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Abstract

In this paper, we prove a Lipschitz stability result for an inverse problem that

consists in determining a constant in the diffusion term of some degenerate one-

dimensional linear parabolic equation. Our proof is based on the results investigated

in [5] and presented during the Eleventh International Conference Zaragoza-Pau.
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1 Introduction

Inverse problems for nondegenerate parabolic equations have been largely studied in many

articles and books. The method for Lipschitz stability results is due to both Puel-Yamamoto

in [11] for the wave equation and Imanuvilov-Yamamoto in [10] for parabolic equations. It is

based on a global Carleman estimate corresponding to the considered equation. This method

has been applied to various equations and inverse problems (see references in [5]). In particular,

the determination of diffusion coefficients has been studied in [13]. For non continuous diffusion

coefficients, the problem has been solved in [1, 2]. As for degenerate linear equations, very

few results about inverse problems are known. To our knowledge, the first papers dealing with

Lipschitz stability results for such equations are [5, 12] and concern inverse source problems.

We want to apply the results therein to some inverse diffusion problem.

Let us now go deeper into details and describe the model. Let α ∈ [0, 2) and consider the

following initial-boundary value problem:
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ut − (Kxαux)x = h (t, x) ∈ (0, T )× (0, 1) ,

u (t, 1) = 0 t ∈ (0, T ) ,

and

{

u (t, 0) = 0 for 0 ≤ α < 1

(xαux) (t, 0) = 0 for 1 ≤ α < 2
t ∈ (0, T ) ,

u (0, x) = u0(x) x ∈ (0, 1) .

(1)

As we recall in section 2, the functional framework in which problem (1) is well posed slightly

changes following the fact that 0 ≤ α < 1 and 1 ≤ α < 2. In particular we do not consider the

same boundary condition at x = 0.

As a motivation, let us mention that the study of linear equations like (1) is a first step to

the study of the non linear one-dimensional Budyko-Sellers climate model. This climate model

aims at understanding the effects of many parameters (such as for instance greenhouse gazes,

albedo or advection fluxes) on the ice covering on the Earth. Since the nineties, the questions of

well-posedness of the model, long-time behaviour of solutions and many others have been largely

studied by Diaz, Hetzer and connected researchers (see [8, 9] and references therein). As for

controllability issues, which are close to inverse problem ones, very few results are known about

the Budyko-Sellers model (see [9]). For the linear equation (1), a recent paper by Cannarsa-

Martinez-Vancostenoble [4] gives a positive answer to the question of null-controllability by a

locally distributed control. Finally, let us mention that inverse problems for the Sellers model

are going to be considered in a forthcoming paper.

Now, let us turn to technical assumptions for our inverse problem. Let t0 ∈ (0, T ) and set:

T ′ :=
T + t0

2
.

The topic of this paper can be stated as follows: is it possible to recover the constant K in

(1) from the knowledge of (xαux)x (T
′, .) and a boundary observation utx (., 1)

∣

∣

(t0,T ) ? For this

purpose, we assume below that the constant K to be determined belongs to some bounded

interval.

Assumption 1. Set 0 < K0 < K1 and assume K ∈ I := [K0,K1].

Before stating and proving our Lipschitz stability results, we investigate the well-posedness of

(1).

2 Well-posedness of (1), regularity of solutions, maximum principle

2.1 Functional framework and regularity of solutions of (1)

The functional framework of such degenerate equations has been largely studied in the case

K ≡ 1 (see [3] and references in [4, 5]). Obviously, since K is a positive constant, only the

definition of the operator changes a little bit. For the reader convenience, we recall the main

definitions. Fix K ∈ [K0,K1]. For 0 ≤ α < 2, let us define H1
α (0, 1) as
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H1
α (0, 1) :=

{

u ∈ L2 (0, 1) : x
α

2 ux ∈ L2 (0, 1)
}

.

Of course, H1
α(0, 1), embedded with the weighted inner product

(u, v)H1
α(0,1)

:= (u, v)L2(0,1) +
(

x
α

2 ux, x
α

2 vx

)

L2(0,1)
,

is a Hilbert space.

In the α ∈ [0, 1) case, the elements of H1
α (0, 1) have a boundary value at both extremities

x = 0 and x = 1. Therefore, one may define H1
α,0 (0, 1) as

H1
α,0 (0, 1) :=

{

u ∈ H1
α (0, 1) : u (0) = u (1) = 0

}

.

Now, we define the unbounded operator A : D(A) ⊂ L2 (0, 1) −→ L2 (0, 1) by

D(A) :=
{

u ∈ H1
α,0 (0, 1) : x

αux ∈ H1 (0, 1)
}

,

and ∀u ∈ D(A), Au := (Kxαux)x .

In the other case (1 ≤ α < 2), the boundary value at x = 0 for an element of H1
α(0, 1) does

not exist anymore (see also [5]). That is why we change the definition of H1
α,0 (0, 1) into

H1
α,0 (0, 1) :=

{

u ∈ H1
α (0, 1) : u (1) = 0

}

.

Then, the unbounded operator A : D(A) ⊂ L2 (0, 1) −→ L2 (0, 1) is defined by

D(A) :=
{

u ∈ L2 (0, 1) : xαu ∈ H1
0 (0, 1) , x

αux ∈ H1 (0, 1) and (xαux) (0) = 0
}

,

and ∀u ∈ D(A), Au := (Kxαux)x .

Moreover, it can be proved that D (A) may also be characterized by (see [4]; see also [3] for a

proof in a similar context):

D (A) =
{

u ∈ H1
α,0 (0, 1) : x

αux ∈ H1 (0, 1)
}

.

We chose to use the same notations forH1
α,0 (0, 1) andD (A) in both 0 ≤ α < 1 and 1 ≤ α < 2

cases because these spaces have nearly the same properties. For instance, in both cases, one has

the following result:

Lemma 1. (A,D (A)) is the infinitesimal generator of a strongly continuous semigroup of con-

tractions on L2 (0, 1). Moreover this semigroup is analytic.

Proof. Since K is a positive constant, Lemma 1 can be proved as Lemma 2.1 in [5].

As a consequence of Lemma 1, the following standard well-posedness result holds:
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Theorem 1. 1. For all u0 ∈ D(A), for all h ∈ H1(0, T ;L2(0, 1)), problem (1) has a unique

solution

u ∈ C([0, T ] ;D(A)) ∩ C1([0, T ] ;L2(0, 1)).

2. For all u0 ∈ L2 (0, 1), for all h ∈ L2(0, T ;L2(0, 1)), problem (1) has a unique solution u

satisfying, for all ǫ ∈ (0, T ),

u ∈ L2(ǫ, T ;D(A)) ∩H1(ǫ, T ;L2(0, 1)).

In order to apply the results obtained in [5], we need to know some properties of the time-

derivative of the solution of problem (1). As in [5], the following lemma holds:

Lemma 2. Let K ∈ I, u0 ∈ D(A), and h ∈ H1(0, T ;L2(0, 1)). Setting z := ut where u is the

solution of (1) given by Theorem 1, we get, for all ǫ > 0, z ∈ L2(ǫ, T ;D(A))∩H1(ǫ, T ;L2(0, 1))

and is the weak solution of
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

















zt − (Kxαzx)x = ht (t, x) ∈ (0, T )× (0, 1) ,

z(t, 1) = 0 t ∈ (0, T ) ,

and

{

z (t, 0) = 0 for 0 ≤ α < 1

(xαzx) (t, 0) = 0 for 1 ≤ α < 2
t ∈ (0, T ) ,

z (0, x) = ut(0, x) = (Kxαu0,x)x(x) + h(0, x) x ∈ (0, 1) .

(2)

Proof. Such a result can be proved by the differential quotients method (see [5] for references).

Corollary 1. Let K ∈ I, u0 ∈ D(A2), and h ∈ H2(0, T ;L2(0, 1)) such that h(0, .) ∈ D(A).

Setting Z := zt where z is the solution of (2) given by Theorem 1, we get, for all ǫ > 0,

Z ∈ L2(ǫ, T ;D(A)) ∩H1(ǫ, T ;L2(0, 1)) and is the weak solution of
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

















Zt − (KxαZx)x = htt (t, x) ∈ (0, T ) × (0, 1) ,

Z(t, 1) = 0 t ∈ (0, T ) ,

and

{

Z (t, 0) = 0 for 0 ≤ α < 1

(xαZx) (t, 0) = 0 for 1 ≤ α < 2
t ∈ (0, T ) ,

Z (0, x) = zt(0, x) = A2u0(x) +Ah(0, .)(x) + ht(0, x) x ∈ (0, 1) .

(3)

Proof. Since h ∈ H2(0, T ;L2(0, 1)), ht ∈ H1(0, T ;L2(0, 1)). Moreover, since u0 ∈ D(A2), and

h(0, .) ∈ D(A), (Kxαu0,x)x + h(0, .) ∈ D(A). Therefore the solution z of (2) actually belongs

to C([0, T ] ;D(A)) ∩ C1([0, T ];L2(0, 1)), according to Theorem 1. Now, applying Lemma 2 to

equation (2), we complete the proof of Corollary 1.

2.2 Maximum principle

In order that the solution might satisfy some boundedness and positivity properties, we restrict

the spaces of source terms and initial conditions.
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Assumption 2. Let 0 < η0 < η1 be two real positive numbers. Define the set of source terms

H as

H :=
{

h ∈ H2(0, T ;L2(0, 1)) : h(0, .) ∈ D(A), (xαhx(0, .))x ∈ L∞(0, 1),

ht ∈ L∞((0, T ) × (0, 1)), η0 ≤ h ≤ η1, ht ≤ 0, htt ≤ 0} .

Moreover, define the set of initial data U as:

U :=

{

u0 ∈ D(A2) : (xα(xαu0,x)x)x ∈ L∞ (0, 1) and (xαu0,x)x ≤
−η1

K0

}

.

First, let us prove the following lemma:

Lemma 3. Let u ∈ H1
α,0 (0, 1). Then, for all M ≥ 0, (u−M)+ := sup (u−M, 0) ∈ H1

α,0 (0, 1)

and (u+M)− := sup (−(u+M), 0) ∈ H1
α,0 (0, 1).

Proof. Let u ∈ H1
α,0 (0, 1). Then, for all ǫ > 0, u ∈ H1 (ǫ, 1). Hence (u−M)+ ∈ H1 (ǫ, 1) (see

[6], Proposition 6 pp. 934) and, for almost all x ∈ (ǫ, 1)

(

(u−M)+
)

x
(x) =

{

ux (x) if (u−M) (x) > 0,

0 if (u−M) (x) ≤ 0.

Then

∫ 1

ǫ

xα
(

(u−M)+
)2

x
=

∫

Aǫ

xαu2x, where Aǫ := {x ∈ (ǫ, 1) : (u−M) (x) > 0}.

Since

∫

Aǫ

xαu2x is bounded from above by

∫ 1

0
xαu2x which does not depend on ǫ, we get (passing

to the limit as ǫ converges to 0)

∫ 1

0
xα

(

(u−M)+
)2

x
≤

∫ 1

0
xαu2x < +∞.

Hence, (u−M)+ ∈ H1
α (0, 1). Moreover, (u−M) (1) = −M , therefore (u−M)+ (1) = 0. The

same result holds for the boundary value at 0 in the α ∈ [0, 1) case. Thus, Lemma 3 is proved.

Theorem 2. Let u0 ∈ U and h ∈ H. Then, there exist two positive reals m and M , such that

the solution u of (1) satisfies, for almost all (t, x) ∈ (0, T ) × (0, 1)

|(xαutx)x(t, x)| ≤ M, (4)

| (xαux)x (t, x)| ≥ m. (5)

Proof. Let u0 ∈ U and h ∈ H. Then u0 ∈ D(A2), h ∈ H2(0, T ;L2(0, 1)) and h(0, .) ∈ D(A).

According to Corollary 1, z := ut is the solution of (2) and Z = zt is the weak solution of (3).

Let us first show that Z ∈ L∞ ((0, T )× (0, 1)). Denote

M1 := K2
1

∥

∥

(

xα (xαu0,x)x
)

x

∥

∥

L∞(0,1)
+K1 ‖(x

αhx (0, .))x‖L∞(0,1) + ‖ht(0, .)‖L∞(0,1) .
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First note that, using line 4 of (3), ‖Z(0, .)‖L∞(0,1) ≤ M1. Moreover, htt ≤ 0, since h ∈ H.

Then, multiplying the equation satisfied by Z by (Z −M1)
+, we can show, as in [7] (Remark 4

pp. 644), that

‖Z‖L∞((0,T )×(0,1)) ≤ M1.

Yet, using (2), for almost all (t, x) ∈ (0, T )× (0, 1),

(Kxαutx)x(t, x) = (Kxαzx)x(t, x) = zt(t, x)− ht(t, x).

Therefore,

‖(Kxαzx)x‖L∞((0,T )×(0,1)) ≤ ‖Z‖L∞((0,T )×(0,1)) + ‖ht‖L∞((0,T )×(0,1)) .

Denote N := ‖ht‖L∞((0,T )×(0,1)). Therefore, setting M =
M1 +N

K0
, we achieve the proof of (4).

Let us now prove (5). Since u0 ∈ U , for almost all x ∈ (0, 1), (xαu0,x)x(x) ≤ −
η1

K0
, so that

Au0(x) + h(0, x) ≤ 0. Moreover, ht ≤ 0. We multiply the equation satisfied by z by z+, and

as in Theorem 2 pp. 643 in [7], we prove that, for all t ∈ [0, T ] and for almost all x ∈ (0, 1),

z(t, x) ≤ 0. As a consequence, for almost all (t, x) ∈ (0, T )× (0, 1),

(Kxαux)x(t, x) = z(t, x) − h(t, x) ≤ −η0.

Setting m :=
η0

K1
, we achieve the proof of (5).

3 Lipschitz stability in the determination of the diffusion constant

As we said in the introduction, Lipschitz stability results are obtained thanks to global

Carleman estimates. For degenerate equations like problem (1), a global Carleman estimate has

been proved in [4] and next refined in [5] to treat some inverse source problem. Yet, we do not

need to apply this estimate for solving the present inverse problem. Indeed, we can transform

the determination of the diffusion constant into the determination of a source term in another

degenerate equation like (1). As a consequence, we will use the stability estimate given in [5]

in Theorem 3.1. In this step, the only change relies in the fact that [5] deals with the case

of a diffusion constant K equal to 1, whereas we need the estimate for any diffusion constant

belonging to I. Therefore, we first remind the context in [5] and explain why the case K 6= 1 is

not more difficult providing the constant can be estimated by some uniform bounds.

3.1 A Lipschitz stability estimate for source terms in linear degenerate equations like (1)

Take K ∈ I and consider the following initial-boundary value problem:



































ut − (Kxαux)x = g (t, x) ∈ (0, T )× (0, 1) ,

u (t, 1) = 0 t ∈ (0, T ) ,

and

{

u (t, 0) = 0 for 0 ≤ α < 1

(xαux) (t, 0) = 0 for 1 ≤ α < 2
t ∈ (0, T ) ,

u (0, x) = u0(x) x ∈ (0, 1) .

(6)
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The inverse problem that consists in determining g from standard measurements of u cannot

be solved in the whole space L2(0, T ;L2(0, 1)). Therefore, a set of admissible source terms is

considered in [5]. For the reader convenience, we remind its definition below.

Let C0 > 0. We introduce the following condition on source terms:

∣

∣

∣

∣

∂g

∂t
(t, x)

∣

∣

∣

∣

≤ C0

∣

∣g(T ′, x)
∣

∣ for almost all (t, x) ∈ (t0, T )× (0, 1). (7)

Then, define G (C0) :=
{

g ∈ H1(0, T ;L2 (0, 1)) |g satisfies (7)
}

. One has the following stability

estimate:

Theorem 3. Let α ∈ [0, 2) and u0 ∈ L2 (0, 1). Assume K ∈ I. There exists C = C(T, t0, α,

C0,K0,K1) > 0 such that for all g ∈ G (C0), the solution u of (1) satisfies:

‖g‖2L2((t0,T )×(0,1))≤ C
(

∥

∥(xαux)x
(

T ′, .
)∥

∥

2

L2(0,1)
+ ‖utx (., 1)‖

2
L2(t0,T )

)

. (8)

Proof. The proof can be carried out the same way as the proof of Theorem 3.1 in [5]. The fact

that I is a bounded interval enables to have bounds and constants in estimates (for instance

in the Carleman estimate associated with the operator −K(xαux)x) that do not depend on K.

This is essential for solving our inverse problem.

3.2 A uniqueness and Lipschitz stability result

Now we are able to state our Lipschitz stability result.

Theorem 4. Let α ∈ [0, 2), u0 ∈ U and h ∈ H. There exists C = C(T, t0, α,K0,K1, η0, η1,

‖ht‖L∞((0,T )×(0,1)) , ‖(x
αhx (0, .))x‖L∞(0,1)) such that, for all λ ∈ I, for all µ ∈ I, the correspond-

ing solutions uλ and uµ of problem (1) satisfy

|λ− µ|2 ≤ C
(

∥

∥

(

xα (uλ − uµ)x
)

x

(

T ′, .
)∥

∥

2

L2(0,1)
+

∥

∥(uλ − uµ)tx (., 1)
∥

∥

2

L2(t0,T )

)

.

Proof. Let uλ ∈ C([0, T ] ;D(A)) ∩ C1([0, T ] ;L2(0, 1)) be the solution of


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



uλ,t − (λxαuλ,x)x = h (t, x) ∈ (0, T )× (0, 1) ,

uλ (t, 1) = 0 t ∈ (0, T ) ,

and

{

uλ (t, 0) = 0 for 0 ≤ α < 1

(xαuλ,x) (t, 0) = 0 for 1 ≤ α < 2
t ∈ (0, T ) ,

uλ (0, x) = u0(x) x ∈ (0, 1) ,

and uµ ∈ C([0, T ] ;D(A)) ∩ C1([0, T ] ;L2(0, 1)) be the solution of



































uµ,t − (µxαuµ,x)x = h (t, x) ∈ (0, T )× (0, 1) ,

uµ (t, 1) = 0 t ∈ (0, T ) ,

and

{

uµ (t, 0) = 0 for 0 ≤ α < 1

(xαuµ,x) (t, 0) = 0 for 1 ≤ α < 2
t ∈ (0, T ) ,

uµ (0, x) = u0(x) x ∈ (0, 1) .
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Set w := uλ−uµ. Then w, which belongs to C([0, T ] ;D(A))∩C1([0, T ] ;L2(0, 1)), is the solution

of



































wt − (λxαwx)x = (λ− µ)(xαuµ,x)x (t, x) ∈ (0, T )× (0, 1) ,

w (t, 1) = 0 t ∈ (0, T ) ,

and

{

w (t, 0) = 0 for 0 ≤ α < 1

(xαwx) (t, 0) = 0 for 1 ≤ α < 2
t ∈ (0, T ) ,

w (0, x) = 0 x ∈ (0, 1) .

(9)

Let us set g := (λ−µ)(xαuµ,x)x. Our goal is to show that g belongs to G(C0) for some C0 > 0 that

is to be determined. Set z := uµ,t. According to Lemma 2, for almost all (t, x) ∈ (0, T )× (0, 1),

one has
∣

∣

∣

∣

∂

∂t
((λ− µ) (xαuµ,x)x) (t, x)

∣

∣

∣

∣

= |λ− µ| |(xαzx)x (t, x)| .

Yet, according to (4) and (5) in Theorem 2, one has, for almost all (t, x) ∈ (0, T ) × (0, 1),

|(xαzx)x (t, x)| ≤
M

m

∣

∣(xαuµ,x)x(T
′, x)

∣

∣ ,

so that we deduce immediately that g ∈ G(C0) for C0 =
M

m
.

We now apply the stability estimate in Theorem 3 to the solution w of (9). There exists

C = C(T, t0, α,K0,K1, η0, η1, ‖ht‖L∞((0,T )×(0,1)) , ‖(x
αhx (0, .))x‖L∞(0,1)) such that

‖g‖2L2((t0,T )×(0,1))≤ C
(

∥

∥(xαwx)x
(

T ′, .
)∥

∥

2

L2(0,1)
+ ‖wtx (., 1)‖

2
L2(t0,T )

)

. (10)

Moreover, thanks to Theorem 2,

‖g‖2L2((t0,T )×(0,1)) =

∫ T

t0

∫ 1

0
|λ− µ|2 (xαuµ,x)

2
x (t, x)dxdt ≥ (T − t0)|λ− µ|2m2.

Replacing w by uλ − uµ in (10), we complete the proof of Theorem 4.

Using the stability estimate for source terms in [12], we can prove the same way the following

Lipschitz stability result with a locally distributed observation.

Theorem 5. Let α ∈ [0, 2), u0 ∈ U , h ∈ H and ω := (a, b) with 0 < a < b < 1. There

exists C = C(T, t0, α, ω,K0,K1, η0, η1, ‖ht‖L∞((0,T )×(0,1)) , ‖(x
αhx (0, .))x‖L∞(0,1)) such that, for

all λ ∈ I, for all µ ∈ I, the corresponding solutions uλ and uµ of problem (1) satisfy

|λ− µ|2 ≤ C
(

∥

∥

(

xα (uλ − uµ)x
)

x

(

T ′, .
)
∥

∥

2

L2(0,1)
+

∥

∥(uλ − uµ)t
∥

∥

L2(ω
t0

T
)

)

,

where ωt0
T := (t0, T )× ω.

144



References

[1] A. Benabdallah, Y. Dermenjian, and J. Le Rousseau. Carleman estimates for the one-

dimensional heat equation with a discontinuous coefficien and applications to controllability

and an inverse problem. J. Math. Anal. Appl., 336:865–887, 2007.

[2] A. Benabdallah, P. Gaitan, and J. Le Rousseau. Stability of discontinuous diffusion coeffi-

cients and initial conditions in an inverse problem for the heat equation. SIAM J. Control

Optim., 46:1849–1881, 2007.

[3] M. Campiti, G. Metafune, and D. Pallara. Degenerate self-adjoint evolution equations on

the unit interval. Semigroup Forum, 57:1–36, 1998.

[4] P. Cannarsa, P. Martinez, and J. Vancostenoble. Carleman estimates for a class of degen-

erate parabolic operators. SIAM J. Control Optim., 47:1–19, 2008.

[5] P. Cannarsa, J. Tort, and M. Yamamoto. Determination of source terms in a degenerate

parabolic equation. Inverse Problems, 26:20pp, 2010.
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[13] M. Yamamoto. Carleman estimates for parabolic equations and applications. Inverse

Problems, 25, 2009.

145


