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Abstract

In this paper we comment on some recent research in the field of multivariate

polynomial interpolation with special emphasis in the influence of the relative po-

sition of the interpolation nodes to extend certain univariate techniques like simple

Lagrange formulae, Aitken–Neville formulae and Lebesgue constants.
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1 Introduction

Univariate polynomial interpolation is a classical subject, with a long history and a

rather complete theory. Its multivariate counterpart is much more complicated. Only

very isolated papers, although due to important mathematicians as Kronecker or Jacobi,

can be found before the beginning of the 20th Century.

Except for tensor product problems, which are obvious extensions of univariate prob-

lems, multivariate techniques have only been systematically considered in the second half

of the 20th century due to the development of computers. Another reason for the interest

of multivariate problems was the emergence of new mathematical methods, as finite ele-

ment methods for solving partial differential equations, cubature formulae, etc. Several

surveys on the history of the subject and its development have been written at the end

of the last century (cf. [24, 25]). The purpose of this paper is to point out some advances

in the field and show some new trends which have appeared in the last decade.

2 Constructing sets of nodes suitable for interpolation problems

The usual interpolating space in one variable is Pn(R) := {p ∈ P (R) : deg p ≤ n},

the space of polynomials of degree not greater than n. In contrast, there exist many
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different choices for subspaces of P (Rd), the space of polynomials in d variables, for solving

interpolation problems in the case d > 1, depending on the number and distribution of

the interpolation points (also called nodes). In fact, it is necessary for the existence

and uniqueness of the interpolant that the number of nodes equals the dimension of the

interpolating space. The most common interpolating space is the space

Pn(R
d) := {p ∈ P (Rd) : deg p ≤ n}

of polynomials of total degree less than or equal to n. Another subspace of polynomials,

specially used for rectangular grids, is the space

Pn1,...,nd
(Rd) := {p ∈ P (Rd) : degi p ≤ ni, i = 0, . . . , d}

where degi denotes the partial degree, that is, the degree with respect to the ith variable

xi. Generalizations of these approaches introducing polynomials whose directional degree,

that is, degree along certain directions, is prescribed have also been used [12].

A set of nodes X is said to be correct for an interpolating space S, if the Lagrange

interpolation problem on X has always a unique solution in S. An interpolating space S,

dimS = N , satisfies the Haar condition on a given domain D if any set of N nodes in D

is correct for S. There are many spaces which satisfy this condition in one variable, in

particular that of polynomials of degree not greater than N on any subinterval of the real

line. However, except for the trivial case of problems with only one interpolation point,

there exist no spaces in more than one variable satisfying the Haar condition on domains

D containing an open set. Therefore the fact that a set of nodes is correct depends on the

geometric distribution of the nodes. This is a remarkable difference with the univariate

case and provides one of the main research subjects in multivariate interpolation.

Chung and Yao [21] identified the Pn(R
d)-correct sets of nodes whose Lagrange poly-

nomials can be factored as products of first degree polynomials. This geometric condition

(usually called for brevity GC) describes distributions of nodes leading to simple Lagrange

formulae. A GCn-set X is a set with dimPn(R
d) nodes such that for each x ∈ X , there

exist n hyperplanes containing all nodes but x. Chung and Yao provided two important

examples of distributions of nodes satisfying their geometric condition: principal lattices

and natural lattices. The geometric characterization can be easily used to check whether a

given set is a GCn set but it provides no suggestion about how to construct such sets. One

of the research lines recently developed has focused on describing examples which gener-

alize those provided by Chung and Yao. For the sake of simplicity we restrict ourselves

to the bivariate case.

Principal lattices are distributions of points formed by the intersections of 3 pencils of

equidistant parallel lines, n+1 lines each, in such a way that any node is the intersection

of one line of each pencil. The standard example is the set of points (i/n, j/n) : 0 ≤
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i + j ≤ n, where (i/n, j/n) is the intersection of the lines x − i/n = 0, y − j/n = 0,

x+ y − (i+ j)/n = 0. Principal lattices were extended by Lee and Phillips to sets called

3-pencil lattices, allowing concurrent pencils of lines (parallel lines can be considered as

a particular case of concurrence at infinity).

Jaklič et al. [30] have used a barycentric form as a useful tool to extend three-

pencil lattices to triangulations covering polygonal domains. In this way, they construct

continuous piecewise polynomials interpolating Lagrange data, analyzing the degrees of

freedom in the selection of the nodes in each subtriangle. Multivariate extensions of these

results have also been considered recently by the same authors.

In the last decade, the authors [14, 15] have extended the Lee-Phillips construction

to lattices generated by cubic pencils. Cubic pencils are families of lines ax+ by + c = 0

whose coefficients satisfy a cubic equation. An addition in the set of nonsingular lines Λ∗

of a cubic pencil is introduced as a dualization of the addition of points of a cubic curve (a

common tool in algebraic geometry). Three lines sum up to 0 if and only if they meet at

a point which is not a vertex of the pencil. Usually the lines are parameterized in terms

of an isomorphic classical group G,

L : t ∈ G 7→ L(t) ∈ Λ∗,

so that L(−t1−t2) is the line in Λ∗ concurrent with L(t1) and L(t2). For each t0, t1, t2 ∈ G

with t0 + t1 + t2 = 0 and h ∈ G, the set of points X = {xijk | i+ j + k = n}, where

{xijk} = L(t0 − (n− i)h) ∩ L(t1 + jh) ∩ L(t2 + kh), i+ j + k = n,

is a generalized principal lattice if the lines L(tr + ih), i = 0, . . . , n, r = 0, 1, 2, are all

distinct. This construction generalizes 3-pencil lattices. In fact, the product of the three

linear pencils arising in the Lee-Phillips construction form a cubic pencil of lines

As an example, we might consider the cubic pencil formed by all lines

L(t) ≡ y = tan(t/2)x− sin(t), t ∈ R/2πZ

tangent to a deltoid

x(t) = cos t(cos t + 1), y(t) = sin t(cos t− 1).

Here the parameter group is G = R/2πZ. Figure 1 below illustrates an example of this

construction. We observe that each of the three families L(tr + ih), i = 0, . . . , n, do not

belong to the same linear pencil, that is, they do not meet at a vertex.

An apparently more general situation was described in [14, 15] defining generalized

principal lattices as distributions of points obtained from the intersections of three families

of lines Lr
i , i = 0, . . . , n, r = 0, 1, 2, not necessarily related to a cubic pencil. Later on, it
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Figure 1.— A lattice generated by a cubic pencil

was proved in [20] that every bivariate generalized principal lattice can be obtained from

a cubic pencil of lines. Starting with a canonical classification of cubic curves, the authors

have classified in [16] all possible kinds of generalized principal lattices in two variables,

up to projectivities.

An extension of these ideas to more than 2 variables was obtained in [18], showing

some examples, and simultaneously pointing out the difficulties of getting a general con-

struction.

The Aitken-Neville algorithm in one variable provides the solution of an interpolation

problem of degree n on a set X of n + 1 nodes by linear interpolation of the solutions

of two subproblems of degree n − 1 on n points of X . Multivariate extensions of the

Aitken-Neville algorithm have been considered by several authors in the last half of the

20th century. In a recent paper [19] the relationship between multivariate Aitken-Neville

algorithms and generalized principal lattices has been studied. Aitken-Neville sets in

R
d were defined by Sauer and Xu [34] as distributions of points allowing a recursive

interpolation formula that constructs an interpolating polynomial of degree n on
(

n+d

d

)

nodes from the solutions of d + 1 problems of degree n − 1 with
(

n+d−1
d

)

data each.

The initial data provide the solutions of
(

n+d

d

)

problems of degree 0 (1 data each). We

construct with them the solutions of
(

n+d−1
d

)

problems of degree 1 (d+ 1 data each) and

so on, until getting the solution of the complete problem with
(

n+d

d

)

data. The scheme

extends the univariate Aitken-Neville algorithm. In [19] it has been shown that each
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Aitken-Neville set satisfies the GC condition of Chung and Yao and that any generalized

principal lattice is an Aitken-Neville set. As a consequence, an interpolation problem on a

generalized principal lattice can be solved by an Aitken-Neville algorithm. Let us remark

that interpolation problems on generalized principal lattices can also be solved by the

Lagrange formula because they satisfy the GC condition.

In the plane, it has been proved in [19] that any Aitken-Neville set of degree n > 2 is

a generalized principal lattice. However there are Aitken-Neville sets of degree 2 which

are not generalized principal lattices.

Another approach to Aitken-Neville formulae for multivariate interpolation can be

found in [17], where extensions to Aitken-Neville formulae (in the sense that an interpolant

is obtained combining interpolants on smaller subsets of nodes) have been analyzed. The

recursion formulae for Aitken-Neville sets introduced by Sauer and Xu [34, 19] are ob-

tained as a consequence of the main result of [17], applied to the problem of obtaining an

interpolant in Pn(R
d) in terms of subinterpolants in Pn−1(R

d).

A natural lattice of degree n in R
d is the set of all points obtained intersecting d

hyperplanes among n + d hyperplanes in general position in R
d. The number of such

intersections is
(

n+d

d

)

= dimPn(R
d). Natural lattices are adequate for total degree inter-

polation of degree n in R
d because they satisfy the GCn condition. In the bivariate case,

a natural lattice is the set of pairwise intersections among n+ 2 lines in general position.

In one variable, Hermite problems can be seen as a limit case of Lagrange problems

when nodes coalesce. Analogously, in [11], we have analyzed interpolation problems de-

fined in the set of intersections of n + 2 distinct lines in any position, allowing multiple

concurrences of lines at a point or parallel lines. This general situation gives rise to Her-

mite problems on subspaces of Pn(R
2) consisting of polynomials whose degree diminishes

along directions corresponding to parallel or coincident lines among the lines defining the

lattice.

The search of new distributions of interpolation nodes which form a correct set on a

certain space of polynomials is a natural question in multivariate polynomial interpolation.

In the last years, Bojanov and Xu [3] have studied bivariate Hermite problems, where the

interpolant matches prescribed data consisting of function values and consecutive normal

derivatives on a set of points placed on several circles centered at the origin. Lagrange

interpolation is a particular case. For a given integer n, the interpolation nodes are the

intersection points of 2[n+1
2
] + 1 rays from the origin with a set of concentric circles (here

[m] means the integer part of m). The circles can be repeated and, in this case, successive

radial derivatives are provided as interpolation data. In [3] the number of circles, counting

multiplicities, is [n
2
] + 1. So, the total number of interpolation data is the dimension of

Pn(R
2) and, if the rays are equidistant (i.e. the nodes on each circle are equidistant), the

set of nodes is correct for Pn(R
2). The poisedness holds if the circles freely rotate. In
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particular, Bojanov and Xu rediscovered in [3] a nice star-shaped example of a natural

lattice, previously obtained by Hakopian [26].

Later on Bojanov and Xu [4] considered nonconcentric circles and Hakopian and Ismail

[27] have extended the analysis to conic sections. Hakopian and Khalaf [28] have continued

this work, proving that the poisedness of the data for the Bojanov-Xu problem [3] is

equivalent to the unisolvence of certain 2[n+1
2
] + 1 dimensional Lagrange interpolation

problems. As a consequence, they prove that the Bojanov-Xu problem is poised not only

for equidistant rays, but for a wide family of sets of rays satisfying some simple conditions.

3 Some conjectures on distributions of nodes suitable for interpolation prob-

lems

Gasca and Maeztu [22] considered interpolation nodes in R
2 defined as intersections

of lines and provided a method of constructing poised Lagrange and Hermite interpola-

tion problems on apropriate subspaces of polynomials. The novelties of their approach

consisted, on the one hand, in allowing multiple concurrences of lines (giving rise to deriva-

tives as interpolation data) and, on the other hand, in solving the problem by means of a

recurrence with a simple Newton-like formula. An extension to more than two variables

was also suggested in that paper.

The simplest case arises when n+ 1 nodes lie on a line l0, n nodes on another line l1,

none of them lying on l0, n−1 points on another line l2, none of them lying on l0∪ l1, and

so on. Then the Lagrange interpolation problem on these nodes is poised in the space

Pn(R
2). This distribution of points has been rediscovered several times in the literature,

apparently the first times by Berzolari [2] and much later by Radon [32]. Recently it has

been referred to as the Berzolari-Radon distribution of points.

The Lagrange problem on the Berzolari-Radon distribution leads to a triangular sys-

tem of equations and can be solved by a Newton formula. Obviously, not any lattice of

this type verifies the geometric condition (GC) of Chung and Yao. On the one hand, the

Berzolari-Radon lattices are straightforward to construct, and the corresponding inter-

polation problem can be solved with a simple Newton formula. On the other hand, for

any given set of points in the plane, the geometric characterization can be checked and

leads to a simple explicit Lagrange formula as mentioned in Section 2. However, the class

of GC sets is not completely known. Some particular constructions like natural lattices,

principal lattices and their generalizations are often used but other instances of GC sets

are not so easy to construct and describe. It is a remarkable fact that all known GC sets

are particular cases of the Berzolari-Radon construction.

A natural question arising in this context is whether or not any planar GC set is a

Berzolari-Radon set. Bézout Theorem implies that no line of the plane can contain more
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that n+1 nodes of a set correct for Pn(R
2). A conjecture launched in [22], known presently

as the GM conjecture, states that, if X is a planar GC set of order n, then n+1 points of

X are collinear. It is easy to see that, if a planar GCn set has n+1 collinear points, then

the set obtained removing those points is a GCn−1 set. Hence, if the GM conjecture is

true, it can be shown by induction that any planar GC set of order n is a Berzolari-Radon

set of order n. This is the reason why the GM conjecture has atracted much attention

in the last twenty years. In spite of the relevance of the consequences of the geometric

condition, the GM conjecture has only been proved up to degree n = 4 (see, for instance

[10, 29]). However no counterexample has been found. The conjecture was reinforced in

[13], where the authors proved that, if the GM conjecture holds for any degree, then there

exist at least 3 lines containing n + 1 nodes of any planar GCn set. The existence of at

least 3 lines containing n + 1 nodes has been considered as a new conjecture, known as

the CG conjecture, equivalent to the GM conjecture for points in the plane.

A multivariate version of the GM conjecture in R
d (the GMd conjecture) was stated

recently by de Boor [8]: there exist always a maximal hyperplane for any GCn set in R
d.

A maximal hyperplane for a Pn(R
d)-correct set X is any hyperplane containing exactly

(

n+d−1
d−1

)

nodes. The name maximal is based on the fact that no hyperplane can contain

more than
(

n+d−1
d−1

)

nodes. The same author also launched a multivariate version of the

CG conjecture: there exist at least d+1 maximal hyperplanes for any GCn set in R
d. This

conjecture was disproved in [8], where a GC2 set in R
3 with only 3 maximal hyperplanes

was described. This counterexample does not disprove the GMd conjecture nor the planar

CG conjecture. The search of new approaches to the GM conjecture by Hakopian, Jetter

and Zimmerman has stimulated recent research on the number of maximal hyperplanes

in multivariate GC sets. In a recent paper [1], it is shown that the GM conjecture holds

for trivariate GC2 sets.

4 The search of good interpolation nodes

The Lebesgue constant

Λn = max
x∈[a,b]

n
∑

i=0

∏

j 6=i

|x− xn
j |

|xn
i − xn

j |

is the norm of the interpolation operator L : C[a, b] → C[a, b] associated to the Lagrange

interpolation problem at nodes xn
0 < · · · < xn

n in [a, b] and measures in some sense the

condition and stability of the interpolation process. By the Erdös-Brutman Theorem

Λn >
2

π
log n+ 0.5212

for any set of nodes xn
0 < · · · < xn

n in [a, b]. This implies that Λn must diverge as n → ∞,

independently of the choice of nodes. The search of points for interpolation in Pn with
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least possible Lebesgue constant is an interesting question without an explicit solution.

The zeros of the Chebyshev polynomials are called the Chebyshev nodes and they are

almost optimal in [−1, 1], in the sense that the Lebesgue constant has an asymptotic

growth

Λn =
2

π
log n+O(1), n → ∞.

The advantange of the Chebyshev nodes is that they have a simple explicit formula

xn
i = − cos

(2i+ 1)π

2(n+ 1)
, i = 0, . . . , n.

Another important choice of nodes are the Chebyshev-Lobatto nodes

xn
k = − cos

kn

n
, k = 0, . . . , n.

In general, the Lebesgue constant is expected to be low for all distributions of points

xn
0 < · · · < xn

n in [−1, 1] which tend to be uniformly distributed when n → ∞ with

respect to the Dubiner metric

d(x1, x2) = | arccosx2 − arccosx1|.

In several variables, there is no clear candidate for almost optimal points for general

domains. In the last years, there have been new advances on the subject and new bivariate

distributions of points have been proposed for the square and the circle.

In order to avoid the discussion of the different cases arising in total degree interpo-

lation when the degree is even or odd, let us assume for the sake of simplicity that the

degree n = 2m is even. Let ξnk := cos(k/n) denote Chebyshev-Lobatto nodes. Y. Xu [35]

proposed the nodes

(x2i,2j+1, y2i,2j+1) := (ξ2m2i , ξ2m2j+1), i = 0, . . . , m, j = 0, . . .m− 1,

(x2i+1,2j , y2i,2j+1) := (ξ2m2i+1, ξ
2m
2j ), i = 0, . . . , m− 1, j = 0, . . . , m,

for interpolation on a subspace of P2m(R
2) containing P2m−1(R

2) on the square [−1, 1]2.

Other authors (Caliari, de Marchi and Vianello [9]) have proposed the “Padua points”

for total degree interpolation in P2m(R
2)

(xi, yj), i = 0, . . . , 2m, j = 0, . . . , m,

where

xi = ξ2mi , i = 0, . . . , 2m,

and

yj :=

{

ξ2m+1
2j , if m is odd,

ξ2m+1
2j+1 , if m is even,

j = 0, . . . , m
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with lower Lebesgue constant than the Xu points. Other bivariate and trivariate distribu-

tions of points with low Lebesgue constants have been proposed for the square, the circle

and other simple bivariate domains.

The Xu points are equally spaced in the Dubiner metric

d((x1, y1), (x2, y2)) = max(| arccosx2 − arccos x1|, | arccos y2 − arccos y1|).

A generalization of the Dubiner metric can be defined on any compact subset of Rn. A

conjecture stated in [9] says that: nearly optimal points for polynomial interpolation on

a compact set are asymptotically equidistributed with respect to the Dubiner metric. The

research on this subject is now very active and the reader is referred to recent papers by

Bos, Caliari, de Marchi, Vianello, Xu among others.

5 Multivariate divided differences

Univariate divided differences can be Êdefined in different ways: as the coefficients of

the Newton interpolation formula, as a certain linear functional vanishing on the space of

polynomials of a given degree and by a recurrence relation, among others. From any of

these definitions the other ones can be derived and also relevant properties in applications,

such as error formulae in numerical quadrature and relations with B-spline functions. The

extension of the concept to the multivariate case depends on the property that we want

to preserve. In other words, the way in which multivariate divided differences are defined

can lead to the loss of some common properties of the univariate ones. Generalizations

of the divided differences to several variables have been recently proposed by Rabut [31],

de Boor [7] and Sauer [33].

A general technique for multivariate polynomial interpolation on correct sets of points

is based on constructing extensions of the Newton formula. The Newton approach can be

described as the problem of constructing a basis of functions in the interpolation space

such that the interpolation conditions give rise to a linear system whose coefficient matrix

is lower triangular or block-lower triangular. Such a basis can be called a Newton basis.

The space of multivariate polynomials have a graded structure and in order to exploit it,

an additional condition for Newton bases of polynomials is usually required. The degree

of the polynomials of a Newton basis must be increasing (or increasing by blocks) in some

sense. So, extensions to the concept of degree might be necessary for deriving Newton

formulae in more general situations. Most concepts of multivariate divided differences

can be interpreted in terms of the construction of a suitable generalization of the Newton

formula.
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