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Dedicated to Prof.Manuel Calvo, on the occasion of his 65th birthday.

Monograf́ıas de la Real Academia de Ciencias de Zaragoza 33, 95–112, (2010).

Abstract

Hamiltonian Boundary Value Methods are a new class of energy preserving one

step methods for the solution of polynomial Hamiltonian dynamical systems. They

can be thought of as a generalization of collocation methods in that they may be

defined by imposing a suitable set of extended collocation conditions. In particular,

in the way they are described in this note, they are related to Gauss collocation

methods with the difference that they are able to precisely conserve the Hamil-

tonian function in the case where this is a polynomial of any high degree in the

momenta and in the generalized coordinates. A description of these new formulas

is followed by a few test problems showing how, in many relevant situations, the

precise conservation of the Hamiltonian is crucial to simulate on a computer the

correct behavior of the theoretical solutions.

1 Introduction

Hamiltonian Boundary Value Methods (HBVMs) form a subclass of Boundary Value

Methods (BVMs), whose main feature is that of precisely conserving the Hamiltonian

function associated with a canonical Hamiltonian system
{

ẏ = J∇H(y),

y(t0) = y0 ∈ R2m,
J =

(

0 I

−I 0

)

∈ R
2m×2m, (1)

∗Work developed within the project “Numerical methods and software for differential equations”.
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(I is the identity matrix of dimension m), in the case where such function is of polynomial

type.

Two key ideas have permitted the realization of HBVMs: the definition of discrete line

integral and what we called extended collocation conditions. The former, first introduced

in [15, 16], represents the discrete counterpart of the line integral defined over conservative

vector fields, while the second is a relaxation of the classical collocation conditions which

assures the conservation of the energy along the numerical solution {yn} generated by the

method itself.

Just as an initial clarification, we briefly show how this new approach to the problem

reads when the classical Gauss collocation method is considered (see [18, Remark 2.1] for

more details). Given a stepsize h > 0 and a set of s abscissae c1 < · · · < cs disposed

according to a Gauss-Legendre distribution on [0, 1], the Gauss method of order 2s is

defined by means of the following polynomial collocation problem:






σ(t0) = y0,

σ̇(t0 + cih) = J∇H(σ(t0 + cih)), i = 1, . . . , s.
(2)

As is well known, conditions (2) uniquely define a polynomial σ(t) of degree s which is

used to advance the solution by posing y1 = σ(t0 + h), while the internal stages satisfy

Yi = σ(t0 + cih), i = 1, . . . s. The coefficients of the Butcher array and the weights are

given by

bj =

∫ 1

0

ℓj(c)dc, aij =

∫ ci

0

ℓj(c)dc, with ℓj(c) =
∏

r 6=j

c− cr
cj − cr

.

The s-degree polynomial σ(t) may be thought of as a path in the phase space linking the

state vectors y0 to y1 and passing through the stages {Yi}. Due to the conservative nature

of the vector field, we have that

H(y1)−H(y0) =

∫

σ

∇H(y) · dy = h

∫ 1

0

σ̇(t0 + τh)T∇H(σ(t0 + τh))dτ. (3)

Now, the above integral is exactly computed by the Gauss quadrature formula with ab-

scissae {ci} and weights {bi} if the degree of the integrand is not greater than 2s−1 which

means that the degree of H(y), say ν, must not exceed 2 (linear or quadratic Hamiltoni-

ans only). Under this assumption, taking into account the collocation conditions (2), we

obtain
H(y1)−H(y0) = h

∑s

i=1 bi(σ̇(t0 + cih))
T∇H(σ(t0 + cih))

= −h
∑s

i=1 bi∇TH(σ(t0 + cih))J∇H(σ(t0 + cih)) = 0.
(4)

Thus, by following a different route, we have obtained the classical result that the Gauss

methods conserve quadratic Hamiltonian functions while fail to conserve polynomial

Hamiltonian functions of higher degree.1

1 This argument may be generalized to other classes of collocation methods.
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The above example is the starting point of our approach: the discrete line integral is

the first sum in (4), which turns out to vanish for quadratic Hamiltonians, due to the

collocation conditions (2).

The next section reports a descriptive introduction to HBVMs with much emphasis to

the key ideas they rely on. We refer the reader to the papers [3, 4, 18, 2, 5, 13, 14, 1] for

the details about the basic theory and implementation of HBVMs, and to the monograph

[6] as a reference for the theory of BVMs.

In Section 3 we report a number of test problems of some relevance in the literature,

for which the precise conservation of the energy turns out to be a crucial feature for the

correct reproduction of the long time behavior of the solutions. This will be testified by

comparing HBVMs to the Gauss method which, by the way, is a symplectic integrator.

2 Hamiltonian Boundary Value Methods

In this section we introduce HBVMs by slightly elaborating the arguments in [3, 4, 5].

As was said above, the basic idea which HBVMs rely on is the so called discrete line

integral, which is the discrete counterpart of the line integral associated with a conservative

vector field. In more detail, starting from (3), we consider a polynomial, of degree at most

s, such that

σ(t0) = y0, σ(t0 + h) = y1, (5)

providing an approximation to the solution on the interval [t0, t0 + h]. We consider the

following expansions,

σ̇(t0 + τh) =
s
∑

j=1

Pj(τ)γj, σ(t0 + τh) = y0 + h
s
∑

j=1

∫ τ

0

Pj(x)dx γj, (6)

where the (vector) coefficients {γi} are to be determined. We also assume that the poly-

nomials {Pi} constitute an orthonormal basis, on the interval [0, 1], for the vector space

Πs−1 of polynomials of degree at most s− 1, i.e.,

∫ 1

0

Pi(τ)Pj(τ) = δij , i, j = 1, . . . , s.

Such polynomials can be easily obtained by a suitable scaling of the shifted Legendre

polynomials [5]. Substitution of the first expansion in (6) into the line integral in (3),

which we require to vanish, then gives

s
∑

j=1

γT
j

∫ 1

0

Pj(τ)∇H(σ(t0 + τh))dτ = 0,

which is certainly satisfied by choosing
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γj =

∫ 1

0

Pj(τ)J∇H(σ(t0 + τh))dτ, j = 1, . . . , s. (7)

Multiplication of (7) by h
∫ c

0
Pj(x)dx and summation over j then gives, by virtue of the

second expansion in (6),

σ(t0 + ch) = y0 + h
s
∑

j=1

∫ c

0

Pj(x)dx

∫ 1

0

Pj(τ)J∇H(σ(t0 + τh))dτ, c ∈ [0, 1]. (8)

Let us now assume that H(y) is a polynomial of degree ν. Consequently, the integral

appearing at the right-hand side in (8) can be exactly discretized by a Gaussian formula

over k Gauss-Legendre abscissae {ci}, which we shall consider hereafter, provided that

k ≥ νs

2
. (9)

Let us denote by {ωi} the weights of the quadrature formula, and set

yi = σ(t0 + cih), aij =

∫ ci

0

Pj(x)dx, i = 1, . . . , k, j = 1, . . . , s. (10)

Consequently, (8) can be (exactly) discretized as:

yi = y0 + h

s
∑

j=1

aij

k
∑

ℓ=1

ωℓPℓ(cℓ)J∇H(yℓ), i = 1, . . . , k. (11)

Definition 2.1 The set of equations (11), to be solved for the unknowns {yi}, defines an
HBVM with k steps and degree s, in short HBVM(k, s).

For such method, the following properties hold true [4]:

• it has order 2s for all k ≥ s;

• it is symmetric and perfectly A-stable (i.e., its stability region coincides with the

left-half complex plane, C− [6]);

• for k = s, it reduces to the Gauss-Legendre method of order 2s;

• it exactly preserves polynomial Hamiltonian functions of degree ν, provided that

(9) holds true.

Remark 2.2 The actual implementation of HBVM(k, s) can be seen to result in the solu-

tion of a system of (block) size s, whatever is the value of k considered [3, 5]. Consequently,

if needed, large values of k can be easily considered.
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The arguments in the previous remark, allow us to consider the limit formula of (10)–

(11), in the case where H(y) is non-polynomial, as k → ∞. Clearly such a limit is given

by formula (8), which, according to [4], is named HBVM(∞, s) or ∞-HBVM of degree s.

However, we emphasize that formula (8) becomes an operative method only after that

a suitable discretization of the inner integral is considered and, replacing the integral by

a quadrature formula with k nodes, leads back to a HBVM(k, s) method.

One can easily argue that, since in the non polynomial case the quadrature formula

can approximate the corresponding integral with an arbitrary accuracy, under suitable

regularity assumptions for H(y), a practical conservation of the energy may be obtained

[4, 17]. The term “practical” means that, in many general situations, when k is high

enough, the method makes no distinction between the function H(y) and its polynomial

approximation, being the latter in a neighborhood of size ε of the former, where ε denotes

the machine precision.

We end this section by observing that, by differentiating both members of (8), one

obtains

σ̇(t0 + ch) =
s
∑

j=1

Pj(c)

∫ 1

0

Pj(τ)J∇H(σ(t0 + τh))dτ, c ∈ [0, 1],

which at the points {ci} provides, assuming H(y) to be a polynomial and k large enough:

σ̇(t0 + cih) =
s
∑

j=1

Pj(ci)

∫ 1

0

Pj(τ)J∇H(σ(t0 + τh))dτ, i = 1, . . . , k.

Such formulae (the former being the limit of the latter as k → ∞) can be regarded as

a kind of extended collocation conditions that generalize conditions (2), according to [18,

Section 2] (see also [4]).

3 Numerical tests

We present a few numerical test highlighting the good behavior of HBVMs in the

long-time simulation of Hamiltonian systems. A direct comparison of HBVMs with Gauss

methods is reported in order to better emphasize the stability properties of the former

methods even when compared to a well known class of symplectic formulae.2

The use of a large stepsize of integration is a prerogative in long-time simulation

of an evolutionary problem but, in general, one is forced to reduce h under a critical

threshold in order to guarantee the qualitative behavior of the theoretical solution to be

well reproduced by the numerical solution. From this point of view, we show that HBVMs

2As was seen in the previous section, the choice of Gauss methods has also been dictated by the fact

that they represent the generating formulae of HBVMs when we use a Gauss distribution of the abscissae,

namely the Gauss method of order 2s coincides with HBVM(s,s).
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allow the use of larger stepsizes than Gauss methods, which states that the conservation

of the Hamiltonian function plays an important role in detecting the correct topological

features of the solutions.

3.1 Sitnikov’s problem

One of the main problems in Celestial Mechanics is to describe the motion of N point

particles of positive mass {mi} moving under Newton’s law of gravitation when we know

their positions {qi} and momenta {pi} at a given time. Such a dynamical system, called

the N -body problem, is in the form (1), with Hamiltonian

H(q,p) =
1

2

N
∑

i=1

||pi||22
mi

−G

N
∑

i=1

mi

i−1
∑

j=1

mj

||qi − qj ||2
, (12)

with G the gravitational constant. While the two-body problem is completely solved in

the sense that we can describe explicitly all its solutions (see, e.g., [12]), this is no more

the case, for N ≥ 3. Consequently, numerical simulation is of interest, in such a case.

The Sitnikov problem is a particular configuration of the 3-body dynamics. In this

problem two bodies of equal mass (primaries) revolve about their center of mass, here

placed at the origin, in elliptic orbits in the (x, y)-plane. A third, and much smaller body

(planetoid), is placed on the z-axis with initial velocity parallel to this axis as well.

The third body is small enough that the two body dynamics of the primaries is not

destroyed. Then, the motion of the third body will be restricted to the z-axis and os-

cillating around the origin but not necessarily periodic. In fact, this problem has been

shown to exhibit a chaotic behavior when the eccentricity of the orbits of the primaries

exceeds a critical value that, for the data set we have used, is ē ≃ 0.725 (see Figure 1).

We have solved the Kepler problem with Hamiltonian function (12) by the Gauss

method of order 4 (HBVM(2,2)) and by HBVM(18,2) (order 4 and 18 steps), with the

following set of parameters:

N G m1 m2 m3 e d h tmax

3 1 1 1 10−5 0.75 5 0.5 1500

where e is the eccentricity, d is the distance of the apocentres of the primaries (points

at which the two bodies are the furthest), h is the time-step and [0, tmax] is the time

integration interval. The eccentricity e and the distance d may be used to define the

initial condition y0 = [q0,p0] (see [19] for the details):

q0 = [−5
2
, 0, 0, 5

2
, 0, 0, 0, 0, 10−9],

p0 = [0, − 1
20

√
10, 0, 0, 1

20

√
10, 0, 0, 0, 1

2
].
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Figure 1.— The left picture displays the configuration of 3-bodies in the Sitnikov

problem. To an eccentricity of the orbits of the primaries e = 0.75, there correspond

bounded chaotic oscillations of the planetoid as is argued by looking at the space-time

diagram in the right picture.
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Figure 2.— Left picture: relative error |H(yn) − H(y0)|/|H(y0)| of the Hamiltonian

function evaluated along the numerical solution of the HBVM(18,2) and the Gauss

method. Right picture: relative error |M(yn) − M(y0)|/|M(y0)| of the angular mo-

mentum evaluated along the numerical solution of the HBVM(18,2) and the Gauss

method.

First of all, we consider the two pictures in Figure 2 reporting the relative errors in

the Hamiltonian function and in the angular momentum evaluated along the numerical

solutions computed by the two methods. According to (9), we know that the HBVM(18,2)

precisely conserves Hamiltonian polynomial functions of degree at most 18. This accu-

racy is high enough to guarantee that the nonlinear Hamiltonian function (12) is as well

conserved up to the machine precision (see the left picture): from a geometrical point of

view, this means that a local approximation of the level curves of (12) by a polynomial

of degree 18 leads to a negligible error. The Gauss method exhibits a certain error in

the Hamiltonian function while, being this formula symplectic, it precisely conserves the

angular momentum, as is confirmed by looking at the right picture of Figure 2. From the

same picture, one sees that the error in the numerical angular momentum associated with

the HBVM(18,2) undergoes some bounded periodic-like oscillations.

Figures 3 and 4 show the numerical solution computed by the Gauss method and
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Figure 3.— The Sitnikov problem solved by the Gauss method of order 4, with stepsize

h = 0.5, in the time interval [0, 1500]. The trajectories of the primaries in the (x, y)-

plane (left picture) exhibit a very irregular behavior which causes the planetoid to

eventually leave the system, as illustrated by the space-time diagram in the right

picture.
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Figure 4.— The Sitnikov problem solved by the HBVM(18,2) method (order 4), with

stepsize h = 0.5, in the time interval [0, 1500]. Left picture: the trajectories of the

primaries are ellipse shape. The discretization introduces a fictitious uniform rotation

of the (x, y)-plane which, however, does not alter the global symmetry of the system.

Right picture: the space-time diagram of the planetoid on the z-axis displayed (for

clearness) on the time interval [0, 350] shows that, although a large value of the stepsize

h has been used, the overall behavior of the dynamics is well reproduced (compare with

the right picture of Figure 1).

HBVM(18,2), respectively. Since the methods leave the (x, y)-plane invariant for the

motion of the primaries and the z-axis invariant for the motion of the planetoid, we have

just reported the motion of the primaries in the (x, y)-phase plane (left pictures) and the

space-time diagram of the planetoid (right picture).

We observe that, for the Gauss method, the orbits of the primaries are irregular in

character so that the third body, after performing some oscillations around the origin,

will eventually leave the system (see the right picture of Figure 3). On the contrary (left

picture of Figure 4), the HBVM(18,2) generates a quite regular phase portrait. Due to

the large stepsize h used, a sham rotation of the (x, y)-plane appears which, however, does
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Figure 5.— Distance between the two primaries as a function of the time, related to

the numerical solutions generated by the Gauss method (left picture) and HBVM(18,2)

(right picture). The maxima correspond to the distance of apocentres. These are

conserved by HBVM(18,2) while the Gauss method introduces patchy oscillations that

destroy the overall symmetry of the system.

not destroy the global symmetry of the dynamics, as testified by the bounded oscillations

of the planetoid (right picture of Figure 4) which look very similar to the reference ones in

Figure 1. This aspect is also confirmed by the pictures in Figure 5, displaying the distance

of the primaries as a function of the time. We see that the distance of the apocentres

(corresponding to the maxima in the plots), as the two bodies wheel around the origin,

are preserved by the HBVM(18,2) (right picture) while the same is not true for the Gauss

method (left picture).

3.2 The Hénon-Heiles problem

The Hénon-Heiles equation originates from a problem in Celestial Mechanics describing

the motion of a star under the action of a gravitational potential of a galaxy which

is assumed time-independent and with an axis of symmetry (the z-axis) (see [11] and

references therein). The main question related to this model was to state the existence of

a third first integral, beside the total energy and the angular momentum.3 By exploiting

the symmetry of the system and the conservation of the angular momentum, Hénon and

Heiles reduced from three (cylindrical coordinates) to two (planar coordinates) the degrees

of freedom, thus showing that the problem was equivalent to the study of the motion of

a particle in a plane subject to an arbitrary potential U(q1, q2):

H(q,p) =
1

2
(p21 + p22) + U(q1, q2). (13)

Since U in (13) has no symmetry in general, we cannot consider the angular momen-

tum as an invariant anymore, so that the only known first integral is the total energy

3An analytical approach to the problem may be found in [10], where the author finds out a formal

expansion of the third invariant.
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Figure 6.— Level curves of the potential U(q1, q2) of the Hénon-Heiles problem (see

(14)). The origin O is a stable equilibrium point, whose domain of stability contains the

equilateral triangle having as vertices the saddle points P1, P2, and P3, provided that

the total energy does not exceed the value 1
6 . Inside the triangle an orbit (q1(t), q2(t))

is traced whose total energy is close (but lower than) 1
6 . The trajectory gets very close

to the sides of the triangle, which makes the problem of conserving the total energy in

the numerical solution an important feature to avoid instability when a large stepsize

is used.

represented by (13) itself, and the question is whether or not a second integral does exist.

Hénon and Heiles conducted a series of tests with the aim of giving a numerical evidence

of the existence of such integral for moderate values of the energy H , and of the appear-

ance of chaotic behavior when H(q,p) becomes larger than a critical value. In particular,

for their experiments they choose

U(q1, q2) =
1

2
(q21 + q22) + q21q2 −

1

3
q32, (14)

which makes the Hamiltonian function a polynomial of degree three.

When U(q1, q2) approaches the value
1
6
, the level curves of U tend to an equilateral tri-

angle, whose vertices are saddle points of U (see Figure 6). This vertices have coordinates

P1 = (0, 1), P2 = (−
√
3
2
,−1

2
) and P3 = (

√
3
2
,−1

2
).

We consider an initial point (q0,p0) such that q0 is inside the triangle U ≤ 1
6
and

H(q0,p0) < 1
6
: then the orbit originating from (q0,p0) will never abandon the triangle

for any value of the time t. However, when H(q0,p0) is chosen very close to 1
6
, a numerical

method which does not preserve exactly the total energy could cause the (numerical) orbit

to jump outside the triangle and possibly to diverge to infinity. This aspect is further

emphasized when a large stepsize of integration is used, as is usually required in the long

time simulation of a dynamical system.
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Figure 7.— The numerical trajectory in the (q1, q2)-plane computed by the Gauss

method of order four with stepsize h = 1. The stable character of the continuous orbit

is not correctly reproduced by the numerical method: after a time t ≃ 7000 the orbit

escapes from the triangle (see the dots surrounded by small circles at the bottom right

of the picture).

We have integrated problem (13) in the time interval [0, 5 · 104] with stepsize h = 1 by

using the Gauss method of order four (HBVM(2,2)) and the HBVM(4,2) method which

assures an exact conservation of the total energy.

Figures 7 and 8 show the numerical trajectories in the (q1, q2)-plane as dots that even-

tually will densely fill the triangle. The orbit generated by the Gauss method is plotted

up to time t ≃ 7000, since it then escapes from the triangle, as highlighted by the three

circles close to the saddle point P3. In fact, as Figure 9 shows, the numerical Hamiltonian

function associated with the Gauss method produces very irregular oscillations around

the theoretical value (straight line) which eventually determine a loss of stability.

On the contrary, all the 50000 dots of the numerical trajectory computed by the

HBVM(4,2) method are visible in Figure 8.

3.3 Computing the period annulus of a non-degenerate center of a polynomial Hamilto-

nian planar system.

Non-degenerate centers4 of planar, in particular polynomial, Hamiltonian systems are

extensively researched in the modern literature (see [9, 7, 22, 8] and references therein).

The integration of such systems by means of HBVMs deserves a particular interest be-

cause, the degrees of freedom being one, the corresponding numerical solution is guaran-

4 We recall that a center is an equilibrium point which is surrounded by periodic orbits. It is non-

degenerate if the linearized vector field at this point has non-zero eigenvalues.
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Figure 8.— The numerical trajectory in the (q1, q2)-plane computed by the HBVM(4,2)

method with stepsize h = 1. Since this method precisely conserves the total energy of

the system, the orbit is entirely contained in the triangle at all times.

teed to lie on the same level set H(q, p) = H(q0, p0) as the theoretical orbit. Furthermore,

if this latter consists of a closed orbit surrounding an equilibrium point (center), the nu-

merical solution will (in general) fill densely the corresponding closed level curve, thus

reproducing the very same phase portrait associated with the original continuous problem.

The region of marginal stability of a center P0, is called the period annulus of P0 and

will be denoted by P: it is the largest punctured neighborhood of the center consisting of

only periodic orbits. The function which associates to any periodic orbit in P its period

is called the period function of the center. Such function has been being intensively

studied for many years: its behavior relates to problems of isochronicity,5 monotonicity,

bifurcation of its critical points, etc.

The aim of the present example is to consider one such system and try to reproduce

numerically, as best as possible, the set ∂P, that is the boundary of the period annulus

P. Let H∗ < +∞ be the value of the Hamiltonian function corresponding to any points

on ∂P.6 The Hamiltonian function we consider here is the fifth-degree polynomial

H(p, q) = A(p) +B(p)q + C(p)q2 +D(p)q3, (15)

where

A(p) = p2(1
2
+ c3p + b3p

2 + a3p
3), B(p) = p2(c2 + b2p+ a2p

2),

C(p) = 1
2
+ c1p+ b1p

2 + a1p
3, D(p) = c0 + b0p + a0p

2,

5 Namely, all the orbits surrounding the center P0 share the same period.
6 Here we assume that the center P0 is non global: this is certainly true if H(q, p) is a polynomial of

odd degree.
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Figure 9.— Hamiltonian function evaluated along the numerical solution of the Gauss

and HBVM(4,2) methods. The irregular oscillations introduced by the Gauss method

will cause the associated numerical solution to eventually leave the stability region

centered at the origin.

with (a0, a1, a2, a3) 6= (0, 0, 0, 0).7 Note that, since H(q, p) = 1
2
(p2 + q2) + h.o.t., we can

assume P0 to be the origin O = (0, 0).

The class of Hamiltonian systems defined by (15) has been proposed in [20] and [21].8

Their main result was proving that the origin may not be an isochronous center [20] and,

more specifically, that the period tends to infinity as H(q0, p0) ր H∗, (q0, p0) being the

initial condition associated with the differential system.

For our experiments, we have set the values of the coefficients {ai}, {bi}, and {ci} as

follows:

a0 = 0; a1 = 0; a2 = 1; a3 = 0;

b0 = 0; b1 = 1; b2 = 0; b3 = 1; (16)

c0 = 0; c1 = 1; c2 = 1; c3 = 0.

In such a case, besides the origin P0 = (0, 0), H(q, p) admits the following real equilibrium

points (up to the machine precision):

P1 = (−6.879526475540134 · 10−1, − 5.206527058470621 · 10−1) −→ saddle point;

P2 = (−1.179582379893681, 1.756351969248087) −→ saddle point.

7 Otherwise the degree of H(q, p) becomes lower than 5.
8 The authors showed that, without loss of generality, the form (15) may be associated to any poly-

nomial Hamiltonian system of degree four and admitting a non-degenerate center, via a suitable change

of coordinates.
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Figure 10 reports the shape of the level curves of (15)–(16) in a region enclosing P0 and

P1. We see that the limit closed orbit corresponding to ∂P is the one embracing P0 and

having P1 as both ω-limit point and α-limit point9 and, therefore, the value H∗ may be

computed with precision as

H∗ = H(P1) = 9.050199350868576 · 10−2. (17)

Now suppose we do not know the value H∗ in (17) (it will be used as a reference value)

and that we want to reproduce the orbit covering ∂P by simply picking initial points

(q0, p0) further and further away from the origin, and checking whether the numerical

solution remains bounded over a long time.10 More precisely, we will locate the limit

cycle by means of a dichotomic search, according to the following algorithm:

step 1: find a point Q from which an orbit originates that does not embraces the critical

point P0 (that is Q 6∈ P);

step 2: consider the segment joining P0 to Q:

γ(c) = (1− c)P0 + cP1, c ∈ [0, 1],

and set c0 = 0 and c1 = 1;

step 3: if c1 − c0 < tol, STOP (tol is a specified tolerance);

step 4: set c = c0+c1
2

and solve numerically the Hamiltonian problem defined in (15), consid-

ering γ(c) as initial condition, in the time interval [0, hN ] where h > 0 is the stepsize

and N is a positive integer such that hN is large enough to give some information

about the fate of the orbit originating from γ(c).

step 5: if the numerical solution eventually depart from P0, set c1 = c, otherwise set c0 = c,

go to step 3;

The point y0 ≡ (q0, p0) = γ(c), where c is the value resulting after the execution of

the above procedure, may be assumed as a point on ∂P within the specified tolerance

tol. Detecting the limit cycle with high accuracy requires a huge number of simulations

and therefore large run times, also taking into account the wide time intervals that must

be used in order to inspect the asymptotic behavior of the numerical solution.11 Con-

sequently, it would be advisable to work with a relatively large stepsize h. We have

set:

h = 1, 0.5, N = 2500, 5000, tol = 2−52 (i.e., the value of eps in Matlab), Q = (0, 1),

to cover the integration interval [0, 2500].

9 That is, limt→±∞(q(t), p(t)) = P1 for any choice of (q0, p0) ∈ ∂P .
10 Of course, we cannot assume (q0, p0) = P1 since P1 is an equilibrium point.
11Actually, by virtue of their conservation properties, HBVMs do not need to be integrated over a long

time, even though here we do that for comparison purposes.
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h s
a point y

(s,s)
0 ∈ ∂P computed

by the Gauss method
|H(y

(s,s)
0 )−H∗|

H∗

a point y
(k,s)
0 ∈ ∂P computed

by HBVM(k,s)
|H(y

(k,s)
0 )−H∗|

H∗

2 (0, 3.723580509957994 · 10−1) 2.15 · 10−2 (0, 3.757055929263451 · 10−1) 7.66 · 10−16

1 3 (0, 3.748759009745006 · 10−1) 5.38 · 10−3 (0, 3.757055929263451 · 10−1) 4.60 · 10−16

4 (0, 3.754691919292651 · 10−1) 1.53 · 10−3 (0, 3.757055929263450 · 10−1) 1.22 · 10−15

5 (0, 3.756914213384024 · 10−1) 9.20 · 10−5 (0, 3.757055929263451 · 10−1) 4.60 · 10−16

2 (0, 3.756045691696934 · 10−1) 6.56 · 10−4 (0, 3.757055929263451 · 10−1) 4.60 · 10−16

1

2
3 (0, 3.756828289241957 · 10−1) 1.47 · 10−4 (0, 3.757055929263451 · 10−1) 4.60 · 10−16

4 (0, 3.757049796804918 · 10−1) 3.98 · 10−6 (0, 3.757055929263451 · 10−1) 4.60 · 10−16

5 (0, 3.757055571549585 · 10−1) 2.32 · 10−7 (0, 3.757055929263451 · 10−1) 4.60 · 10−16

Table 1.— A point y0 on the boundary of the period annulus P is computed by the

Gauss and HBVM methods of orders 4, 6, 8 and 10 (corresponding to s = 2, 3, 4, 5

respectively). By their very nature, if used with a sufficient number of silent stages,

HBVMs produce a numerical orbit that precisely lie on the same level set H(q, p) =

H(q0, p0) as the theoretical one, therefore we see that HBVMs can locate the point y0

with extreme precision, whatever the order and/or the stepsize used. On the contrary,

Gauss methods produce a certain error that may be lowered by reducing the stepsize

of integration h and/or by raising their order.

Table 1 compares the results obtained by using the Gauss (HBVM(s,s)) and HBVM(k,s)

methods of orders 4, 6, 8 and 10 (therefore, since s = 2, 3, 4, 5, we must choose, according

to (9), k = 5, 8, 10, 13, respectively, in order for the HBVM(k,s) to exactly conserve the

Hamiltonian function). We have denoted by y
(k,s)
0 the point computed by the method

HBVM(k,s), and reported the error |H(y
(k,s)
0 ) − H∗|/H∗ to estimate the accuracy with

which each method computes the boundary of P. As was expected, the accuracy in de-

tecting the right boundary of the period annulus by means of HBVMs is of the same order

as the machine precision whatever the order and stepsize used (indeed, the value of y
(k,s)
0

remains the same for all simulations). On the contrary, the Gauss methods produce a

certain error which depends both on the stepsize and on the order used: increasing the

accuracy would require a suitable reduction of the stepsize and/or a grow-up of the order.

Figure 11 shows that even small oscillations of the numerical Hamiltonian function (left

picture) could produce a noticeable irregularity of the numerical orbit in a neighborhood

of the boundary of the period annulus (right picture). By their very nature, HBVMs suc-

ceed in detecting the set ∂P with an accuracy of the same order as the machine precision:

the error in the Hamiltonian function is negligible (left picture) and the numerical orbit

correctly passes through the saddle point P1.
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Figure 10.— Level curves of the Hamiltonian (15) in a region that embraces the center

point P0 and the saddle point P1. Each level curve, corresponding to an orbit of the

associated Hamiltonian system, is labeled by a number that indicates its elevation.
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of the saddle point P1 reveals the difficulty of the Gauss method in detecting the
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