s+h §=0 3 s+h-j k-1 s{k>-1 “s+h
for s=-h,...,k. Sustitute k by s(k) and come back to 2.

3. We have that s(k)>=n. First, compute the b;g)

-1
o RS (p ) (pUo)> o paod | Go
bre =P g el T M1 Gy Vsl s+l up

x;k> x;p(k)) for i=s()-1,.
.,s¢(k>+h-2 and j=k-1,...,k+h-2 , and solve the system (14) to obtain
the B;k) for j=1,...,h. Then we obtain the bég) from the b;g) by using

the equation (13).

by using
y

for O¢r,s<k-1. Next, we compute and

4 Conection with the formal orthogonal polynomials
Let cy )isN be a sequence of real numbers. Let us consider a
linear functional ¢ which is defined on the space T of the real poly-
nomials by c(xi) = ci i= 0,1,2,... 24>
Moreover, let us considgr orthogonal polynomials Qk(x> in the sense that
c(lek(x)) =0 for i=0,1,..., k-1 (25>
These polynomials exist and are uniquely determined (except a multipli-

cative factor)if the Hankel matrices A, are inversible.

k
Let I be the index set given by I = { ieN ; Hi(CO> # 0 2}
" Let us denote by ( Pi(x) } a basis of T such that: Po(x) =1,
Pi(x> is the unitary orthogonal polynomial if i € I and
_  impdd ; .
P, G0 x Pp(i)(x) if id'1

It is well-know that these formal ortﬁagonal polynomials satis-
fy a recurrence relation with three terms (see Draux [31). In fact, for
kel we have that

Ps(k)(x> = (x ws(k)—k—l(X) + Bk > Pk(x) + Ck Ppr(k)(X) (265
where ws(k)~k~1(X) is an unitary polynomial of degree s(k)-k-1, and Bk
and Ck are constants, determined from the orthogonality relations.

Now, suppose that kel and let us define the matrix H from the
relation Hk = Lk Ak Li , where the matrix Lk is an square matrix who-—
se elements in the j—th row are the coefficients p;j) in the expansion:

Pj(x) = 1%0 pij)xi N p;j)= 1

Then, from the orthogonality conditions, it is readily obtained

that Hk—l = (hij> is a block-diagonal matrix with elements hiJ =
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= C(Pin) for 0¢i,Jj<k-1 and such that on the diagonal there is an

alternance of diagonal blocks, with elements o(P?) , where 1 € I, and

Hankel blocks which elements above the antidiagonal are equal to zero.

Obviously, for kel, Lk and Hk are invertible and we have that

o T -1 -1 _ .T -1
A, = LS H (LD and AT = Ly H_o L 27>

In [ 4 ], we have defined for kel the reproducing Kernel of

order k-1 associated with the linear functional ¢ by the expression

= -1 T
Kk—l(x’t> = (Po(x),...,Pk_l(x)D Hk (Po(t),...,Pk_l(t)) 28>
and therefore, we have that-
_ k-1 T —1 k-1.T
) Kk_l(x,t> = (1,...,x% b Lk Hk Lk €1,...,¢t >
From (27) we have that Kk—l(x’t) is the generating function of the
1 e r s
inverse matrix of A, that is: K (x,t) = z b x t
k k-1 . r.e=0 IS

These reproducing kernels satisfy the usual properties, for
-example the Christbffel—Darbbux'relation
; -1
Gemtd Ky o (x,8) = tk (Pk(x)Pp(k)(t
where ty = C(Pk—le(k))

‘In this context, the equations of the preceding algorithm can

) —_Pk(t)Pp(k)(x)) ) 29>

be interpreted in the following way:

- The equations (2) for i=k are the orthogonality conditions (25> and
then, the u;k) for 0¢j<k are the coefficients of the unitary orthogonal
polynomial of degreee k. )

- The equation (13) is the expression (28) of the Kernel in terms of
the elements of the basis of T. )

~— The equation (23) is the recurrence relation with three terms for
three consecutive orthogonal.polynomials. We note that the equations
(22) form a new method for the computation of the coefficients of the
recurrence relation.

— Last, the equation (18> is the Christoffel-Darboux relation for the

reproducing kernels.

5 Some applications.

The proposed algorithm can be used to compute the formal ortho-
gonal polynomials associated with a linear fuﬁcticnal c, which is defi-
ned from its moments. In this way,the algorithm can be used in the stu-
dy of problems related with formal orthogonal polynomials: Padé appro-—
ximants and the e-algorithm.

Padé approximants

w
Let f be a power series flx> = ¢ c xl and m,n two na-—
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tural numbers. The [m/n)-Padé approximant ( if exists ) is a rational

function m i n i
[m/n]f(x) = I a; X / I bi X = wm(x) / vn(x)
i=0 i=0
_ m+n+1
such that f£&x> - [m/n]f(x) = 0x ). If vn(x) # 0 then it has to be
VoGO 100 - w Go = 0GR 30>

As it is well know, the Padé approximant exist if the Hankel

determinant Hn(c is different from zero, Hn(c > # 0

m-n+l n
In this case, if we define P G = x® v_x D=1 b___xt,
n n y=0 1
we have that Pn(x) is the formal orthogonal polynomial of degree n

c(m~n+1) defined by

m—n+1)

associated with the linear functional
C(m—n+1)(xi) = e
. m-n+i+l
Therefore,our algorithm can be interpreted as a method for com-
puting the denominators of the regular Padé approximants in a diagonal
of the Padé table. Later,we can' compute the numerators by using the re-
lation (30).This algorithm can readily be obtained if we sustitute u;k)

by b(k)

k3 in the recursion of section 3.

This method is a generalization of the first bordering method
' of Brezinski. » '
The e—algorithm
Let Sn ) be a sequenée of numbers. The Shank's transformation
provides a set of sequences by using the following relations:
e (S = Héii(sn) / H(n>(A28n)
The e-algorithm by Wynn is a method to avoid the computation of the

the Hankel determinants that appear in Shank's transformation.If we de-
(n)_ (n)_ -

fine e_l 0 and EO Sn for n=0,1,..., then the table for the e-al-
‘gorithm can be computed by using the relations ’
e(n) - e(n+1) + (s(n+1) _ E(n)) -1
k+1 k-1 k k

(n) _
and it is well know that €5 T ek(Sn).

An algebraic interpretation of the computation of the quantity

eé;) , which was found by Brezinski, provides the basis for the appli-
cation of our algorithm. If we solve the system,

k

z Sn+i+J aj =1 for 1i=0,...,k

=0
) (n) k
then € = 1/ L ai'AS it can easily be checked, a,; is the sum of the

i=0

elements of the i-th row in the inverse of the Hankel matrix A;iisn).

Therefore, our method for computing recursively the inverse of a Hankel
matrix, provides a method for computing the elements in the table of

the e-algorithm, avoiding the non-defined elements.
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Initialization of the method

uj("l) =0 jeN uéO) =1 and uj(O) =0 3#0
d(—1) =0 d(O) =1 x;—l) - 6_1 ; 53-1
Determine s(0)-1 = min { iel; Sn+i # 032 and compute‘
w0y _ i _ _ ) _
XJ = Sn+J for Jj=sO)-1,...,28(0)-1 » €ac(oy-2 Sn+s(0)—1
($:9)
Computation of €oc(ky—-2 for a fixed n.
Xk ;
(k> k>
= > ;
xj rio Sn+j+r u_ for j2k
Determine s(k)> by the condition s(k)-1 = min < j?k ; xj“‘” %0
~compute x*  and xj(f';k” for i=sUo-1,...,s0>+h-1  and
j=k-1,...,k+h-1 and solve the system (22> )
After this, compute the coefficients { u;S(k)) } by using the recurren-—
ce relation (23) and compute:
h -1
d(s(k)) = ¢ 3 B(k) ) d(k) _ x(p(k)) x(k) d(p(k))
= 3 k-1 s(k)-1
j=0
-1 2 h
- (o =-1_ (n) <1 k) [$: 9] . (k>
Then obtain ( EZs(k>—2) = (62k—2) Ao -1 jil J BJ
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SEMI CLASSICAL WEIGHTS (-og +00
SEMI HERMITE ORTHOGONAL PCLYNOMIALS

A. Ronveaux
Dpt. of Physics
Facultés Universitaires N.-D. de la Paix
5000 Namur (Belgium)

ABSTRACT

All semi classical weights continuous and positive in (-«,+x)
are derived first using elementary integration techniques, and the
finite moment relationship is derived.

The Semi Hermite polynomials, orthogonal with respect to the semi-
classical weight, depend on two fixed polynomials. Some elementary
situations generalizing the Hermite case are examined.

I. INTRODUCTION

In two recent papers, Maroni fl,ﬂ characterized algebraically the
complete class of semiclassical orthogonal polynomials. This class is
defined by a regular linear form<&5 , involving two fixed polynomials

acting on the space of real polynomials.

A Semi Classical Orthogonal Polynomial Sequence (SCOPS) [3] is an,
Orthogonal Polynomial Sequence (orthogonal with respect to & ) such
that the derivative (or difference) polynomials are gquasi orthogonal.
The quasi orthogonality concept can be defined in several ways [l, 3,
4, 5] (not necessaryv equivalent) but for the uses of this paper the

following restricted definition will be sufficient [4] :

Ph(X) and Pm(x) are said quasi orthogonal of order k if:
(Pn,Pm) =0 for |n-m| >k : (1)

k Dbeing the smallest integer such that the appropriate scalar product

is zero.

On the other side, Bonan, Lubinsky and Nevai [5] gave recently
the explicit measures of the Semiclassical class generalizing the

approach of Hendriksen and Van Rossum [3] .

In contrast to these two different characterizations of the
Semiclassical class, giving in full generality the linear form or the
measures, we want to give here in explicit form the weigths in
(-»,+») responsible for the quasi orthogonality of the seauence of

derivative (or difference) polynomial.
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The corresponding polynomials begin to be useful in Field Theory
and in Statistical Mechanics. For instance, Amundsen and Damgaard [6]
introduce Polynomials orthogonal in (-«,+®) with respect to the

weight:

- éax2—8x4

(%) (8 >0) (2)

in order to compute the vacuum to vacuum amplitude in an unitarily
invariant field theory in zero dimension. Bonan and Nevai [7]
independently studied also these polynomials giving the second order
differential equation satisfied by these polynomials. (See also
Maroni [1] ). Explicit tabulation are given in ref [6] involving
modified Bessel functions of non integer order, and approximation in
the Padé Spirit are studied by Chalbaud and Martin {8] . These
polynomials belong to the semiclassical class in (-»,+») and merit

therefore a special attention.

II. CONTINUOUS SEMICLASSICAL WEIGHTS IN (-»,+») —-SEMI HERMITE
ORTHOGONAL POLYNOMIALS

1. The starting point is the following elementary problem in
differential equation: [3] . '
Find all positive solutions p(x) in (-»,+®) of the first order

linear differential equation with polynomial coefficients:
A(x)p'(x) + B(x)p(x) =0 , (3)

such that all moment Cn are finite:

+oo .
. Cn = J xnp(x)dx < (4)

A(x) and B(x) are real polynomials of degree respectively a and
B (with no commun factors) and A(x) is supposed to bhe monic
{(leading coefficient equal to +1).

It is clear that the existence of C, implies that

lim p(x) =0 (5)
x—)ioo . .

The solution of eq. 3:

o X

. B(s) 6
j B < -~ (®)
p(x)= @
and the assumption p {x) = 0 , excludes all real roots of A(x) as
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seen immediately from the partial fraction decomposition of

. A(x)
A(x) can therefore be written in the form:
I 2 Ti
a0 = [1 [(x-ap %] ] b, # 0 v, (7)
j=1 : .

. I
and the degree of A(x) (o =2 Z ri) is therefore even .
=1 :

On the other side, the asymptotic behaviour cf p (x) (from eq.. 6)
when x gces to plus infinity, gives

_)\.XB—-oﬁl
p(x)~v e . (8)
At = E:%:I , A being the leading coefficient of B(x) .
Now 1lim x"p(x) = 0 implies B > @ and A >0, and lim p(x) = 0
XF+® . XF=—o

implies now that B8 1is odd .

The constraints imposed by equation . (3) and (4) and "~

psitivity of p(x) in (-=,+®) give therefore
a even , B8 odd a <B and A >0 (9)

which is a little bit more precise that the conditions given by

Hendriksen and van Rossum [3] .

2. Let us call Semi-Hermite the orthogonal polynomials H;A’B) (x)
of degree n with respect to the weight p(x) solution of eq(3)

with restrictions (9) .

Explicitely:

+% '
j HéA’B) (x) HélA'B) (%) p(x)dx = 5m. (10)

o 5
and let us now construct all possible weiaats p(x) .
The condition o < B8 given an integral part in the partial fraction
expansion of g— that we denote -Q(x) of even degree , pure
fractional terms and after integration logarithmic and arctg terms.
_ Collecting all possible terms, the SEMIHERMITE weight can be written

“in full generality as:

I Al .arctg(v,x+e ;)
b0 = e @ (1 [Geap?eplt oSt T
- i=1
;-1 X +n
Z i ki
2 2,k
I k=1 [(x-a;)%+p;7]

(11)

.
—
|
®
—
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where Ai’ui'vi’gi’mki and n ; are real constants and Q(x)

polynomial of even degree with leading positive coefficient .

3. In the theory of semi classical orthogonal polynomials, the
finite linear recurrence relation between moment C, 1is essentially
responsible for the quasi orthogonality of the derivative polynomials.

The recurrence isimmediately derived from eqg. 3 after multiplica-

tion by xn+l and integration by part between (-c,+®).

The result gives

a 8
12;0 3p{mHlremiiCyy s = 2 PChigrix
& a-1
with Alx) = >  a.x a_ =1
~i=o °
B(x) = f SR b, = A (12)
k=0 k °

This fundamental relation permits to construct all moments Cn , and

therefore all polynomials HéA'B) (x) , starting from the fundamentél
set [cocl...CB] . »
The rth derivative [HQA’B)(X) () being quasi orthogonal of

1,3,4]

order xr(B-1) (of class rs = r(g-1) ) with respect to the

weight EA(X)]r p(x) , it is also easy to derive a moment relationship

between the moments Cér). of the weights b, = at p(x)

The differential equation satisfied by pr(x) is from eg. 3

A(x)pL(x) + p (x) [B-xa'] = 0 (13)
Multiplication by xn+1 and integration as before gives:
a PN I N
i - (r) < (r)
jgo a5 [n+14 (x40 (o 3)]cn+a_j =2 b, Cntg+1k -y

4. Let us describe briefly the simplest semi orthogonal weights

in  (-w,+4).

a) The classical Hermite case occurs of course when all constants

Ai,pi,vi,ci,mki and ng; are zero and A(x) = 1 . The standard choice
Q(x) = x2 gives the differential equation_
2
p;(x) + 2xp _(x) =0 p, (%) = e™* (15)
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and the moment relationship

(r) _ 5(x)

n n+2 vn, ¥x (16)

(n+1)C

b) The case ~Ai’ui'vi’€i’mki’nki qual to zero and A(x) = 1,

*‘Q(x) = % (x—b)4 + %(x—b)2 (C > 0) , was considered by Amundsen and

pamgaard [6] and by Bonan and Nevai [7] .
The weight differential equation is, for all r :

pLix) + [cx-b)> + K(x-b)Jo_(x) = 0 (17)

and the generalized (Vr) moment recurrence - (with b = 0 to

simplify):

() _ ¢ ®

(x)
n nt3 T KC (18)

(n+1) C ai2

generalizes the Hermite recurrence relation.

c) Searching for simplicity, the most representative case

reducing also to Hermite corresponds to the choice:

2
A(x) x2+a2 , p(x) = e, e arctg x/a and

it

2

B(x) = - A %— = 2x° + 2xa’ - ya (19)

The recurrence relation between the moment becomes (r = 1):

_ 2 .2
2¢C = (n+l)a®c +pacC, +Cn+2[n+3 2a“]

n+4 +1

which reduces again to the Hermite one' for large a , and to first
order in . 1/a to:

1 _
(n+1)cn + 3 ”Cn+1 = 2Cn+2 (20)

d) The last example gives a new type of bossible weights:

2 2, .2
A(x) = (x2+a2)2 , olx) =e . e v/x +a

B(x) = 2x(x°+a’)%-2vx (21)

and a recurrence relation of type generalizing again Hermite (a » =)

2 4.
(n+5)Cn+4+2a (n+3)C +(n+l)a c, =

n+2
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_ ) 4
= 2Cn+6+4a Cn+4+2(a —v)Cn+2 (22)

III. DISCRETE SEMI CLASSICAL WEIGHT IN (-, 4w)

We start ncw, in parallelism with the continuous case, with a

difference equation:

A(x)p(x+1)-B(x)p(x) =0 , (23)
which can also be.writtén in the important alternate ways:

A(x)bp(x) + [A(x0)-B(x)]p(x) =0 - (24)

or Afo(x)p(x)] = t(x)p(x)
where Af(x) = f(x+l)-f(x)
o(x) = A(x-1) and 71(x) = -A(x-1)+B(x) (25)
A(x) and B(x) are real polynomiale s before of degree respectively
a and B (A(x)  is again,monic). The constraints on solution of Eqg.

23 are now:

+oo

plk) > 0 k eNn, c = kzz_:w,o(k)kn < e vn ,

which again implies 1lim o(k) =0
koo

Let X = lim igz; and consider the solutions of the difference
equation:x»+w

p(k+1) -Ap(k) =0 , (27)
which are: p(k) = S (k)< . . ' (28)

with S(k) any periodic function of period 1 : [S(k+l) = S(k)].

The degree of B(x) cannot be equal to the degreee of A(x)
because 1A finite implies that p(k) diverges at k = + w(X > 1)
or diverges at k = - o (X < 1).

Each linear factor (x-a) in A(x) with a real gives a
contribution of type T (x-a) in the denominator of p(x) which must;
be rejected being in contradiction with the positivity of p(x) (p(x)

becomes 0 if k=a is a negative integer or zero).

The remaining possibility for A(x) is therefore:

z 2.2 Tt
A(x) = 1 [(x-a) %] b #0 (29)
t=1
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T
of even degree a =2 ) r, .
&1t

For analogous reasons, B(x) cannot have real roots and therefore

3 , the degree of B(x) must also be even.

The solution of the difference equation (23) should contain
therefore power and ratio of Euler gamma function of the type
IT(x-a) + ib|]? (b # 0).

The behaviour of the T function along a line parallel to the
real axis is easely deduced from the Gauss relation: (z = x+iy)
2 2 2
______;_____7 = (sin 7xCh7y)“ + (cos 7x Shry) (30)
[T(z)T(1-2) |7 .

For fixed y = b the right hand side is bounded when x goes to +

or - infinity and therefore |T(z)| goes to zero when x goes to
- infinity because |I'(z)| goes to + infinity when x goes to +
infinity.

The remaining case o >3 or a <8 must therefore be also
eliminated from the exclusive behavior of [I'(z)| at + on -«
infinity appearing in the numerator of denominator of the solution of
(23).

We must therefore conclude to the nonexistence of discrete semi

Hermite orthogonal polynomials.

IV. REMARKS AND CONCLUSIONS

Semi Hermite Weicht verify interesting properties generalizing

Hermite Weight.

(2, xB)

1. H (x) are Semi Hermite orthogonal polynomials with
respect to the weight [p(A’B)(x)]r r>0
(A,Bl,iBz)'
@JBﬂﬁz)
2. Hn (x) are Semi Hermite polynomials orthogonal

respectively to the weight p;.p,(+) and 0,/p,(~) , where p;(x)
(i=1,2) are the Semi classical weight solutions of the equations:

A(x)pg (%) + B, (x)p;(x) =0 (31)
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The class B - 1 is conserved or may be lower in the ratio case;

condition 9 must also be fulfilled by the difference polynomial

By (x) - Bz(x)

3. Expansion of the polynomial A(x)[Hn(A'B)(x)]‘ in the base of
the HéA’B)(x) ; shows immediately, using guasiorthogonality of the
discrete polynomial, the relation:

+o-1 .
(a,B) Co (a,B)
Ax) [H x)]" = né‘;_% Co Ho (x) (32)

This relation, generalizes the Appel property for the Classical Hermite
polynomial - (A(x) =1 , a =10 , 8 = 1)

4. Discrete Hermite orthogonal polynomial does not
exist in the classical and semiclassical case as a consequence of the
asymptotic behavior of the T function at +e . If we restrict the
domain to (0 =) semi classical polynomial exist [9] , [10] , called
generalized Meixner, with o =8 . In the same way a > 3 would give
otherdiscretesemi Laguerre orthogonal polynomials that would generalize

the Charlier polynomials.
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HAHN POLYNOMIALS AS EIGENVECTORS OF POSITIVE OPERATORS

Paul SABLCNNIERE

I.N.S.A. 20, avenue des Buttes de Co&smes 35043 RENNES Cé&dex

France

Abstract:

It is proved that Hahn polynomials are eigenvectors of positive
operators of Bernstein type. The eigenvalues are also computed exactly.
This extend previous results of Derriennic and the author on Legendre
and Jacobi polynomials.

1. INTRODUCTION

In his thesis, Durrmeyer [6] introduced the modified Bernstein
operators in L2(0,l): )

~ n 1
B f = (n+l) S ( j b (t) £(t)dt) b
n i=o o .
i( )n—i

n _ /n _
where bi(x) = (i) X" (1-x

, 0 £ 1% n . They were studied and
generalized later by Deriennic in [4] and [5] , who proved that
the eigenvectors of ﬁn are the shifted Legendre polynomials

{pi, 0 £ 1 £ n} orthogonal on (0,1) w.r.t. the classical scalar
product:

. 1
(£,9) = J f(t)g(t)dt
o
More precisely, she proved that Bnpi = >n,ipi where
A _ n: (n+1) ¢
"n,i 7 (n-1)! (n+i+l1)!

This result was extended by the author in an unpublished report [8]
to shifted Jacobi polynomials {pz

=

, 0 =i £ n} orthogonal on (0,1)
w.r.t. the scalar product:

1
(£,q)_ = j w(t)f(t)g(t)dat
[

where w(t) = tu(l—t)g (a,83 > -1)

Defining the Bernstein-Jacobi operators:
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~n _ .n n _
where bi = bi/(eo’bi)w and eo(x) =1, we get
WoW o W \%
J, p; = An,i p; where
w _ n! (a4 +n+2) z <
>‘n,i T =) T (@B nFit2) 0= 1 %0

In this paper, we prove a similar result for Hahn polynomials

{QE ;0 0%d £ n €N orthogonal on [0,N] w.r.t. the scalar
, .
product:
n
<E,@y, = ) wx)E(x)g(x)
X=0
+24\ 7/ N-x43
where wi(x) = < N ) ( 8 ) (2,3 > =1)
(see for example [l] , chapter 5 of LZ] or chapter 2 of [_'7J) . The
corresponding nositive operators are: .
HY f—i N (1)
N,nw A FPn,i Cw Pn,i
i=o
n X N-x' N
where lei(x)= > )/ (2)
i n-i n _
~n _ . n n
and BR i (0 = by 5 (%) /<eo,bN,i> y
As for the operators J‘I']J in LVZ\](O,l) , these operators are

positive and self-adjoint on lf’ r\_O,Nj . Moreover we have

w \ _ w \Y A
HN,n QN,i = An,i(N) QN,i where:
Wy = BTl (noitl) (N4342) ... (Ntotg+i+1)
N,1'" N(N-1)....(N-1i+1l) (n+a+3+2) .....(n+g+R+i+1)
for 1 £i2n<N ,and ¥ _(N) =1
n,o

Throughout the paper, we use the notation er(x) = x* for all

r=290

2. THE DISCRETE BERNSTEIN BASIS (DBB)

The polynomials {b{\’, i(X) , 0 £ 1 £n} defined by (2) form a
Ny

basis of (Pn[O,N] and verify the following properties:

(k) 20 for all x integer in [0,N]

) & n Ny Tt oo [x N-x
(A1) 2 by ) = A )= 1
izo n i=o \ i/\n-1i

/
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by Vandermonde's convolution identity [3]
L iN . n
(iidi) Egé ;;»lei(x) = el(x) = x

The two last results are particular cases of

Lemma 1. For all r = 1 , we have:
o n
x(x=1)...(x-r+1) = FZI 1(i-1) ... -kl by (%)

This is proved by using generating functions, as for the
following:

Lemma 2. For all 0 £ i £n
n N n
ey by >y = X;J wx)by () =

( >_l (a+i 34n-1i N+a+3+1
= o 8 n+a+3+1/

i(x) , 0 £ 1 £ n} is called the discrete Bernstein

4
£ r fo,N] .

82

the basis {b
basis (DBB)

ozus

3. THE BERNSTEIN HAHN OPERATORS

By definition (1) and Lemma 2, we have

w N (N+a+6+l -1 n  [a+i -1 8+n-1i -1 0 n

H f = <f,b, ;3 b . (3)
N/n n n+a+l +1 526 o 3 N1 w'N, L
Therefore, property (ii) 1is eguivalent to i e =e_ . We

have the more general result:

Theorem 1. H" (P ) =IP for 04 r<€n<N
—_—— H,n r r

Proof: From (3) and (iii), it is easy to deduce:

o N+q+8 +2 . fo+l) (N-n)

uv -n latl) (N-n)
N,n 1 N n+o+d +2 1 n+o+8 +2 o

W
2l =
therefore Hn (Ll) Pl .

Now, it suffices to prove that p,. = Hx n Sy is exactly of
N,
degree r , for all 0 € r € n . As a consequence of lemma 1, this is

equivalent to proving that the ccefficients of b w.r.t. the DBB
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are polynomials in 1 of degree at most r . After some simple

computations, one gets

<N+a+8+l -1 n n
p. = g S . b . , where : (4)
r n+a+d +1 f=o ¥ N,1

N-n y+oa+i 'N—i+8—y
i,r z: (y+1) <' ) (
’ y=o n-1i+8
M y+a\ /P-a-y
>yt (5)
y=0 p-a

o>
1]

It

with the notations M = N-n , a = a+i , b = B3+n-1 ,
p = nta+3 = a+b and P = N+a+3 = p+M . Now let
i - (a+1) ka) g
£ (u) = u (1-u) = 2: u
(o] N
k=0 a
k+a .
. <~
£ = u £i(w) = £ (u) {i+ (a+l) l«}= 2 (k+i)< )uk+l
o (¢} -u N
k=0 a
Using the notations w = u/(l-u) ,~p10(i) = 1 and
Py1(1) = a+l = o+i+l e P, [i] , we get
1 .
= < i) vo
fl(u) fo(u) . plj(l)v
j—O
By induction on r , we then prove that fr(u) = ufé l(u) (r = 1)

is equal to

r .
$Y v
£(w Z; pyy 1)V
=
where prj(i) e @r[i] verifies the recurrence relation:
pri(l) = (1+j)pr_l’j(l) + (i+a+7) pr—l,j—l(l) (6)

On the other hand, we have:

k+a .
F(u) = & (x+0)T ( >uk+l
a

r k=0

= (b+1) Z (“b\

Now let gf{u) = (1-u) = , then
| Lo/
-1 < m r [Kta m-k+b\ m
u T f (waglw = £ > (k+i) u
r N
m=0 k=0 a b
in which the coefficient of uM is exactly Si - (5) . This function
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is also equal to

- X .
utf (W g P p L (i)v]
£ rj
j=o :
< j - (a+b+3+2)
=2 po(hdda-w J
=0 *J
B r ) k+a+b+j+1 j X
= Z pr.(l) u u
k=0 j=o J a+b+j+1
inf(r,m) m+a+b+1
B m
= pr.(l) u
m=0 j=o J a+b+j+l
Since the coefficient of uM is 6i r r we get
T N+a+8+1 >
[ = p.. (1) (7)
r o5 o n+a+B+j+1

which is in ®_ [1] , q.e.d.

. 4. EIGENVALUES AND EIGENVECTORS OF H‘g n
14

Let us recall a result given in Derriennic L4] :

14

0} be an
increasing sequence of subspaces verifying dim Hm m . Let L
L e && (H) be self-adjoint and verify L(H)C H  for all m=20,

then the orthogonal sequence {vm, m=0} defined by v_ e Hm B

Theorem 2. Let H be a Hilbert space and {Hm, m

m
ym_L Hm—l (m > 1) , is a sequence of eigenvectors of L

w : A . 2 _ o N+1
Lemma 3. HN,n is self-adjoint in the space 1w[0'N1— R, w.r.t.

the scalar product <f,g>w

The proof is obvious since:
n

w _ on n -
<HN,n f,g> = iéo <f’bN?i . <g'bN?i
n
~n n w
= E <g,b,, .> - <f,b_ .> = «<f,H >
= gr N, 1 "UN, L "“N,n g

Theorem 3. The eigenvectors of Hg L are the Hahn polynomials
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{QN ;1 0f1=n= N} and the corresponding eigenvalues are:
7
Woom) = n(n-1) ... (n-1i+1) (N+o+8+2) ... (N+o+B3+i+1)
n,i" N(N-1)...(N-i+1) (n+a+3+2) ... (n+a+B+i+l)
for 1 €1 £n, with A7 (W) =1
n,n

Proof: From theorem 2 and Lemma 3, we get:

w \ w \Y . .
0 =4 N = =
HN,n N, xr Jn,r( ) QN,r for 0 = n

the eigenvalue being yet unkown . But we have also

w W , ) ;
p,. = HN,n e = An,r(N)er +d, g where d,._; € Pr—l ; thus it
suffices to compute the coefficient of x" in N From the proof
of theorem 1, this amounts to compute the coefficient of i¥ in
éi r(7) . Using the recurrence (6) and an induction of r , this
r 2
coefficient is proved to be
r [r\ {N+o+3+1 N+a‘+6+r+l>
j=o \ j N-n-j n+o+8+r+l
The coefficient of i' in p_ is then , by (4)
(T\I+<x+8+l -1 N+rx+3+r+l>
A =
v n+o+3+1 n+a+B+r+1
By lemma 1, the coefficient of it in e, is
<N> (N_r>—i
B =
r
n n-r
-th . . Y .
Therefore, the r eigenvalue of HN L 1s
N,n
\4 _ 51 N
Anlr(w) = Br Ar , q.e.d
6. MISCELLANEOUS RESULTS
Lemma 4. (A possibly new identity for Hahn polynomials). Let
Qg i(x) be the i-th orthonormal Hahn polynomial. There holds, for all
,
0 £n< N and (x,y) e [O,sz :
= W \% W o ~n n
2 g gmoyg 0 og ) = > by, GObBy S ¥)
i=o i=o
This is a simple corollary of theorem 3 : to prove 1it, take the
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scalar product by any £ eIPn , expressed in the orthonormal basis of

Hahn polynomials, of the two Kernels above.
Lemma 5. (Coefficients of Hahn polynomials in the DBB)

-1 A —1
. k+8 n 5 k o+ B3+k-7j
\% _ E: : - n
Oy, x ¥ = ( > - ( ) < ( Py, 5 )
= j o 8

if this Hahn polynomial is defined by the Olinde-Rodrigues formula

. [1] . p. 40) ‘
x+a\ [ N-x+8\ /N k+8 xta | [ N-x+3+k
\ Xk
QN k(x) = N
o 3 k ! 3 at+k 34k

This is a simple corollary of Leibniz formula

Lemma 6. (Some further properties of Hg ) In RN+lrv RLO'NJ,
Ny
take the norm
N
_ . P\ 1/p
[Hell, = (% wio l£ 1)
X=0
Then H¥ n is an operator of norm 1 in a€( N+l . Moreover,
N

there holds:

N w N

= £

7 wix) Hp £ 2 wix) £(x)

X=0 X=0
Proof: The last prcperty can be written as:

<eo, HN,n f>w = <HN,n eo,f> = <e ,f>
which is true for HY is self-adjoint and uY e = e . The first

N,n N,n © Do
one can be proved by using the HGlder 1nequallt1es in l&[b,N] and

Rn+l , together with property (ii) of §2 and <e ,g > o= 1

: O "N,1 w
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On Zeros of General Orthogonal Polynomials on the Unit circle

G.Sansigre, L. Ferndndez de las Heras and M. Alvarez
Departamento de Matemdticas
Escuela Técnica Superior de Ingenieros Industriales
Madrid. Spain

ABSTRACT: The location of zeros of orthogonal polynomials formally associated to a
moment functional on the uwnit circle is considered. By using known theorems of stability
theory about discrete Lyapunov matrix equation, conclusions that generalize the classical
results are obtained. :

1.— Introduction

It is well known that all the zeros of every polynomial of a sequence of orthogonal
polynomials associated to a positive measure on the unit circle are inside the unit circle.
In this communication we generalize this result to general orthogonal polynomials. As in
Geronimus [1], we understand for a sequence of general orthogonal polynomials associated
to a moment functional, the formally orthogonal polynomials associated to-a moment
functional, such that all the principal minors of the moment matrix do not vanish, though
they are not necessarily positive. The generalization obtained is that every polynomial
has no zeros over the unit circle and, as in the classical case, the number of zeros inside
and outside the unit circle is given by some inequalities with parameters depending on the
principal minors of the moment matrix.

The approximation made in Geronimus to the location of zeros of orthogonal polyno-
mials is essentially the application of the well known Schur algorithm, see Marden [2]. It
is possible to use the same method to analize the location of zeros of general orthogonal
polynomials. Here we give an alternate approach through the Lyapunov matrix equa-
tion, a cornerstone in the theory of stability. We prove that the (n — 1)-th section of the
moment matrix is a solution of certain Lyapunov matrix equation associated to the n-th
monic orthogonal polynomial. By using general results related to stability theory, we get
conclusions about location of the zeros of these polynomials.
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2.~ The discrete Lyapunov matrix equation

Let A and Q be complex matrices of n—order. The matrix equation:
X-AXA=Q (1)

where A¥ is the transposed conjugate matrix of A, is usually known in the literature on
stability theory as the discrete Lyapunov matrix equation. Here we shall give an overview
of some relevant properties which we will use later.

Our interest is in properties of Hermitian solutions of the equation in case that Q is
a semidefinite Hermitian matrix. Let us suppose P = P* is such a solution. Let A be an
eigenvalue of A and v # 0 be a corresponding eigenvector. Then it is easily seen that:

(1= AP Pv=v*Qu. 2)

Hence if Q is a positive or negative definite Hermitian matrix we can conclude that all
the eigenvalues of A have module different from 1. In some special cases, when Q is
semidefinite the assertion holds. In this case, if Q is positive semidefinite of rank m, it can
be descomposed as:

Q=C*C. (3)
with ¢ an m x n matrix.
Then if the couple (4, C) is observable, that is, if condition:

o

CA '
rank |. =n (4)

L;C'A”_l

is satisfied, we have likewise that all the eigenvalues of A also perform |A| # 1. Briefly, the
reason is that for any eigenvector v of A we can write:

Cu#0 (5)

otherwise the observability condition will not be fulfilled. Thus we also have v*Quv > 0
and it does not matter if Q is merely semidefinite positive, and the asserted eigenvalues
property of A follows. A resembling argument can be used in case Q is only negative
semidefinite. ’

Next we shall see that there exists an interesting relation between the number of
eigenvalues of A inside and outside the unit circle, and the number of positive and negative
eigenvalues of the Hermitian solutions of the Lyapunov equation.

First let us suppose that all the eigenvalues of A are inside the unit circle. In this case
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we have:.
lim AF=0 (8)

k—oo

and it is an easy task to check that equation (1) has one and only one solution given by:
o]

X =3 (4)FQ4". ~ (7
) k=0

If Q is positive (negative) semidefinite and observability condition (4) is satisfied, this
matrix is Hermitian positive (negative) definite, so all its eigenvalues are real and positive
(negative). :

When all the eigenvalues of A4 are outside the unit circle, then all the eigenvalues of
the inverse matrix A~! are inside the unit circle, and writing equation (1) in the equivalent
form:

X— (A" X(A) = —(471) Q4! (8)
it is seen that the equation has one and only one solution given by:
=3 : )
X== Y (4r)hQa* ©)
k=1 )

which, if the observability condition is assumed, turns to be Hermitian negative {positive)
definite, as long as Q is a positive (negative) semidefinite matrix. In this case, all the
eigenvalues of the solution are negative (positive).

In the general case, when the matrix A has eigenvalues inside and outside the unit
circle, it can be proved that every Hermitian solution of the equation is nonsingular, and
the number of positive and negative eigenvalues of every solution are, if Q is a positive
semidefinite Hermitian matrix, respectively equal to the number of eigenvalues of A in-
side and outside the unit circle, and an analogous result is valid when Q is a negative
semidefinite Hermitian matrix. For the proof of this result, due to Wimmer [3], we refer
to Lancaster and Tismenetsky [4].

3.~ Toeplitz matrices and Lyapunov equation

Let (¢n)nez be a sequence of complex numbers, such that ¢_p = Zn, and T = [ti]
with #;; = c;_j, be the associated infinite Hermitian Toeplitz matrix. As it is well known,
we can look at T as defining a bilinear Hermitian form on the complex space Clz] of
polynomials with complex coefficients, by extending the definition:

<> = cioy (10)
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to every couple of polynomials by using linearity with regard to the second polynomial of
the couple and Hermitian symmetry.

A crucial property of this bilinear form is:

<zf{e)z9(z) > = < f(z),9(z) > (11)
for every pair of polynomials f(z) and g{z).

Now suppose that each k-secticn of the matrix T', that is every submatrix:

Cg C‘ . f};
1 Cg ver Ch—y

L= | (12
€k Chi ... Cg

is nonsingular. Then, as it is well known, there exist for each positive integer n a n—degree
polynomial p(z) such that:
<pl2)g(z)> = 0 (13)

for every polynomial g(z) such that degree g(z) < n. Without lost of generality, we can
suppose p(z) a monic polynomial as follows: -

plz) ="+ a1 2" . dap 1240, (14)

Let A be the n X n matrix

1 0 —tn—y
A= |0 : (15)
6 0 . —do
00 1 —q4
and C the 1 x n matrix
C=10,0,...,0,1] (16)

Notice that p(z) is the characterictic polynomial of A. .
With the previous definitions we can state our piincipal result: -

Theorem ¢ The matrix Ty, is the solution of the discrete Lyapunév matrix equation:
X-A*XA=6C"C (17)

with § = < p(2),p(2} >
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Proof: Let us introduce the 1 X n polynomial matrix:
U(z) =[1,2,2%,...,2" (18)
which allows us to write T,—1 = < U{2)T,U(z) >. Then from the identity:
U(z) =U(s)A +p(2)C (19)
and properties (10) and (11) it follows :
T = AT, 1A+ 6C7C (20)

as desired:

4.~ Zeros of general orthogonal polynomials

_In this section, we make use of the results of the foregoing sections, in order to get
conclusions about zeros of orthogonal polynomials formally associated to a moment func-

tional.

First at all, we notice that (4, C), where A and C are the matrices respectively given
in (15) and (16), is an observable pair, as an easy calculation shows. Then from equation
(17) and the results of section 2, if § > 0 the number of eigenvalues of A inside (outside)
the unit circle is equal to the number of positive (negative) eigenvalues of Tj,—;. When
§ < 0 we get a similar result merely by interchanging the words inside and outside. As
the n—th orthogonal polynomial is the characteristic polynomial of A, we have the same
proposition for the zeros of this polynomial. s

On the other hand it is known, see Gantmacher [5], that for an n-order Hermitian ma
trix whose principal minors &g do not vanish, the number of positive (negative) eigenvalue
is the number of positive (negative) ratios in '

hl :Ilz hn
T, .E‘;’ -.-’hn._l (21

‘Let us introduce Aj as the determinant of the k-section of the matrix , and fc
~ convenience, A_; = 1. Joining together the above result with the fact that & = An JBaz
* we have from the pasceding consideration that the number of zeros of the n-th orthogon:
polynomial inside the unit circle is given by the number of positive terms in :

AnBoi  Anbdo AnAng @
Anln-z

An-1Bo’ AniA’ T AL



By introducing the auxiliary parameters oy given by:

Apry Ape
Q';;:I—-——————}‘TIA2 k-1 (23)
k
we easily obtain that: AA
Snok-1 - : )
R A, (I—onoy)... (1 —ap) (24)

and we have the following rule for the location, with respect to the unit circle, of zeros of
orthogonal polynomials:

Let A, and u, be the number of zeros of the n—th polynomial respectively inside and
outside the unit circle. Then for (n + 1)-th polynomial we have:

a)ifap > 1then Ay =X, 4+ 1 and ppyy = iy
b) if ap <1 then /\n+l = Un and Uny1 = Ant1

In particular, if all the o, are less than 1, all the polynomials have all their zeros inside
the unit circle. This generalize Geronimus’s result The introduction of the parameters oy,
is justified in order that they are the squares of the modulus of the a; parameters used by
this author.
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ORTHOGONAL POLYNOMIALS AND SUBNGCRMALITY OF RELATED
' SHIFT OPERATORS
F.H. Szafraniec

Instytut Matematyki
Uniwersitet Jagiellonski
ul. Reymonta 4,

PL-30059 Krakdw

1. Bounded subnormal ooefators have been extensively studied
for many recent years, mostly in connection with Function Theory (in a
Complex Variable). The study of unbounded subnormals has been originated
in [l] . Though in unbounded case a number of severe difficulties
appear, the advantage is that one can take into account also

differential operator.

In [2] Dr. Jan Stochel and the present author exhibited the fact
that a simple differential operator (known sometimes as the creation
operator) is subnormal. In a subsequent paver [3] we proposed another
way of proving this fact, based on the observation that the operator in
gquestion may be regarded as a (weighted) shift operator related to the
system of the Hermite polynomials. Here our goal is to show that, using
the approach of [3] , one can establish subnocrmality of some other
operators associated with classical orthogonal polynomials, namely the

Laguerre polynomials and the Charlier polynomials.

2. Recall that an operator S acting in a Hilbert space H , with
domain D(S) , is said to be subnormal if there is another Hilbert spa-

e X ,KD H and a normal operator N in K 'such that

Sf = Nf , £ e D(S) € D(N)

Let {en}:zo be an orthonormal basis in H . An operator S , with
domain D(S) = span {en}:;o is said to be & weighted-shift if

Se = (<E\{o})enJrl , n=0,1,... .

In [3] we have proved the following

Theorem. Suppose S 1is a weighted shift operator. Then S 1is
. . n . . .
subnormal if and only if {|]| s || }::o is a Stieltjes moment

sequence.

This theorem suggests to use orthogonal polynomials in order to

prove subnormality of some shift onerators related to them. We wish to
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present three examples of such operators.

a) The Hermite polynomials and the related shift operator [2,3].

The Hermite polynomials

x2 a" —XZ
Hn(x) = e —F e , n=1,2,..., Ho(x) =1
dx
satisfy the following relation
— 1
Hn+l(x) = -2x Hn(x} + Hn(x)
Thus the Hermite functions
-n/2 -1 - -x?
ho(x) = (-1 2L ma 2y
n n
which form an orthonormal basis in Lz(*m, +2) , define the weighted

shift cperator

such that

18", |12 = n

This means that S 1is subnormal.

b) The Laguerre polynomials and the related shift opberator.

The Laguerre polynomials

n
(o 1 -o x d - n+a _~Xx [al 4
Ln)(X)'-:F X e *“*;1' !LX e ], n=1,2,..., LC() )=l,0’u>"i.
ax’

satisfy the following relation
2

(@) o, at a4 (o)
(n+L)Ln+l(x) = |-x E~5 (a+1-2x%) EQJLn (x)
x
So "the Léguerre functions"
() B n! _ V/24/2 -x/2 _(a) .
1,770 = <?TH:5:E)) X e L. (%)

which form an orthonormal basis in L?(O,+w), give a rise to the family

{a>-1) of weighted shift operators

2 ) 2 2
= _y 8 -1y Gy oxTE2xdg
S = -x p 5 + ¢x-1) 3% + e
X
such that
82112 < nt 1 (e

154




Consequently S 1is subnormal.

c) The Charlier polynomials and the related shift operator.

The Charlier polynomials Céa) are determined by the generating func-
tion -ow X v (o) n -1
e (1+w) = ) c, (x) w  (n!) , a # 0.
n=0
They satisfy the following relation
(a) _ o A la)
Cn+l(x+l) = (x+l)én?x) JCn (x+1)
Defining the "Charlier sequences"
céu)(x) = (ocnn!)—l/2 e_OL/2 ax/z(xl)—l/2 Céa)(x) , x=0,1,...
we get
(o) _ 1/2 (@) _ /2 (a)
Ancn+l(x+l) = (x+1) ch (x) I N (x+1) ,
where An = (n+l)l/2 This allows us to define the finite difference

operator ( depending on a#0 )

(5£) (x41) = (x+1) /2 £(x) - o2 £(x+1) , x=0,1,... ,
for f e D(S) = span/ cga) (.) }n:O (the definition of (Sf£)(0) re-
gquires some comment: since { céa)(.) }n:O is a basis in li , Sf(0)

is unigquely determined and the operator itself is well defined).

2

Since || Sncéa)[[ =n! , S is subnormal in 1}
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1. Introduction

The continuous Legendre transform and its inverse were studied by
3utzer, Stens and "ehrens [1] . This was extended to Jacobi transforms
for o + 83 = 0 by Deeba and Xoh [3] . Unfortunately this does not

include many special cases of interest.

Tn this work we consider a larger nurmber of other cases in which
o +8 + 1 is a positive integer. For the standard normalization an in-
version is given in terms of a kernel defined by a series. We also in-
troduce a renormalized transform whose range is a set of entire func -

tions. Its inverse is then given in closed form.

2. Preliminaries:

Tn this section we recall some of the basic background material

necessary for our investigation.

2.1 Jacobi Functions and Transforms

For anv real numbers a, b and c with ¢ #0, -1,-2,... the
hypergeometric function F(a,biciz) = 7Fl(a,b;c;z) is given hv
°  (a), (b) .
! k
FP(a,biciz) = ) —T—éjzr& zo lz] <1 (2.1)
k=0 kT
where the series converges at 2z = -1 and 2z = 1 provided that

c-a-hb+1l >0 and c - a - b > 0N respectively.

The Jacobi function Pia'g)(x) of the first kind is defined by
(o, B) _ __TO+a+l) o ) L 1l-x 111 5
Py (2) = s TOFD F(=), Ao+B+lio+l; —=) ,xe(-1,1} (2.2)
where o, > -1, e R and A + o + 1 # 0, -1, =-2,... . Since
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_ T(a=2+1)T (A-a-B) (a,B)
() = =TT 08T Cheag o1

we may restrict nurselves to the case

b (a,B)
-

A 2 —(g+8+1)/2 . The function

Pia’g)(x) satisfies the differential equation
2
(I-x7)y" + {B-a-(a+B+2)x}y' + X(A+a+B+1)y = 0. (2.3)
Let 2
Lia Vo (1-h 2 + {8-o-(a+3+42)x} Z= (2.4)

be the differential operator associated with this equation. Then
(2.3) . becomes

L(a,B) (a,B)

P (x) = =2 O+asarl) pLB) (5 O (2.5)
X X

A

For integer values of ) , Pfa’g)(x) reduces to the usual Jacobhi

A

polynomial as defined in [9]

It can be shown [3] that for i,v 2 —( a+B+1 ), A #E v

2 7
A # —-(v+ta+p+1l) and -1 < o,B
1 - a B8 (a,B) (B,a) _
;a:g:j f—l (1-%) " (1+x) Py (x) LN (-x) dx =
T (A+o+1)T (v+B+1) I sin 7w\ sin 7V

T (v TatB D) | TRTD T Owa el - FOFD T vrarasny - (2-6)

If we denote the Jacobi polynomial of degree n by P(m’B)(x)

n
then
1 t “ 3 _(a,8) (0,3) (a,8)
5&1511 f—l (1-%) 7 (14x) P ' (x)Pm i (x)dx = Onmhn ! (2.7)
where
h(OL,B) _ I'(n+a+1) T (n+R8+1) (2.8)
“n T n!'(2n+o+R+1) T (n+a+B+1) . .
since B8 -y = -0"p{B%) () it follows that
1
S{a,B) _ 1 [ Q.85 (a,8) (a,8) _
P)\ (n) = ‘j‘zm Jl._l (1-x) " (1+x) P)\ (X)Pn (x) dx =
(=T O+t T (n+B+1) sinmh .
= T0en) OFntarBilin T OFarpri) Ao#Aon (2.9)
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and hence

0

1

I S
(a,B) A

P{Q'B)(x} )
n=0 hn

12 (), xe(-1,1]. (2.10)

where the series converdaes

i) ‘absolutely and uniformly on any compact subset of (-1,1) if
-1 <B < 1/2.

By if -1 << 1.

ii) in L2( (1-x)%(1+x)
iii) in the sense of generalized functions for any -1 <28

Here we have used the fact that

Piu,B)(x) - 0(3;> as A » ®» uniformly in xe[a,b]C(*l,l)
oy
(2.11)
We also note that
Piu'g)(x) _ O(%max(a,ﬁ)) as ) - « (2.12)
Let w(a'B)(x) = (1-0%1+x0° ana £(x) e Lp{w(a'B)(x)}, p > 1.

. . - ~
Then the discrete Jacobi transform f(a,S)(n) of f(x) is defined by

. , 1
glod)hy - L (1-% % (1408p % B) () £ () ax  (2.13)
2Q+B+l _1 n

and the series expansion of f£(x) in terms of the Jacohi polynomials

is given by

£ v 5 e @B mple g we (-1, (2.14)
n
. n=0 n
Analogously, if f£f(x) e Ll{w(a’g)(x)}, then the continuous Jaco-

bi transform f(a'B)(A) of f(x) will be defined by

~ 1
gleflo) - g f (130 % (1430 % (%8 (0 £ () x> - HHEEL
2 -1

(2.15)
The following proposition gives a series representation for the

continuous Jacobi transform f(a’s)(x):
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Pronosition 2.1. Let f(x) be p times differentiable with sup-

port in (-1,1), ©p > 2 ; then
f(u,B)(x) =7 (al%) f(a,B)(n) Pia,ﬁ)(n) . (2.16)
n=0 hn !

where the series converges uniformly on any compact subset of {O,w)

for -1 <8 <p - %

Proof: Bv substituting the uniformly convergent series (2.14) in
(2.15) , we ohtain

1 o
Z(a,B) 1 1 2(a,B) (a,B) (a,B) (a,B)
R S ———~f (n)P (x)P (x)w (x) dx
La+B+1 5_1 nZo héa'S) n X

oo

1 1 Z(a,B) . (a,8) (a,8) (a,B) _
TS n£0 o, B) £ (n) J_l P (x)P, (x)w (x) dx =
2 D hy

_ T 1 2(a,B) “(a,8)
= L eef (n) 2y ()

by (2.9) . Interchanging the summation and the integration series in

(2.16) converges uniformly on any compact subset of [0,) since

3-1

R 1 .
@8 (n) = o) ana 2*P) (m) = 0® 7Y

nleB) Zom, ¢

uniformly for A =0 as n > «.

Let q = (a+3+1)/2 and define

T2(k+q)Asin mAdr
T'(A+o-qg+1) T (A+R3-g+1) ~~

do(x) = (2.17)

T2(A+q) cos TX 4

T (A+a-g+1) T (A+8-g+1)

if g 1is an integer

S(B,a

8)(n)} and {PA )(n)}

We shall show in the next section that {Piu’

form a bi-orthogonal series with respect to do

2.2 An associated orthonormal system

We begin with the complete orthonormal system on [—ﬂ,ﬂ] given by
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{j; cos (n+%)w, L sin (n+%)w } - Their Pourier transforms will be
Za “ /T n=0

denoted by cﬁ, and rg respectively; i.e.,

0 1 T iwa 1
c_(x) = f e cos(n+3)w dvy n=20,1,2,...

n /2w Jem <

T L (2.18)

IO(X) = L J e VA sin(n+%)w Aaw

n /2 m Jog

0

By Plancherel's identity. {c~, rg } are a complete orthonormal

n
system in LZ(R). This system will be used with q = (a+8+1)/2 a half
odd'integer. For g an integer we shall use the system

ci(k) . fcos nw
. 7=— f et dw , n=1,2,... (2.19)
r_(X) ki -7 2sin ny
n
a. .
Cg(X) = g? J_W elWA Gw

which again is clearly an orthonormal svstem. We shall show that the-

se systers arerelated to Pia'g)(n) given in (2.9). It may be expres
sed as
;(a,g)(n) _ sin W(A—n—q)(2n+2q) I'(n+8+1) I'(A+a+1-q) (2.20)
e ﬂ(h2—(n+q)2) 2 (n+q) T (n+1) T'(A+1-q)

By a straightforward calculation we see that

Cg + [q] (X)), g half-integer

sT(1-q) = —Sin T0-n-q) (2n+2q) = /3 .
T(A7=(n+q) 7) e ’
rn+q (3) , g integer
Provosition 2.2. The functions miven by
T (A+q) I'(n+l) “(a,B) _ a,
Toxarl-q) 20 Forgen Pacg . ) = s20-q) (2.22)

are orthonormal on (0,») with respect to Euclidean measure.
This is a consequence of the orthonormality of sg(A~q)//7 on

(=w,») together with its evenness when g is a half integer and odd-

ness when ¢q is an integer.

Pronosition 2. 3. The functions given hy (2.22) satisfv
" m+ [q]
Doy Qo I O+a+l-a) TN S B A y
Jn Sn(>\ q) Sm()\ a) ﬁ—* ! (/v+‘;+l q)(‘,u(/‘\) = “2—-— lq,mrgmn(2_23)
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1 , g an integer
where Yq n = , and dJdo is the measure gi-
. =1 (m+q) , @ a half-integer

ven by (2.17).

3. 'An inverse transform given bv a series.

Sla,B)

In this section we use the biorthogonality of { g (n)} with
{ P{%éa)(n)} to find an inverse transform to the continuous Jacobi
transform when o+8 1is an inteacer ® o . The expression in Proposi -
tion 2.3 mayv he written as
+[q] (3.1)
® - (-1) "L (n+1)
(a,B) (B,a) _ 2a-1 . (a,8)

JO Pk—q (n) PA-q (m) do(A) = () h 5 m Yq,n
where Yq,n =1 1if g 1is an integer and Yq,n = (n+q) 1if q 1is a
half integer. Let

[a] + 2 (n+ S (B, a) (8,a)
R(x,2) = (-1t ] e p By B B (3.2)
- 7 1
n=0 Yq,nhn (n+l)2q—l

The series defining 'R(x,k) converges absolutelv and uniformly
on any compact subset of (-1,1) x [0,») provided that

. 1 1 3

i) B >=-35. for q = 505
- 1
ii) B> 5 for g =1,2,3,

Moreover, it is dominated by (x»+1)"% . We shall always assume

that this is indeed the czﬁe. In the nhext theorem we derive an inver -

sion formula for the contjhuous Jacohi transform given by (2.15).

Theorem 3.1. Let” f(x) be such that its continuous Jacobi trans

—g=2
form has the representation (2.16) and is dominated by O(X 4T,
Then

£(x) =J £08) gy R(x,0) do(n) (3.3)
8]

where R(x,)) and do(X) are chosen from (3.2) and (2.18) accor-

ding to whether q 'is half a positive integer or a positive integer.

%

4. A renormalized Jacobi .transform

The standard normalization (2.2) of the Jacobhi function does

not give us an entire function in A unless o 1s an intecer. This
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may bhe rectified by adopting a normalization similar to that of the

Gegenbauer polynomials when o = 8 Accordinqiy we denote ?A by
o1 6o <X+g+B)Pia'S)(X) - FeT oD FA A2g i)
(4.1)
Qhere 2q = o + 8 + 1 1is an integer as hefore. Then ?;a’@) as the
product of a polynoﬁial and an entire funétion is itself entire. Moreo
ver, (P;fés)(x) is either an even or odd function of X about 0
acéording to where 2g 1is respectively odd or even.
(o, 8) 1 . o B pla,B)
F(\) =F . (x) = qu f . (1-x) " (1+x) ?k (%) £(x) dx =
= (2 elaBlg) , (4.2)

will be the rmodified Jacohi transform.

Proposition 4.1. Let F be the modified Jacobi transform of

o
a C

function f with support in (-1,1), o+3+1 = 2g an integer,
g > -1 Then
(1) F 1is an entire function in A
(11) F(-a=q) = F(-q) (-1)29%1
. «® .
(1ii) F() = ] F(n) sI() (4.3)
n="
where sg(x) is the orthonormal sequence given by (2.21) and the con

vergence is uniform on compact subsets of (-x,x).

(iv) F(M) =0 D as 2+ forall p=0

In the nekt section we shall devise another inverse given by a

kernel with a closed form expression.

S. An inverse operator with

a closed form kernel.

In order to derive the
beginning with the two cases

inverse operator is known or

closed form we shall proceed inductively
q = 1/2

easy to cderive.

and q = 1. In hoth cases the

We shall state the main result of this paper in the following

theorem and provide no proof

for it here. The details of the proof

will he published somewhere else since they are too long to be given
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Theorem 5.1. Let £ e D(-1,1) and let F(A) be its (a,8) Ja-
cobi transform, given by (4.2) where oa+8+1 = 2q , a positive integer.

Then the inverse transform'is given by

£(x) = (—1)q4r<a+1)r<s+1>f FO-q) g Pr®) (-x) —p 008 TA — a
0 4 (-1 ... (%= (g-D %)
when 2g 1is even and by
f(x) = (—1)q~74r(a+1)r(8+1)JmF<A—q)v§?'a)(—x) 5—3-5in 7 5
0 q = (D (A= (g- D)

when 2g is odd )
where the integrals converge uniformly for x in interior intervals

of (-1,1).
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