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Abstract

Let K C R™ be a centrally symmetric isotropic convex body. We prove that for

random F' € Gy, i, and k slowly growing to infinity, the central section |F' LNK| :/_k A

is almost constant. A simple approach using standard concentration of measure

arguments is given.

1 Introduction and notation

Let K C R™ be a symmetric convex body. We say K is isotropic if it is of volume
1 and there exists a constant Lx > 0 called isotropy constant of K such that L% =
[y (2, 0)* de, V0 € S™ 1.

Since the works of [H], [B] or [MP] we know of the close relation between the isotropy
constant and the size of the central sections of K. It is well known that for any 1 < k <n

there exist ¢ (k), ca(k) > 0 such that for every subspace F' € G, (the Grassmann space)

Cl<l€) L 1/k CQ(k)
— L < |F K <
Ly — | MK, < L

where | - |,,, is the Lebesgue measure in the appropiate m dimensional space.

Well known estimates (see [H], [MP] and [KI]) imply c;(k) > ¢; and cy(k) < cok'/4,
where ¢, co > 0 are absolute numerical constants. These bounds are the best ones known
to be valid for every subspace F' € G, .

For random sections, much better estimates are possible. The following result was
proved in [ABBP],

There exist absolute constants ci,co,c3 > 0 with the following property: If K is an
isotropic convex body in R™ and 1 < k < /n then, the set of subspaces F' € G, such
that

o cmnrie

has Haar probability > 1 — e~ %%
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In [EK] the authors prove a version of the central limit theorem for convex bodies.
Its proof uses the strong concentration behavior of the Euclidean norm on K, [K12], and
a delicate study of the marginal distribution of some intermediate measures, namely the
convolution of the uniform measure on K with an independent gaussian vector. As a
consequence of it it is easy to check that

Fore = n—il, kE < n® the set of subspaces F' € G, j, such

1—
V2m Ly

_nc4

1/k 1+e¢

<|KmFi|n i NI
K

has Haar probability > 1 — csze

These two results are different: the second one gives better constants (~ \/%) but a
worse dependence on k and on the estimate of the Haar probability.

In this note we use a simpler approach to the question. Our final result is weaker in k
than the one deduced from [EK] and it provides better estimate of the Haar probability.
But the main advantadge, we think, is that the arguments are simpler and the tools used
are of independent interest: First we estimate Lipschitz constant of the section function
F € Gnp — |F+ N K|, (Proposition 2.3), for k = 1 this was proved in [ABP]. Then
we apply the concentration of measure phenomenum on G, (equipped with the right
distance (Proposition 2.2)). In this way we measure the closeness between the section
function and its expectation. Finally, by expressing this expectation as a marginal, we
related it to the marginal of a gaussian distribution. For that final step, we unavoidably
use the concentration of the Euclidean norm on K, [KI2] in the version stated in [BB].
Our result is
Theorem 2.8. Let K C R" isotropic. For alle > 0,1 < k < CElog"Q, the set A of

(loglogmn)
subspaces F' € G, i, such that

1—
V2L

holds, has probability p(A) > 1 — cie= "

1/k 1+e¢

<|KHFL|n k_\/%L
K

(1.1)

0.9

In R”, | - | denotes the Euclidean norm and Bj the Euclidean ball. For any k-
dimensional subspace F' C R™ we denote Sp = S" ! N F and by Pr the orthogonal
projection onto F. G, is the grassmaniann space of all k& dimensional subspaces of R"
and its Haar probability is denoted by p. For any linear map T from R™, || T|| denotes

1/2
the operator norm and ||T||gs = <Z |T (e ) ) , for (any) orthonormal basis (e;) of

j=1
R™, its Hilbert-Schmidt norm.
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2 The result

In the first part we estimate the Lipschitz constant of the function F' — |F+ N K|, and
also review concentration inequalities with respect to several natural distances on G, k.
We start with the latter.

The following lemma constructs a suitable orthonormal basis for two subspaces E and

F and will be very useful for our purposes

Lemma 2.1 ([GM], Lemma 4.1) Let E,F € G, such that F- N E = 0. Then there

Pr(u;)
| Pr(uy)

exists uy, . . . uy orthonormal basis of E such that the family vy, ... vy given by v; =

is an orthonormal basis of F. In particular, (u;,v;) = |Pp(u;)| 6.

The space G, appears in the literature equipped with a number of different distances.
In the following Proposition, we estimate the equivalence constants between them. It is
probably folklore but we include for the reader’s convenience. The fact that one can move
from one distance to another will be useful while computing the Lipschitz constant and
also when considering the concentration phenomena on G, .

The elements of the orthogonal group O(n) will be denoted by U = (u;y ... u,) so the

columns (u;) form an orthonormal basis in R".

Proposition 2.2 For E, F € G, we consider the following distances
do(E, F) = max{d(z, Sr) | x € Sg}, d is the euclidean distance.

di(E,F)=inf{e > 0| Sg C Sp+¢B},Sp C Sg+ By}
k 1/2
dy(E,F) = inf{(Z lu; — vj|2> E = (u;)}, F = (v;)¥ orthon. basis}
j=1

d3(E, 1nf{<Z|uj — vy ) = (u;)¥ F = (v;)} orthon. basis}
dy(E, F) = || Pg — PFHHS
ds(E, F) =inf{||U = V|gs | U,V € O(n), E = (uy...up), F = (v ...v5)}
do(E, F) = || Pe — Pr||

Then, ds,ds, dy, ds are equivalent with numerical equivalence constants, dy = dy, dq <

d2 S V 2k d1 and d6 S d4 S V 2kd6
dy = dy: d; is the Hausdorff distance between Sg and Sy which also reads

di(E, F) = max { maxd(z, Sp), mgxd(y, Sg)}
ye

r€SE

so dy < d; < /2 and it is enough to check that the two inner maxima are equal.
If ENF*Y #0 then do(E, F) = V2. Suppose ENF+ = 0. For any 2 € Sp,y € Sp,
|.T - y|2 =2- 2(1’,y> =2- 2<PF<x)7y> 807 d2<x7SF) =2-2 sup(PF(:L’),y> =2-

yeESF
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PF<.§L’>
)|

that minimizes |Pg(x)|. Denote yy =

2| Pp(z)| = |z — }2. Let zg € Sg that maximizes d(z, Sg) on Sg or equivalently

Pr(z
|Pr(z

[GM] Lemma 4.1, Pp(z0) is orthogonal to Eﬂxo and so PgPr(x¢) is parallel to zg. Write
Pp(yo) = Azo. Then A = (Pp(yo),%0) = (4o, Pu(0)) = |Pr(wo)| and [FEEEES, = .

Therefore, d(yo, Sg) = d(x¢, Sr) and so max{d(y, Sg) | y € Sp} > max{d(x,Sr) | x €
Sg}. Exchange E,| F' and equality follows.

dy < dy < 2k dy: Tt is proved in [GM], Lemma 4.1.

%dQ < dy < V2dy: Let FAFNE = Ey and write the orthogonal decomposition
E = FEy® E, with E; N F+ = 0. By Lemma 2.1, there exists an orthonormal basis in Fj,

(observe Pr(z9) # 0). By the arguments in

(u;), such that v; = |1; E g‘ is an orthonormal system in /. Now add vectors to complete
an orthonormal basis in E (by adding vectors in Ej) and in F that we also denote as u;

and v;. Trivially,
k

1P = Prllts = > |(Pe — Pr)(u))]?

j=1

If u; € Ey then, since (u;,v;) = |Pp(u;)| (Lemma 2.1),
1
(P = Pr) ()" = 1= [Pr(u))* 2 1= | Pr(uy)| = 5lu; — vl

If uj € Ey and v; € F then |(Pg — Pr)(u;)|*> = 1. Also, since (uj,v;) = 0 and so
Juj — v;* = 2.

For the second inequality, let (u;), (v;) be orthonormal basis of E, F' € G, we write
Py = Z?Zl u; ® u; and Pp = Zle v; ® v; and by definition

k k k
1Pe = Prellfs =2k =2 ) {uj,v)* <2 Z (uj, v)?) <2 fuy — vy

i,7=1
since 1 — (uj,v;)? < 2(1 = (uy,v5)) = |u; — vyl
dy < d3 < v/5dy: By definition d2(E, F) = d3(E, F)+d3(E+, F*). Now, d2(E+, F*) <
2d3(E+, F4) = 2d3(E, F) < 4d3(E, F). With similar arguments one proves dy < ds < 3ds.
ds < dy < V2kdg: For T linear ||T|| < ||T||gs < /dim(T(R™))||T]|. O

Proposition 2.3 Let K C R" isotropic. The function given by G 3 E — |[E+*N K],
is Lipschitz and for oll E, F' € Gy, 1, we have the estimate

(Cﬁk)Qk
Lk

K

| [ET N K — [FF N K| < |Pe — Prllas
where Ly = sup{Ly | M C R¥, convex body isotropic}.

In order to prove it, one more lemma will be used. An equivalent version of it for

k =1 is due to Busemann.
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Lemma 2.4 ([B]) If K C R" is a convez body and E € G, then the function given by

l
Et>60—6 ::|—
1o =7 B

is a norm on E+ where E(0) = E @ ().

Proof of Proposition 2.3. Suppose F* N E =0 and let E = (u;...u), F = (v;...v;) be
the orthonormal basis in Lemma 2.1. Denote Ey- = E+, E;- = vi"N---Noj-Nugy N- - Ny
and Ej- = . Then
k
| [EY N K = [F N K| < B O Ky — By 0K i
j=1
Let us estimate (say) the first summand. Set E = E+ Nvi = Ef Nui. Then, by
Lemma 2.1, E* = E® Pgi(v)) and B} = E@ Pp1(uy) so we can apply Lemma 2.4 to E

Ppe(v)]  [Pep(ua)l
[Per (vl [[Pgs(w)]]

| |ES N Ko — [Ef N K|y =

and since |Pg, (u1)| = [{u1,v1)| = |Pg(v1)| and the triangle inequality,

|Pge(v)| [ Pri(u | Py (u1)]

I
[Po @0l TPes ()| = TP (un)[ TP (00)]

”‘PEf<u1> — Ppe(v]

Finally, observe that |Ppi(u1) — Pgr(vi)| = (1 — (u1,v1))|ur — v1] and apply Hensley’s
estimate [H] to conclude with

(o) e
— (ug, v1)?)1/? ! ! Ll;(

| |[ET N Kok — |EF N Kk < a

Since we can also suppose (uq,v1) > 0, the first quotient above is bounded by 1. So,

n il <k S (el
| |[ET N Kok — [FE N Kli| < (Z Juj — v;]?) Tk
j=1 K

k

By the proof of Proposition 2.2, (Z luj — vj|2)1/2 < V2||Pg — Pp|lgs. In the general
j=1

case, if F* N E := E, then we can write £ = Ey ® E, with E; N F+ = 0. Choose an

orthonormal basis of Ey and proceed as in the previous case. a

We recall the following celebrated result by M. Gromov and V. Milman, see for instance

IMS).

Theorem 2.5 (Concentration of measure) There ezist absolute constants ci,ca > 0
such that
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i) For every A C G, and every § > 0

(8]

exp (—025271)
where As ={E € G, ; 3 F € A ds(E, F) < §}

ii) For f: G, — R a Lipschitz function with Lipschitz constant o, that is |f(E) —
f(F)| < 0d5(E7F)7

coa’n

M{EEGn,k;\f(E)—E(f)\§@}21—01€Xp<— i ) Va0

Remark 2.6 If d,d are two distances on Gy such that d < Md for some M > 0 then

a concentration inequality for d with bound ¢, exp (—co6®n) implies one for d with bound

C1 €Xp (%‘f") . Similarly for Lipschitz functions. It is then possible to state concentration

inequalities for the different distances (Proposition 2.2) on G, k.

The last main ingredient is the concentration of | - | on K

Theorem 2.7 [Ki2]. Let K C R"™ be an isotropic convex body. Then,
{z € K: ||lz| — vnLk|| > tv/nLg}|n < cexp(—Cn*t?) (2.2)
for all0 <t <1 and a = 0.33,5 = 3.33.

It was proved by [So| (with sharp exponents a and [3) for normalized unit balls of

7,1 < p and in full generality in [KI2].

As an application of the results we show the announced

Theorem 2.8 Let K C R"™ isotropic. For alle > 0, 1 < k < (lo?ﬁ)ggz)Q, the set A of

subspaces E € G, such that

1—¢
V2 Ly

holds, has probability (A) > 1 — ¢; exp —con

1
< B nEVE < —E€

nok = vV 27TLK

0.9

Consider the function f: G, — R, f(E) = |E* N K|, . By Proposition 2.3 and

Theorem 2.5 we have

S L (E(f )2627%)

p{E € Gup; [f(E)—E(f)| <€E(f)} 21— crexp (‘ (Lp)%

On the other hand, denote (as in [BB]) Fk(t, E) := [{z € K : |Pg(z)| < t}|, ¢t >0,

the marginal measure on F of the euclidean ball of radius ¢ and I'% () the k-dimensional
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Gaussian measure (centered with variance L% ) of {s € R¥ : |s| < ¢}. Theorem 3.5 in [BB]

and Theorem 2.7 readily imply

fGnyk F(t, E) du(E) 1 V>0
L) Swm V02
Taking limits as ¢ — 0 (see Corollary 3.6 in [BB]) yields
E(f) ¢l £
— s n0-09 ( = g)
(V2rLk)k
By the triangle inequality
E E E E
10| B0 e 5D
(\/ﬂLK)k (\/ﬂLK)k (f) (\/ﬂLK)k
E E
So, if % — ) < %, then # -1 <1+ %)% + % < ¢ and conclude, using also
(/) VoL
,Ck S Ck?l/4
{E € Gui|f(E)— ! | < c } >

Ck 27’L
> 1 {E € Gulf(B) - B < SE(} 21— cvemr (<257 )

The hypothesis on k implies ¢ > % and kF/? < n%!, so

M{E € Gn,k;

f(E) -

—con®?)

! | < c }>1— ¢y exp(
(VorLi)t' = (VamLt T
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