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Abstract

Let K ⊂ R
n be a centrally symmetric isotropic convex body. We prove that for

random F ∈ Gn,k, and k slowly growing to infinity, the central section |F⊥ ∩K|1/kn−k

is almost constant. A simple approach using standard concentration of measure

arguments is given.

1 Introduction and notation

Let K ⊂ R
n be a symmetric convex body. We say K is isotropic if it is of volume

1 and there exists a constant LK > 0 called isotropy constant of K such that L2
K =

∫

K
〈x, θ〉2 dx, ∀θ ∈ Sn−1.

Since the works of [H], [B] or [MP] we know of the close relation between the isotropy

constant and the size of the central sections of K. It is well known that for any 1 ≤ k ≤ n

there exist c1(k), c2(k) > 0 such that for every subspace F ∈ Gn,k (the Grassmann space)

c1(k)

LK

≤ |F⊥ ∩K|1/kn−k ≤
c2(k)

LK

where | · |m is the Lebesgue measure in the appropiate m dimensional space.

Well known estimates (see [H], [MP] and [Kl]) imply c1(k) ≥ c1 and c2(k) ≤ c2k
1/4,

where c1, c2 > 0 are absolute numerical constants. These bounds are the best ones known

to be valid for every subspace F ∈ Gn,k.

For random sections, much better estimates are possible. The following result was

proved in [ABBP],

There exist absolute constants c1, c2, c3 > 0 with the following property: If K is an

isotropic convex body in R
n and 1 6 k 6

√
n then, the set of subspaces F ∈ Gn,k such

that
c1

LK
6 |K ∩ F⊥|1/kn−k 6

c2

LK

has Haar probability ≥ 1− e−c3
n
k
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In [EK] the authors prove a version of the central limit theorem for convex bodies.

Its proof uses the strong concentration behavior of the Euclidean norm on K, [Kl2], and

a delicate study of the marginal distribution of some intermediate measures, namely the

convolution of the uniform measure on K with an independent gaussian vector. As a

consequence of it it is easy to check that

For ε = 1
nc1

, k ≤ nc2 the set of subspaces F ∈ Gn,k such

1− ε√
2πLK

≤ |K ∩ F⊥|1/kn−k ≤
1 + ε√
2πLK

has Haar probability ≥ 1− c3e
−nc4 .

These two results are different: the second one gives better constants (∼ 1√
2π
) but a

worse dependence on k and on the estimate of the Haar probability.

In this note we use a simpler approach to the question. Our final result is weaker in k

than the one deduced from [EK] and it provides better estimate of the Haar probability.

But the main advantadge, we think, is that the arguments are simpler and the tools used

are of independent interest: First we estimate Lipschitz constant of the section function

F ∈ Gn,k → |F⊥ ∩ K|n−k (Proposition 2.3), for k = 1 this was proved in [ABP]. Then

we apply the concentration of measure phenomenum on Gn,k (equipped with the right

distance (Proposition 2.2)). In this way we measure the closeness between the section

function and its expectation. Finally, by expressing this expectation as a marginal, we

related it to the marginal of a gaussian distribution. For that final step, we unavoidably

use the concentration of the Euclidean norm on K, [Kl2] in the version stated in [BB].

Our result is

Theorem 2.8. Let K ⊂ R
n isotropic. For all ε > 0, 1 ≤ k ≤ cε logn

(log logn)2
, the set A of

subspaces F ∈ Gn,k such that

1− ε√
2πLK

≤ |K ∩ F⊥|1/kn−k ≤
1 + ε√
2πLK

(1.1)

holds, has probability µ(A) ≥ 1− c1e
−c2n0.9

.

In R
n, | · | denotes the Euclidean norm and Bn

2 the Euclidean ball. For any k-

dimensional subspace F ⊂ R
n we denote SF = Sn−1 ∩ F and by PF the orthogonal

projection onto F . Gn,k is the grassmaniann space of all k dimensional subspaces of Rn

and its Haar probability is denoted by µ. For any linear map T from R
n, ‖T‖ denotes

the operator norm and ‖T‖HS :=
(

n
∑

j=1

|T (ej)|2
)1/2

, for (any) orthonormal basis (ej) of

R
n, its Hilbert-Schmidt norm.
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2 The result

In the first part we estimate the Lipschitz constant of the function F → |F⊥ ∩K|n−k and

also review concentration inequalities with respect to several natural distances on Gn,k.

We start with the latter.

The following lemma constructs a suitable orthonormal basis for two subspaces E and

F and will be very useful for our purposes

Lemma 2.1 ([GM], Lemma 4.1) Let E, F ∈ Gn,k such that F⊥ ∩ E = 0. Then there

exists u1, . . . uk orthonormal basis of E such that the family v1, . . . vk given by vj =
PF (uj)

|PF (uj)|
is an orthonormal basis of F . In particular, 〈uj, vi〉 = |PF (uj)| δji .

The space Gn,k appears in the literature equipped with a number of different distances.

In the following Proposition, we estimate the equivalence constants between them. It is

probably folklore but we include for the reader’s convenience. The fact that one can move

from one distance to another will be useful while computing the Lipschitz constant and

also when considering the concentration phenomena on Gn,k.

The elements of the orthogonal group O(n) will be denoted by U = (u1 . . . un) so the

columns (ui) form an orthonormal basis in R
n.

Proposition 2.2 For E, F ∈ Gn,k we consider the following distances

d0(E, F ) = max{d(x, SF ) | x ∈ SE}, d is the euclidean distance.

d1(E, F ) = inf{ε > 0 | SE ⊂ SF + εBn
2 , SF ⊂ SE + εBn

2 }

d2(E, F ) = inf{
(

k
∑

j=1

|uj − vj |2
)1/2

E = 〈uj〉k1, F = 〈vj〉k1 orthon. basis}

d3(E, F ) = inf{
(

n
∑

j=1

|uj − vj |2
)1/2

E = 〈uj〉k1, F = 〈vj〉k1 orthon. basis}

d4(E, F ) = ‖PE − PF‖HS

d5(E, F ) = inf{‖U − V ‖HS | U, V ∈ O(n), E = 〈u1 . . . uk〉, F = 〈v1 . . . vk〉}
d6(E, F ) = ‖PE − PF‖
Then, d2, d3, d4, d5 are equivalent with numerical equivalence constants, d0 = d1, d1 ≤

d2 ≤
√
2k d1 and d6 ≤ d4 ≤

√
2kd6.

d0 = d1: d1 is the Hausdorff distance between SE and SF which also reads

d1(E, F ) = max
{

max
x∈SE

d(x, SF ),max
y∈SF

d(y, SE)
}

so d0 ≤ d1 ≤
√
2 and it is enough to check that the two inner maxima are equal.

If E ∩ F⊥ 6= 0 then d0(E, F ) =
√
2. Suppose E ∩ F⊥ = 0. For any x ∈ SE, y ∈ SF ,

|x − y|2 = 2 − 2〈x, y〉 = 2 − 2〈PF (x), y〉. So, d2(x, SF ) = 2 − 2 sup
y∈SF

〈PF (x), y〉 = 2 −
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2|PF (x)| =
∣

∣x − PF (x)

|PF (x)|
∣

∣

2
. Let x0 ∈ SE that maximizes d(x, SF ) on SE or equivalently

that minimizes |PF (x)|. Denote y0 =
PF (x0)
|PF (x0)| (observe PF (x0) 6= 0). By the arguments in

[GM] Lemma 4.1, PF (x0) is orthogonal to E∩x⊥
0 and so PEPF (x0) is parallel to x0. Write

PE(y0) = λx0. Then λ = 〈PE(y0), x0〉 = 〈y0, PE(x0)〉 = |PF (x0)| and PEPF (x0)
|PEPF (x0)| = x0.

Therefore, d(y0, SE) = d(x0, SF ) and so max{d(y, SE) | y ∈ SF} ≥ max{d(x, SF ) | x ∈
SE}. Exchange E, F and equality follows.

d1 ≤ d2 ≤
√
2k d1: It is proved in [GM], Lemma 4.1.

1√
2
d2 ≤ d4 ≤

√
2 d2: Let F⊥ ∩ E := E0 and write the orthogonal decomposition

E = E0 ⊕E1 with E1 ∩ F⊥ = 0. By Lemma 2.1, there exists an orthonormal basis in E1,

(uj), such that vj =
PF (uj)

|PF (uj)| is an orthonormal system in F . Now add vectors to complete

an orthonormal basis in E (by adding vectors in E0) and in F that we also denote as uj

and vj. Trivially,

‖PE − PF‖2HS ≥
k

∑

j=1

|(PE − PF )(uj)|2

If uj ∈ E1 then, since 〈uj, vj〉 = |PF (uj)| (Lemma 2.1),

|(PE − PF )(uj)|2 = 1− |PF (uj)|2 ≥ 1− |PF (uj)| =
1

2
|uj − vj |2

If uj ∈ E0 and vj ∈ F then |(PE − PF )(uj)|2 = 1. Also, since 〈uj, vj〉 = 0 and so

|uj − vj |2 = 2.

For the second inequality, let (uj), (vj) be orthonormal basis of E, F ∈ Gn,k we write

PE =
∑k

j=1 uj ⊗ uj and PF =
∑k

i=1 vi ⊗ vi and by definition

‖PE − PF‖2HS = 2k − 2
k

∑

i,j=1

〈uj, vi〉2 ≤ 2
k

∑

j=1

(1− 〈uj, vj〉2) ≤ 2
k

∑

j=1

|uj − vj |2

since 1− 〈uj, vj〉2 ≤ 2(1− 〈uj, vj〉) = |uj − vj|2.
d2 ≤ d3 ≤

√
5d2: By definition d23(E, F ) = d22(E, F )+d22(E

⊥, F⊥). Now, d22(E
⊥, F⊥) ≤

2d24(E
⊥, F⊥) = 2d24(E, F ) ≤ 4d22(E, F ). With similar arguments one proves d2 ≤ d5 ≤ 3d2.

d6 ≤ d4 ≤
√
2kd6: For T linear ‖T‖ ≤ ‖T‖HS ≤

√

dim(T (Rn))‖T‖. 2

Proposition 2.3 Let K ⊂ R
n isotropic. The function given by Gn,k ∋ E → |E⊥∩K|n−k

is Lipschitz and for all E, F ∈ Gn,k we have the estimate

∣

∣ |E⊥ ∩K|n−k − |F⊥ ∩K|n−k

∣

∣ ≤ (cLk)
2k

Lk
K

‖PE − PF‖HS

where Lk := sup{LM | M ⊂ R
k, convex body isotropic}.

In order to prove it, one more lemma will be used. An equivalent version of it for

k = 1 is due to Busemann.
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Lemma 2.4 ([B]) If K ⊂ R
n is a convex body and E ∈ Gn,k then the function given by

E⊥ ∋ θ → ‖θ‖ :=
|θ|

|K ∩ E(θ)|k+1

is a norm on E⊥ where E(θ) = E ⊕ 〈θ〉.

Proof of Proposition 2.3. Suppose F⊥ ∩ E = 0 and let E = 〈u1 . . . uk〉, F = 〈v1 . . . vk〉 be
the orthonormal basis in Lemma 2.1. Denote E⊥

0 = E⊥, E⊥
j = v⊥1 ∩· · ·∩v⊥j ∩u⊥

j+1∩· · ·∩u⊥
k

and E⊥
k = F⊥. Then

∣

∣ |E⊥ ∩K|n−k − |F⊥ ∩K|n−k

∣

∣ ≤
k

∑

j=1

∣

∣ |E⊥
j ∩K|n−k − |E⊥

j−1 ∩K|n−k

∣

∣

Let us estimate (say) the first summand. Set Ē = E⊥ ∩ v⊥1 = E⊥
1 ∩ u⊥

1 . Then, by

Lemma 2.1, E⊥ = Ē ⊕PE⊥(v1) and E⊥
1 = Ē ⊕PE⊥

1

(u1) so we can apply Lemma 2.4 to Ē

∣

∣ |E⊥ ∩K|n−k − |E⊥
1 ∩K|n−k

∣

∣ =

∣

∣

∣

∣

∣

|PE⊥(v1)|
‖PE⊥(v1)‖

−
|PE⊥

1

(u1)|
‖PE⊥

1

(u1)‖

∣

∣

∣

∣

∣

and since |PE1
(u1)| = |〈u1, v1〉| = |PE(v1)| and the triangle inequality,

∣

∣

∣

∣

∣

|PE⊥(v1)|
‖PE⊥(v1)‖

−
|PE⊥

1

(u1)|
‖PE⊥

1

(u1)‖

∣

∣

∣

∣

∣

≤
|PE⊥

1

(u1)|
‖PE⊥

1

(u1)‖ ‖PE⊥(v1)‖
‖PE⊥

1

(u1)− PE⊥(v1)‖

Finally, observe that |PE⊥

1

(u1) − PE⊥(v1)| = (1 − 〈u1, v1〉)|u1 − v1| and apply Hensley’s

estimate [H] to conclude with

∣

∣ |E⊥ ∩K|n−k − |E⊥
1 ∩K|n−k

∣

∣ ≤ (1− 〈u1, v1〉)
(1− 〈u1, v1〉2)1/2

|u1 − v1|
(cLk)

2k

Lk
K

Since we can also suppose 〈u1, v1〉 ≥ 0, the first quotient above is bounded by 1. So,

∣

∣ |E⊥ ∩K|n−k − |F⊥ ∩K|n−k

∣

∣ ≤
√
k
(

k
∑

j=1

|uj − vj |2
)1/2 (cLk)

2k

Lk
K

By the proof of Proposition 2.2,
(

k
∑

j=1

|uj − vj |2
)1/2 ≤

√
2‖PE − PF‖HS. In the general

case, if F⊥ ∩ E := E0 then we can write E = E0 ⊕ E1 with E1 ∩ F⊥ = 0. Choose an

orthonormal basis of E0 and proceed as in the previous case. 2

We recall the following celebrated result by M. Gromov and V. Milman, see for instance

[MS].

Theorem 2.5 (Concentration of measure) There exist absolute constants c1, c2 > 0

such that
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i) For every A ⊂ Gn,k and every δ > 0

µ(Aδ) ≥ 1− c1

µ(A)
exp

(

−c2δ
2n
)

where Aδ = {E ∈ Gn,k; ∃ F ∈ A, d5(E, F ) ≤ δ}

ii) For f : Gn,k → R a Lipschitz function with Lipschitz constant σ, that is |f(E) −
f(F )| ≤ σd5(E, F ),

µ {E ∈ Gn,k; |f(E)− E (f)| ≤ a} ≥ 1− c1 exp

(

−c2a
2n

σ2

)

∀ a > 0

Remark 2.6 If d, d̃ are two distances on Gn,k such that d ≤ Md̃ for some M > 0 then

a concentration inequality for d̃ with bound c1 exp (−c2δ
2n) implies one for d with bound

c1 exp
(

−c2δ2n
M2

)

. Similarly for Lipschitz functions. It is then possible to state concentration

inequalities for the different distances (Proposition 2.2) on Gn,k.

The last main ingredient is the concentration of | · | on K

Theorem 2.7 [Kl2]. Let K ⊂ R
n be an isotropic convex body. Then,

|{x ∈ K :
∣

∣|x| −
√
nLK |

∣

∣ > t
√
nLK}|n ≤ c exp(−Cnαtβ) (2.2)

for all 0 ≤ t ≤ 1 and α = 0.33, β = 3.33.

It was proved by [So] (with sharp exponents α and β) for normalized unit balls of

ℓnp , 1 ≤ p and in full generality in [Kl2].

As an application of the results we show the announced

Theorem 2.8 Let K ⊂ R
n isotropic. For all ε > 0, 1 ≤ k ≤ ε logn

(log logn)2
, the set A of

subspaces E ∈ Gn,k such that

1− ε√
2πLK

≤ |E⊥ ∩K|1/kn−k ≤
1 + ε√
2πLK

holds, has probability µ(A) ≥ 1− c1 exp−c2n
0.9

Consider the function f : Gn,k → R, f(E) = |E⊥ ∩ K|n−k. By Proposition 2.3 and

Theorem 2.5 we have

µ {E ∈ Gn,k; |f(E)− E (f)| ≤ εE (f)} ≥ 1− c1 exp

(

−ck2L
2k
K (E (f))2ε2n

(Lk)2k

)

On the other hand, denote (as in [BB]) FK(t, E) :=
∣

∣{x ∈ K : |PE(x)| ≤ t}
∣

∣, t ≥ 0,

the marginal measure on E of the euclidean ball of radius t and Γk
K(t) the k-dimensional

230



Gaussian measure (centered with variance L2
K) of {s ∈ R

k : |s| ≤ t}. Theorem 3.5 in [BB]

and Theorem 2.7 readily imply

∣

∣

∣

∣

∣

∫

Gn,k
FK(t, E) dµ(E)

Γk
K(t)

− 1

∣

∣

∣

∣

∣

≤ c1

n0.09
∀ t ≥ 0

Taking limits as t → 0 (see Corollary 3.6 in [BB]) yields

∣

∣

∣

∣

∣

E (f)
1

(
√
2πLK)k

− 1

∣

∣

∣

∣

∣

≤ c1

n0.09

(

≤ ε

3

)

By the triangle inequality
∣

∣

∣

∣

∣

f(E)
1

(
√
2πLK)k

− 1

∣

∣

∣

∣

∣

≤ E (f)
1

(
√
2πLK)k

∣

∣

∣

∣

f(E)

E(f)
− 1

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

E (f)
1

(
√
2πLK)k

− 1

∣

∣

∣

∣

∣

So, if

∣

∣

∣

∣

f(E)

E(f)
− 1

∣

∣

∣

∣

≤ ε

3
, then

∣

∣

∣

∣

∣

f(E)
1

(
√
2πLK)k

− 1

∣

∣

∣

∣

∣

≤ (1 +
ε

3
)
ε

3
+

ε

3
≤ ε and conclude, using also

Lk ≤ ck1/4

µ
{

E ∈ Gn,k;
∣

∣f(E)− 1

(
√
2πLK)k

∣

∣ ≤ ε

(
√
2πLK)k

}

≥

≥ µ
{

E ∈ Gn,k; |f(E)− E (f)| ≤ ε

3
E (f)

}

≥ 1− c1 exp

(

−ck2ε
2n

kk/2

)

The hypothesis on k implies ε ≥ (log logn)2

logn
and kk/2 ≪ n0,1, so

µ
{

E ∈ Gn,k;
∣

∣f(E)− 1

(
√
2πLK)k

∣

∣ ≤ ε

(
√
2πLK)k

}

≥ 1− c1 exp(−c2n
0.9)
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