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Abstract

By z = eiθ and x = cos θ, one may relate x ∈ I = (−1, 1], with θ ∈ (−π, π]

and a point z on the complex unit circle T. Hence there is a connection between

the integrals of 2π-periodic functions, integrals of functions over I and over T. The

well known Gauss quadratures approximate the integrals over I and their circle

counterparts are the Szegő quadratures. When none, one or both endpoints of

I are added to the usual Gauss nodes, one obtains the Gauss-type (Radau and

Lobatto) quadratures. The circular counterparts are called Szegő-type quadratures.

If the integrand and the weight function are symmetric for upper and lower half

of T, the choice of complex conjugate Szegő nodes with equal weights seems to

be natural, and in that case, the Gauss nodes in I are just the projections of the

Szegő nodes. Also the weights are related, and it becomes numerically interesting

to compute the Szegő quadrature from the corresponding Gauss quadrature which

reduces the computational cost considerably. Especially when the weights and nodes

are computed via an eigenvalue problem, which for Gauss works with a tri-diagonal

Jacobi matrix, but requires an upper Hessenberg matrix in the Szegő case.
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1 Introduction

Since the publication in 1989 of the paper [35] by W.B. Jones, O. Nj̊astad and W.J.

Thron along with the recent works by B. Simon [39]-[42] among others (see also some of the

most relevant contributions of the “Spanish Mathematical Community” on Orthogonal

Polynomials, e.g. [1], [3]-[4], [10]-[12], [23] or [26]), the theory of orthogonal polynomials

on the unit circle introduced by Szegő in [45] has become an interesting research topic both

from a theoretical and from an applied point of view. In this respect, when dealing with the

approximate calculation of a weighted integral of a 2π-periodic function or more generally

a weighted integral over the unit circle, the so-called Szegő quadrature formulas introduced

in [35] (see also [13], [29, Chapter 4], [30]-[31] and [44]) appear and represent the analog

on the unit circle of the Gaussian Formulas. As it is known, a fundamental aspect of a

family of quadrature rules is the efficient computation of its nodes and weights. Thus, the

computation of the Gaussian formulas leads to an eigenvalue problem involving certain

tri-diagonal (Jacobi) matrices meanwhile the Szegő formula can be efficiently computed

in terms of an eigenvalue problem involving certain Hessenberg matrices [30]-[31] (see also

[11] and [14] for an alternative approach).

In this paper, we will be mainly concerned with the computation of the Szegő formulas

when both the weight function in the integral and the nodes in the quadrature rules satisfy

symmetry properties. For this purpose, the well known connection between the theory

of Orthogonal Polynomials on the unit circle and the real line will be used in order to

drastically reduce the computational effort of such rules.

Thus, in order to make the paper self-contained it has been organized as follows:

Sections 2 and 3 are dedicated to collect some preliminary results concerning the most

relevant aspects of both Gaussian and Szegő formulas. In Section 4 the above symmetry

properties are exposed and the characterization of the corresponding symmetric Szegő-

type quadrature formulas deduced. The computation features are given in Section 5

meanwhile some numerical illustrative experiments are finally carried out in Section 6.

2 Preliminary results: Jacobi matrices and Gauss-type formulas

Given the integral,

Iσ(f) =

∫ b

a

f(x)σ(x)dx, (1)
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σ being a weight function on [a,b], by an n-point Gaussian formula In(f) =
∑n

j=1Ajf(xj)

for Iσ(f) or σ we mean a quadrature formula so that Iσ(P ) = In(P ) for any polynomial

P ∈ P2n−1; in the sequel, Pk denotes the space of polynomials of degree less than or equal

to k and P the space of all polynomials i.e., P = ∪∞

k=0Pk. A characterization of these

rules is given in the following result (see e.g. [36, pp. 101-103] and [45, Theorem 3.4.2]),

Theorem 2.1 Let {Qk}
∞

k=0 be the sequence of orthonormal polynomials for σ. Then,

Iσn (f) =
∑n

j=1Ajf(xj) is the n-point Gaussian formula for Iσ(f), if and only if,

1. {xj}
n
j=1 are the zeros of any orthogonal polynomial of degree n with respect to σ.

2. Aj =

(

n−1
∑

k=0

|Qk(xj)|
2

)

−1

> 0, for all j = 1, . . . , n (Christoffel numbers).

Iσn (f) as given in Theorem 2.1 is optimal in the sense there exists P ∈ P2n such that

Iσn (P ) 6= Iσ(P ).

On the other hand, efficient computation of the weights and nodes for Iσn (f) has been

carried out by means of the so-called Jacobi matrices associated with the three-term

recurrence relation satisfied by the sequence {Qk}
∞

k=0. Indeed, it is known that it holds,

xQn(x) = an+1Qn+1(x) + bnQn(x) + anQn−1(x), n ≥ 0, Q−1 ≡ 0,

so that by setting,

J =



















b0 a1 0 0 · · ·

a1 b1 a2 0 · · ·

0 a2 b2 a3 · · ·

0 0 a3 b3 · · ·
...

...
...

...
. . .



















(2)

then, the eigenvalues of the n-th truncation of the matrix J give us the set of nodes

{xj}
n
j=1 in Iσn(f) and the square of the first component of the eigenvector of unit length

corresponding to the eigenvalue xj yields the weight Aj , for j = 1, . . . , n. As seen, in a

Gaussian formula no freedom is left to fix some nodes in advance so that the remaining

nodes and weights can be chosen to produce quadrature formulas with similar features

to the Gaussian ones, that is, positive weights and exactly integrating polynomials with

as high degree as possible. This kind of quadratures which are of a great interest in the

construction of methods to numerically solve differential and integral equations, have been

studied in the last decades producing satisfactory results only in a few particular cases .

Thus, in the simplest situation when [a, b] is finite, say [a, b] = [−1, 1], quadrature formulas

with prescribed nodes at ±1 can be constructed and exhibiting similar characteristics to

the Gaussian ones. These are the so-called Gauss-Radau and Gauss-Lobatto formulas as
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summarized in the following (for a more general situation see the recent papers [7] and

[15]),

Theorem 2.2 Given the integral Iσ(f) in (1) and r, s ∈ {0, 1}, consider the n-point

quadrature rule:

Ir,sn (f) = rA+
n f(1) + sA−

n f(−1) +
n−r−s
∑

j=1

Ar,s
j f(xr,s

j ).

Then Ir,sn (P ) = Iσ(P ), for all P ∈ P2n−1−r−s, if and only if,

1. Ir,sn (P ) = Iσ(P ), for all P ∈ Pn−1 (that is, it is of interpolatory type).

2. The nodes {xr,s
j }n−r−s

j=1 are the zeros of any orthogonal polynomial of degree n− r−s

with respect to the weight function σr,s(x) = (1 − x)r(1 + x)sσ(x), x ∈ [−1, 1].

Furthermore, the weights A+
n , A

−

n and Ar,s
j for all j = 1, . . . , n − r − s are positive

and it holds that,

Ar,s
j =

Ãr,s
j

(1− xr,s
j )r(1 + xr,s

j )s
, j = 1, . . . , n− r − s,

{Ãr,s
j }n−r−s

j=1 being the Christoffel numbers for σr,s.

Thus,

1. As r + s = 0, I0,0n is the n-point Gauss-formula.

2. As r + s = 1, I1,0n and I0,1n are the n-point Gauss-Radau formulas.

3. As r + s = 2, I1,1n is the n-point Gauss-Lobatto formula.

Sometimes, we will refer to these quadratures as Gauss-type formulas so that they can

be efficiently computed in terms of an eigenvalue problem involving Jacobi matrices.

Indeed, let J be the Jacobi matrix associated with the weight function σ, set the Darboux

transform σ̃(x) = (x− β)σ(x) with β ∈ R such that Qn(β) 6= 0 for all n = 1, . . ., {Qk}
∞

k=0

being the sequence of orthonormal polynomials for σ and denote by J̃ the Jacobi matrix

associated with σ̃. Then, it holds that (see e.g. [4])

J̃ = UL + βI, (3)

where I denotes the unit matrix and J − βI = LU . That is, once we have obtained the

LU decomposition of the known matrix J −βI, (3) gives the Jacobi matrix J̃ associated

with σ̃.

When this is restricted to a finite section of the Jacobi matrix (2), it is equivalent

with the eigenvalue techniques proposed by Gautschi and Golub (see [21]-[22], [28] and
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also [7]). Indeed, if β ∈ {−1, 1} and we want β to be a node of the quadrature, then

we modify the last bn−1 and require that the corresponding Q̂n = Qn − b̂n−1Qn−1 has

a zero in β, which leads to b̂n−1 = Qn(β)/Qn−1(β). By changing bn−1 into bn−1 + b̂n−1

we get a modified truncated Jacobi matrix Ĵn which will deliver the nodes and weights

of the Gauss-Radau formula like in the Gauss case. Similarly, one may consider Q̂n =

Qn − b̂n−1Qn−1 − ân−1Qn−2 and solve for ân−1 and b̂n−1 by requiring that Q̂n−1(±1) = 0,

which leads to the system

(

Qn−1(1) Qn−2(1)

Qn−1(−1) Qn−2(−1)

)(

b̂n−1

ân−1

)

=

(

Qn(1)

Qn(−1)

)

.

Modifying the truncated Jacobi matrix by replacing (bn−1, an−1) with (bn−1+ b̂n−1, an−1+

ân−1) gives a matrix Ĵn that provides the nodes and weights of the Gauss-Lobatto formula

through its eigenvalue decomposition as in the classical Gauss case.

3 Integration of periodic functions

Suppose now we are concerned with the approximate calculation of the integral,

Iω(g) =

∫ π

−π

g(θ)ω(θ)dθ,

g and ω being 2π-periodic functions and ω a weight function on [−π, π]. Without loss of

generality we will assume the normalization
∫ π

−π
ω(θ)dθ = 1. For this purpose, we will use

an n-point quadrature rule like,

Iωn (g) =
n
∑

j=1

λjg(θj), {θj}
n
j=1 ⊂ (−π, π], θj 6= θk if j 6= k,

but now imposing that Iωn (T ) = Iω(T ), for any trigonometric polynomial T (θ) =
∑N

k=0(ak cos kθ+

bk sin kθ) with as high degree N as possible. In this respect, it is known that N ≤ n− 1

(see [36, pp. 73-74]) and that the case N = n − 1 gives rise to the quadrature formulas

with the maximum trigonometric degree of precision which come characterized in terms

of the so-called bi-orthogonal systems of trigonometric polynomials associated with ω (see

[18] or [44] for further details). Alternatively, taking into account that any 2π-periodic

function on R can be viewed as a function defined on the unit circle T = {z ∈ C : |z| = 1}

we could write,

Iω(g) =

∫ π

−π

g(eiθ)ω(θ)dθ,

to be approximated by,

Iωn (g) =
n
∑

j=1

λjf(zj), {zj}
n
j=1 ⊂ T, zj 6= zk if j 6= k, (4)
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such that

Iωn (L) = Iω(L), for all L ∈ Λ−(n−1),n−1, (5)

where for p and q are integers with p ≤ q, Λp,q = span{zk : p ≤ k ≤ q} and Λ =

span{zk : k ∈ Z}. Here the functions in Λ are called Laurent polynomials so that if

T (θ) is a trigonometric polynomial of degree m then one can write T (θ) = L(eiθ) with

L ∈ Λ−(m−1),m−1. Moreover, for an ordinary polynomial Pn(z) of exact degree n, we

define its reverse or reciprocal as P ∗

n(z) = znPn (1/z̄). Concerning the construction and

characterization of the quadrature rule (4) satisfying (5) one has the following (see [35]

and [27]),

Theorem 3.1 Set Iω(g) =
∫ π

−π
g(eiθ)ω(θ)dθ, Iωn (g) =

∑n
j=1 λjg(zj) with zj ∈ T, j =

1, . . . , n and let {ϕk}
∞

k=0 be the sequence of orthonormal (Szegő) polynomials for ω. Then

Iωn (g) = Iω(g), for all g ∈ Λ−(n−1),n−1, if and only if,

1. {zj}
n
j=1 are the zeros of Bn(z, τn) = ϕn(z) + τnϕ

∗

n(z) for some τn ∈ T,

2. λj =

(

n−1
∑

k=0

|ϕk(zj)|
2

)

−1

> 0, for all j = 1, . . . , n.

Iωn (g) as given in Theorem 3.1 is called an n-point Szegő quadrature rule (see [35])

and represents the analog on the unit circle of the Gaussian formulas.

Szegő formulas are also optimal in the sense that there can not exist an n-point quadra-

ture formula with nodes on T exactly integrating any Laurent polynomial either in Λ−n,n−1

or in Λ−(n−1),n. However, as mentioned in [46, Section 12], it can be proved that an n-

point Szegő formula is exact in Ln ⊂ Λ such that dim(Ln) = 2n and Λ−(n−1),n−1 ⊂ Ln (see

[38]). Unlike the Gaussian rules, Szegő formulas are not uniquely determined because of

the presence of the arbitrary parameter τn ∈ T. Thus, given zα ∈ T, one can take τ̃n ∈ T

such that Bn(zα, τ̃n) = 0 where Bn(z, τ̃n) = ϕn(z) + τ̃nϕ
∗

n(z). Hence, τ̃n = −ϕn(zα)
ϕ∗

n(zα)
∈ T

provides an n-point Szegő quadrature formula with a fixed node zα ∈ T in advance and

called a Szegő-Radau quadrature rule.

On the other hand, if ρn(z) denotes the monic Szegő polynomial of degree n, one can

write (up to a multiplicative factor)

Bn(z, τn) = ρn(z) + τnρ
∗

n(z).

Now, from the recurrence relation for {ρk}
∞

k=0 (see [25], [29], [45, Theorem 11.4.2] or [41,

Theorem 1.5.2]),

(

ρk+1(z)

ρ∗k+1(z)

)

=

(

z δk+1

δk+1z 1

)(

ρk(z)

ρ∗k(z)

)

, k = 0, 1, . . . , (6)
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with ρ0(z) = ρ∗0(z) = 1, δ0 = 1 and δk = ρk(0) ∈ D for all k ≥ 1 (Verblunsky parameters1),

then for τn ∈ T it follows that,

Bn(z, τn) = ρn(z) + τnρ
∗

n(z) = Cn[zρn−1(z) + τ̃nρ
∗

n−1(z)], Cn 6= 0 and τ̃n ∈ T.

Thus, to generate an n-point Szegő formula, we take τn ∈ T and consider the zeros

of Bn(z, τn) that essentially depends on the parameters δ0, δ1, . . . , δn−1 and τn. More

precisely, define the matrix

Hn(τn) = D−1/2
n



















−δ1 −δ2 · · · −δn−1 −τn

σ2
1 −δ1δ2 · · · −δ1δn−1 −δ1τn

0 σ2
2 · · · δ2δn−1 −δ2τn

...
...

. . .
...

...

0 0 · · · σ2
n−1 −δn−1τn



















D1/2
n , (7)

where σk =
√

1− |δk|2 ∈ (0, 1], k = 1, 2, . . . n and Dn = diag[γ0, . . . , γn−1] ∈ Rn×n with

γ0 = 1, γk = γk−1σ
2
k > 0, k = 1, . . . , n − 1 and τn ∈ T. Under these conditions one has

([30]-[31]),

Theorem 3.2 Hn(τ) given in (7) is an unreduced unitary upper Hessenberg matrix for

all τ ∈ T, so that its eigenvalues {zj}
n
j=1 which are distinct and of unit magnitude are the

zeros of Bn(z, τ) = ρn(z) + τρ∗n(z) or equivalently, the nodes of the n-point Szegő formula

for the parameter τ . Furthermore, the square of the first component of the eigenvector of

unit length associated with zj yields the weight λj.

Finally, in a similar way as done when dealing with the estimation of
∫ +1

−1
f(x)σ(x)dx

so that the points ±1 are taken as nodes in a quadrature formula (Gauss-Lobatto rule),

suppose zα and zβ on T such that zα 6= zβ and take n > 2. Then (see [5], [34]) there exist

(and they can be easily computed) complex numbers δ̃n+1 ∈ D and τ̃n ∈ T such that zα

and zβ are zeros of

B̃n(z) = zρ̃n−1(z) + τ̃nρ̃
∗

n−1(z) with ρ̃∗n−1(z) = zρn−2(z) + δ̃n−1ρ
∗

n−2(z). (8)

Thus, if we denote by z1, . . . , zn−2, zα and zβ the zeros of B̃n(z) we have that zj ∈ T,

zj 6= zk if j 6= k and zj /∈ {zα, zβ}, 1 ≤ j, k ≤ n − 2. Furthermore, there exist positive

weights A,B and λj, j = 1, . . . n− 2 such that,

Ĩωn (g) = Ag(zα) +Bg(zβ) +
n−2
∑

j=1

λjg(zj) = Iω(g), for all g ∈ Λ−(n−2),n−2. (9)

1There are at least four other terms: Szegő, reflection, Schur and Geronimus parameters, see [41,

Chapter 1.5].
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Ĩωn (g) in (9), and that could be incidentally exact in Λ−(n−1),n−1, provided that δ̃n−1 = δn−1,

is called an n-point Szegő-Lobatto formula for ω with prescribed nodes zα and zβ.

Szegő, Szegő-Radau and Szegő-Lobatto formulas will be sometimes referred as Szegő-

type quadrature rules whose computation is the aim of this paper, under some special

conditions on the weight ω as described on the next section.

4 Symmetric weight functions

In this section we will be concerned with Szegő-type rules associated with a symmetric

weight function ω on [−π, π], that is, ω(−θ) = ω(θ), θ ∈ [−π, π]. Setting (trigonometric

moments)

µk =

∫ π

−π

e−ikθω(θ)dθ, k = 0,±1,±2, . . . (10)

(recall that we are assuming that µ0 = 1) and considering the sequence {δk}
∞

k=0 of Verblun-

sky parameters, then it follows,

Lemma 4.1 The following statements are all equivalent:

1. ω is a symmetric weight function on [−π, π].

2. The Toeplitz matrices associated with ω are symmetric, i.e. µ−k = µk for all k ∈ Z.

3. The trigonometric moments are real, i.e. µk ∈ R for all k ∈ Z.

4. The Verblunsky parameters δk lie in (−1, 1) for all k ≥ 1.

As for the quadratures, it will be convenient to give the following

Definition 4.2 Let ω be a symmetric weight function on [−π, π]. Then, an n-point Szegő

formula Iωn (g) =
∑n

j=1 λjg(zj) for Iω(g) is said to be symmetric if the nodes are real or

appear on T in complex conjugate pairs.

Now we are concerned with the characterization and computation of symmetric Szegő

formulas, if there exist. For this purpose, from Lemma 4.1 it should be taken into account

that the sequence of monic Szegő polynomials {ρk}
∞

k=0 has real coefficients and hence, it

holds that (see e.g. [6]):

Proposition 4.3 Let ω be a symmetric weight function on [−π, π]. Then,

1. An n-point Szegő formula Iωn (g) =
∑n

j=1 λjg(zj) generated by Bn(z, τn) = ρn(z) +

τnρ
∗

n(z) is symmetric, if and only if, τn ∈ {±1}.

2. Let Iωn (g) =
∑n

j=1 λjg(zj) be an n-point Szegő formula for Iω(g) and suppose that

zj = zk for some j and k, 1 ≤ j, k ≤ n. Then, λj = λk.

184



From Proposition 4.3, we see that when dealing with symmetric rules, their computation

essentially reduces to one half. In this respect, computation will be carried out by passing

to the interval [-1,1] having in mind the following,

Proposition 4.4 ω is a symmetric weight function on [−π, π], if and only if, there exists

a weight function σ on [−1, 1] such that ω(θ) = σ(cos θ)| sin θ|. Furthermore, it holds
∫ +1

−1

f(x)σ(x)dx =
1

2

∫ π

−π

g(eiθ)ω(θ)dθ, g(eiθ) = f

(

eiθ + e−iθ

2

)

.

A connection between quadrature formulas for ω and σ on [−π, π] and [−1, 1] respectively

is shown in the following (see [6] and also [17]):

Proposition 4.5 Take r, s ∈ {0, 1} and consider n − r − s distinct nodes {xr,s
j }n−r−s

j=1

on (−1, 1) along with the n real numbers Ar,s
+ , Ar,s

−
and {Ar,s

j }n−r−s
j=1 . Set xr,s

j = cos θr,sj ,

θr,sj ∈ (0, π) and define zr,sj = eiθ
r,s
j , zr,sn−r−s+j = zr,sj and λr,s

j = λr,s
n+j−r−s = Ar,s

j , 1 ≤ j ≤

n− r − s. Then, the following statements are equivalent:

1. Iσn;(r,s)(f) = rAr,s
+ f(1) + sAr,s

−
f(−1) +

∑n−r−s
j=1 Ar,s

j f(xr,s
j ) = Iσ(f), for all f ∈ PN .

2. Iω2n−r−s(g) = 2[rAr,s
+ g(1) + sAr,s

−
g(−1)] +

∑2(n−r−s)
j=1 λr,s

j g(zr,sj ) = Iω(g), for all g ∈

Λ−N,N .

Now, from Theorem 2.2 one sees that as N = 2n− 1− r − s the following results in:

a) As r = s = 0, then N = 2n−1 and therefore Iσn;(0,0)(f) =
∑n

j=1A
0,0
j f(x0,0

j ) coincides

with the n-point Gaussian formula for σ yielding the following 2n-point quadrature

rule for ω:

Iω2n(g) =

2n
∑

j=1

λ0,0
j g(z0,0j ) = Iω(g), for all g ∈ Λ−(2n−1),2n−1,

which is clearly a 2n-point symmetric Szegő rule. Hence, the nodes {z0,0j }2nj=1 are the

zeros of B2n(z, τ2n) = ρ2n(z) + τ2nρ
∗

2n(z) with τ2n ∈ {±1}. Since ρ2n(−1) = ρ∗2n(−1)

it follows that τ2n = 1 i.e. {z0,0j }2nj=1 are the zeros of B2n(z, 1) = ρ2n(z) + ρ∗2n(z). In

short, we have:

z0,0j = x0,0
j + i

√

1− (x0,0
j )2 and λ0,0

j = A0,0
j for all j = 1, . . . n,

where {x0,0
j }nj=1 are the zeros of the n-th orthogonal polynomial for σ and {A0,0

j }nj=1

the corresponding Christoffel numbers of order n for σ.

b) As r = 1 and s = 0, then N = 2n− 2 and Iσn;(1,0)(f) = A1,0
+ f(1) +

∑n−1
j=1 A

1,0
j f(x1,0

j )

represents the n-point Gauss-Radau formula for σ with a fixed node at x = 1, giving

rise to the following (2n− 1)-point rule for ω:

Iω2n−1(g) = 2A1,0
+ g(1) +

n−1
∑

j=1

λ1,0
j [g(z1,0j ) + g(z1,0j )] = Iω(g), for all g ∈ Λ−(2n−2),2n−2.
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Hence, we have again a (2n − 1)-point symmetric Szegő formula for Iω(g) whose

nodes are the zeros of B2n−1(z,−1) = ρ2n−1(z)− ρ∗2n−1(z). Now it follows,

z1,0j = x1,0
j +i

√

1− (x1,0
j )2 and λ1,0

j = A1,0
j =

Ã1,0
j

1− x1,0
j

for all j = 1, . . . n−1, (11)

where {x1,0
j }n−1

j=1 are the zeros of the (n − 1)-orthogonal polynomial for σ1,0(x) =

(1−x)σ(x) and Ã1,0
j , j = 1, . . . , n−1 its corresponding Christoffel numbers of order

n− 1. Moreover, since I2n−1(1) = Iω(1) = 1 it follows,

A1,0
+ =

1

2
−

n−1
∑

j=1

λ1,0
j .

c) As r = 0, s = 1, then N = 2n − 2 and similarly to the previous case, Iσn;(0,1)(f) =

A0,1
−
f(1) +

∑n−1
j=1 λ

0,1
j f(x0,1

j ) represents the n-point Gauss-Radau formula for σ with

a fixed node at x = −1 and yielding

Iω2n−1(g) = 2A0,1
−
g(−1) +

n−1
∑

j=1

λ0,1
j [g(z0,1j ) + g(z0,1j )] = Iω(g), for all g ∈ Λ−(2n−2),2n−2,

that represents a (2n−1)-point symmetric Szegő formula for Iω(g) whose nodes are

the zeros B2n−1(z, 1) = ρ2n−1(z) + ρ∗2n−1(z). Again, we have:

z0,1j = x0,1
j + i

√

1− (x0,1
j )2 and λ0,1

j = A0,1
j =

Ã0,1
j

1 + x0,1
j

for all j = 1, . . . n− 1,

where {x0,1
j }n−1

j=1 are the zeros of the (n− 1)-th orthogonal polynomial for σ0,1(x) =

(1+x)σ(x) and Ã0,1
j , j = 1, . . . , n−1 its corresponding Christoffel numbers of order

n− 1. In a similar way,

A1,0
−

=
1

2
−

n−1
∑

j=1

λ0,1
j .

d) As r = s = 1, then N = 2n− 3 and we see that Iσn;(1,1)(f) = A1,1
+ f(1)+A1,1

−
f(−1)+

∑n−2
j=1 A

1,1
j f(x1,1

j ) represents the n-point Gauss-Lobatto formula for Iσ(f) and giving

rise to the following quadrature rule for Iω(g):

Iω2n−2(g) = 2[A1,1
+ g(1) + A1,1

−
g(−1)] +

n−2
∑

j=1

λ1,1
j [g(z1,1j ) + g(z1,1j )].

Since Iω2n−2(g) = Iω(g), for all g ∈ Λ−(2n−3),2n−3, we see that it represents again a

(2n−2)-point symmetric Szegő formula and its nodes are the zeros of B2n−2(z,−1) =

ρ2n−2(z)− ρ∗2n−2(z). Now,

z1,1j = x1,1
j + i

√

1− (x1,1
j )2 and λ1,1

j = A1,1
j =

Ã1,1
j

1− (x1,1
j )2

for all j = 1, . . . n− 2,
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where {x1,1
j }n−2

j=1 are the zeros of the (n− 2)-th orthogonal polynomial for σ1,1(x) =

(1 − x2)σ(x) and Ã1,1
j , j = 1, . . . , n − 2 the corresponding Christoffel numbers of

order n−2. As for the remaining weights A1,1
+ and A1,1

−
since the quadrature formula

exactly integrates g(z) = 1 and g(z) = z, it follows a system of two equations in the

unknowns A1,1
+ and A1,1

−
which can be explicitly solved, yielding

2A1,1
+ =

1− µ−1

2
−

n−2
∑

j=1

λ1,1
j

(

1− ℜ(z1,1j )
)

and 2A1,1
−

=
1 + µ−1

2
−

n−2
∑

j=1

λ1,1
j

(

1 + ℜ(z1,1j )
)

.

As a conclusion, we can say that when dealing with a symmetric weight function ω on

[−π, π] the computation of any n-point symmetric Szegő rule reduces to an eigenvalue

problem for a Jacobi matrix of dimension E[n/2] associated with the weight functions

σr,s(x) = (1 − x)r(1 + x)sσ(x) on [−1, 1], where E[x] denotes the integer part of x, and

r, s ∈ {0, 1} while σ is such that ω(θ) = σ(cos θ)| sin θ|.

Finally, let us analyze the computation of a symmetric Szegő-Lobatto formula, if there

exists, when ω is symmetric and we have fixed in advance two nodes on T, say zα and

zβ which are complex conjugate. As already seen, for n > 2 there exist positive numbers

A, B and λj, j = 1, . . . , n − 2 along with n − 2 distinct nodes z1, . . . , zn on T such that

zj /∈ {zα, zβ}, j = 1, . . . , n− 2 and so that

Ĩωn (g) = Ag(zα)+Bg(zβ)+
n−2
∑

j=1

λjg(zj) = Iω(g), for all g ∈ Λ−(n−2),n−2 (Szegő-Lobatto formula).

(12)

In this case and as shown in [34], the parameter δ̃n−1 in formula (8) can be taken real, i.e.

δ̃n−1 ∈ (−1, 1) so that τ̃n ∈ {±1}. Hence, the Szegő-Lobatto formula (12) is symmetric.

Actually (12) is an n-point symmetric Szegő formula for a new symmetric weight func-

tion ω̃(θ) whose first n − 1 Verblunsky parameters are δ1, . . . , δn−2 and δ̃n−1. Therefore,

computation reduces to the first situation but now replacing ω(θ) by ω̃(θ) and σ(x) by

σ̃(x) such that ω̃(θ) = σ̃(cos(θ))| sin(θ)|.

For instance, once fixed zα and zβ on T such that zβ = zα, suppose n even, say n = 2m

and set xα = ℜ(zα). Since in formula (8), δ̃n−1 is real and τ̃n ∈ {±1}, suppose that τ̃n = 1

i.e. the nodes of Ĩω2m(g) given by (12) are the zeros of B̃2m(z) = B̃2m(z, 1) = zρ2m−1(z) +

ρ̃∗2m−1(z) which are real or appear in complex conjugate pairs. Since B̃2m(±1) 6= 0, we

can write,

Ĩω2m(g) = A[g(zα) + g(zα)] +

m−1
∑

j=1

λj[g(zj) + g(zj)].

Setting xj = ℜ(zj), j = 1, . . . , m−1 we see that xα, x1, . . . , xm−1 are the zeros of the m-th

orthogonal polynomial for σ̃(x) and A, λ1, . . . , λm−1 the corresponding Christoffel numbers

of order m. Furthermore, since in this case we know that xα = ℜ(zα) is an eigenvalue of
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the Jacobi matrix, a deflation method could be conveniently used, having in mind that

A = 1
2
−
∑m−1

j=1 λj . The other three remaining cases, that is, n even and τ̃n = −1 and n odd

and τ̃n = ±1 can be treated in a similar way. In short, the computation of the symmetric

Szegő-Lobatto formulas leads to the computation of the Gauss-type quadrature rules

associated with the new weight function σ̃(x) such that ω̃(θ) = σ̃(cos θ)| sin θ|, θ ∈ [−π, π].

5 The connection with Jacobi matrices

As seen in the previous section, given a symmetric weight function ω on [−π, π], we

can compute its Szegő-type quadrature formulas in terms of the Gauss-type rules for a

weight function σ on [−1, 1] such that ω(θ) = σ(cos θ)| sin θ| so that to carry on an efficient

computation we need the corresponding Jacobi matrices associated with σ. However, the

initial available information that we have on the weight function ω are its trigonometric

moments (10) and only in very few cases the Szegő polynomials are explicitly known. Here

it should be recalled that the basic information to compute Szegő quadrature formulas

are the Verblunsky parameters, δ0 = 1 and δk = ρk(0) for all k = 1, 2, . . .. Thus, starting

from the trigonometric moments, the Verblunsky parameters can be efficiently computed

by means of Levinson algorithm, consisting in the implementation of the Szegő recurrence

(6) (see [37]). An alternative procedure called split Levinson algorithm was derived in

[19] when ω is symmetric. Indeed, the latter routine computes the corresponding para-

orthogonal polynomials Bn(z,±1) (and hence, the Verblunsky parameters) with half the

work of the computation saved. Also, a well known map from trigonometric moments to

Verblunsky coefficients is Schur’s algorithm (see e.g. [33]). Now the question is: given

the Verblunsky parameters {δk}
∞

k=0 for ω, how can the Jacobi matrix for σ be computed?

The answer can be found in the so-called Geronimus relations (see [24]).

Theorem 5.1 Let ω be a symmetric weight function on [−π, π] and σ the weight function

on [−1, 1] related to ω by ω(θ) = σ(cos θ)| sin θ|. Let {δk}
∞

k=0 be the sequence of Verblunsky

parameters for ω and {an}
∞

n=1 and {bn}
∞

n=0 be the coefficients of the Jacobi matrix (2) for

σ. Then, the following holds:

2an =
√

(1− δ2n)(1− δ22n−1)(1 + δ2n−2), n ≥ 1 and 2bn = δ2n−1(1−δ2n)−δ2n+1(1+δ2n), n ≥ 0.

(13)

Example 5.2 As an illustration of Theorem 5.1, let us consider the weight function ω

on [−π, π] associated with the Poisson Kernel, namely ω(θ) = |z+ γ|−2 where γ ∈ (−1, 1)

and z = eiθ. Since γ is real, ω is clearly an even function. In this case, it is well known

(see e.g. [45, Theorem 11.2]) that ρn(z) = zn−1(z + γ) for all n ≥ 1 and hence δ0 = 1,

δ1 = γ, and δk = 0 for all k ≥ 2. Thus, from (13) it results that,

a1 =
1

2

√

2(1− γ2), b0 = −γ b1 =
γ

2
, ak = 1 and bk = 0, for all k ≥ 2.
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In general, for our purposes the calculations can be arranged as follows. Suppose that

the Verblunsky parameters {δk}
∞

k=0 for the symmetric weight function ω on [−π, π] are

known and set

σr,s(x) = (1− x)r(1 + x)sσ(x), r, s ∈ {0, 1}, x ∈ [−1, 1],

where ω(θ) = σ(cos θ)| sin θ|.

Let J r,s denote the Jacobi matrix associated with σr,s(x). Thus, J
0,0 is the Jacobi ma-

trix for σ(x) whose entries are directly given by Theorem 5.1. Set the LU decomposition

J 0,0 = L0,0U0,0. Then, by (3) we have that J 1,0 = U0,0L0,0 + I and J 0,1 = U0,0L0,0 − I.

Finally, by considering the LU decomposition of J 1,0, that is J 1,0 = L1,0U1,0, then

J 1,1 = U1,0L1,0 − I. Once the Jacobi matrices J r,s have been determined, the computa-

tion of the symmetric Szegő-type quadratures for ω or equivalently the Gauss-type rules

for σ is a straightforward task.

However, as for the computation of the Jacobi matrices J r,s, with r, s ∈ {0, 1}, we

might also think of the following alternative approach. Indeed, for z = eiθ and r, s ∈ {0, 1},

set

ωr,s(θ) = σr,s(cos θ)| sin θ| = (1− cos θ)r(1 + cos θ)sω(θ) =
1

2r+s
|z + r|2|z + s|2ω(θ),

and consider the trigonometric moments µr,s
k =

∫ π

−π
e−ikθωr,s(θ)dθ. Then, it can be checked

for all k = 0, 1, . . . that

µr,s
k =

1

2r+s

{

[(r − s)2 + 1 + r2s2]µk + [s(1 + r2)− r(1 + s2)](µk−1 + µk+1)− rs(µk−2 + µk+2)
}

.

(14)

Thus, starting from the trigonometric moments µk for ω we can compute the moments

µr,s
k for ωr,s by (14) and then from here, making use of the Levinson´s algorithm, the

corresponding Verblunsky parameters δr,sk for ωr,s(θ) can be computed. Finally, from

Theorem 5.1 we deduce the Jacobi matrices J r,s. However, since the computations to

generate the coefficients δ1,0k or δ0,1k can not be stored, in general, to compute δ1,1k this

way seems to be much more expensive and longer. Even in the case where we dispose of

the Verblunsky parameters δ0,0k = δk, k = 0, 1, . . . for ω and although we can deduce an

explicit relation between the sequences {δk}
∞

0 and {δr,sk }∞0 with r, s ∈ {0, 1} (see [23]),

this process involves so many calculations that it does not seem advisable. For instance,

for all n ≥ 1 it holds that,

δ1,0n =
ρn+1(1)ρn(1)

knKn(1, 1)
− δn+1,

{ρk}
∞

k=0 being the sequence of monic Szegő polynomial for ω, kn = ‖ρn‖
2
ω =

∏n
j=1 (1− |δj |

2)

and where Kn(x, y) denotes the reproducing kernel for Pn with respect to the inner prod-

uct induced by ω, that is

Kn(x, y) =
n
∑

j=0

ρj(x)ρj(y)

kj
.
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From the relation (see [41, pp. 57-58])

ρn(1) =
√

kn

n
∏

j=1

√

1 + δj
1− δj

, n ≥ 1,

an explicit connection between {δ1,0n }∞n=0 and {δn}
∞

n=0 can be stated.

6 Numerical experiments involving Rogers-Szegő polynomials

As it is known, most of the examples about symmetric weight functions ω on [−π, π]

considered in the literature directly arise from weight functions σ on [−1, 1] after making

the change of variable x = cos θ so that ω(θ) = σ(cos θ)| sin θ|. Thus, when some kind

of information on the weight function σ in terms of moments or Jacobi parameters is

available, the computation of the symmetric Szegő-type quadrature formulas for ω reduces

to the computation of the Gauss-type quadrature for σ and very little has to be done.

Hence, the interest appears when we have the usual available information on ω but little

or no information on σ, apart from the above connection between both weight functions.

This is the case of the symmetric weight function ω giving rise to the sequence of the so-

called Rogers-Szegő polynomials, which will be used to illustrate the approach presented

in the previous sections with some numerical experiments. This weight function is the

“wrapped” Gaussian measure given by

ω(θ) = ω(q; θ) =
1

√

2π log(1/q)

+∞
∑

j=−∞

exp

(

−(θ − 2πj)2

2 log(1/q)

)

, 0 < q < 1. (15)

Properties of Rogers-Szegő polynomials, the family of orthogonal polynomials on T

with respect to ω given by (15) have been recently studied; see e.g. [41, Chapter 1.6] and

its references along with [16]. In spite of the rather special shape of ω, it is surprising we

have explicit information about the familiar parameters characterizing ω. For instance,

the sequence of trigonometric moments is given by (see e.g. [41, Chapter 1.6]) µn = q
n2

2

for all n ≥ 0 and the Verblunsky parameters by

δn = (−1)nq
n
2 , n = 0, 1, . . . . (16)

Even more, the family of monic Rogers-Szegő polynomials is explicitly given by

ρn(z) =
n
∑

j=0

(−1)n−j [nj ]q q
n−j

2 zj ,

where [nj ]q = (n)q
(j)q(n−j)q

(q-binomial coefficient) with (n)q = (1 − q)(1 − q2) · · · (1 − qn).

Observe that ω is clearly symmetric; hence there exists a weight function σ on [−1, 1] such

that ω(θ) = σ(cos θ)| sin θ|, but nothing is known about σ. The aim of this section is to
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perform some illustrative numerical experiments concerning the computation of symmetric

Szegő-type quadratures for ω given by (15) and making use of (16) along the results of

Section 5. These quadratures are of a great interest when dealing with the computation

of integrals of the form
∫

∞

−∞
f(x)e−γx2

dx, with γ > 0 and f a 2π-periodic function (see

[16]).

From (16) it follows that the Hessenberg matrices defined in (7) for the weight function

ω(θ) given by (15) have the form

Hn(τn) = D−1/2
n



















q1/2 −q · · · (−1)nq(n−1)/2 −τn

1− q q3/2 · · · (−1)n+1qn/2 q1/2τn

0 1− q2 · · · (−1)nq(n+1)/2 −qτn
...

...
. . .

...
...

0 0 · · · 1− qn−1 (−1)nq(n−1)/2τn



















D1/2
n ,

where Dn = diag[1, (1)q, (2)q, . . . , (n−1)q] and τn ∈ T. From Theorem 5.1, the coefficients

of the Jacobi matrices for σ(x) such that ω(θ) = σ(cos θ)| sin θ| are given by,

an =
1

2

√

(1− qn)(1− q2n−1)(1 + qn−1), n ≥ 1 and bn =
1

2
qn−

1

2

(

qn+1 + qn + q − 1
)

, n ≥ 0.

Thus, we can compute the nodes and weights of the corresponding n-point symmetric

Szegő rule for different values of n either via Hessenberg or via Jacobi matrices. A

comparison has been made concerning the computational time in seconds required in the

solution of both eigenvalue problems in MAPLE
r 9.52 with 30 digits by using an standard

routine and fixing q = 0.2 and τn = 1. The results are displayed on Table 1 and they

clearly show the advantage of Jacobi over Hessenberg. However, it should be recalled here

that a whole variety of practical eigenvalue computation algorithms for unitary Hessenberg

matrices has already been developed in the literature; see e.g. [2], [8]-[9], [20], [32] and

[43].

Finally, let us recall that Szegő rules depend on a parameter τ ∈ T so that when

τ = ±1, then symmetric formulas appear which can be efficiently computed via Jacobi

matrices. If we take τ ∈ T\{±1}, the corresponding Szegő formulas are not symmetric

anymore and its computation must be done by means of the Hessenberg matrices (7).

With an illustrative character, an estimation of the integral
∫ π

−π
g(θ)ω(θ)dθ with ω(θ)

given by (15) has been made by using n-point Szegő formulas with different values of τ .

The absolute errors displayed in the tables below show that the symmetric rules (τ = 1)

produce similar results for the choices τ = ±i.

2
MAPLE is a registered trademark of Waterloo Maple, Inc.
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n Jacobi Hessenberg

100 0.016 0.0234

200 0.047 2.969

300 0.172 11.281

400 0.454 30.45

500 0.937 81.828

600 1.73 172

Table 1.— A comparision in seconds for the computation of an n point symmetric

Szegő quadrature formula for the Rogers-Szegő weight function (15) with q = 0, 2 and

τn = 1, via Jacobi or Hessenberg matrices.

n τ = 1 τ = i τ = −i

6 7.8219774E − 03 6.0089760E − 03 6.0089760E − 03

8 1.1307038E − 03 7.9659815E − 05 7.9659815E − 04

10 1.2796254E − 04 8.2581333E − 05 8.2581333E − 05

12 1.07083165E − 05 6.3268992E − 06 6.3268992E − 06

Table 2.— A comparision of the absolute errors in the computation of an n point

Szegő quadrature formula for the Rogers-Szegő weight function (15) with q = 0, 9,

g(θ) = (cos θ)19 and different values of τ .
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