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Abstract

In many branches of the science, the numerical solution of differential equations

is a natural request. However, the way to solve those equations is not always the

same. Sometimes it is needed to solve the equation as fast as possible. In other

cases good precision is required, even 100 digits or more to guarantee the final re-

sults. Sensitivity analysis also may be wanted in some integrators. In this paper, a

new integration software based on the Taylor series method is introduced, with all

these features. It can provide fast integrations that compete with well established

codes and it is ready for high precision integrations with as many digits as desired.

Besides it can compute the partial derivatives of the variables with respect to initial

conditions or parameters of the system up to any order. This software has been

written focusing in the philosophy easy-to-use, so with very simple commands the

necessary code is generated automatically. At the end, we also present some nu-

merical results to illustrate its competitiveness and high performance with chaotic

problems.

1 INTRODUCTION

The Taylor Series Method (TSM) is an integration method with a long history. Clas-

sical authors like Newton or Euler already used power series expansions as integration

methods. However, nowadays it has been rediscovered with the implementation of auto-

matic differentiation [11] techniques which allow us to transform a theoretical method into

a practical one. Afterwards, it has reached a good position as an integration method and

many research groups [5, 6, 15, 19, 20] have adopted this method as their main integrator

algorithm.

This method is widely used in the study of Dynamical Systems because, apart from

being a competitive integration method, it is very flexible, that is, it can be easily adapted
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for many purposes like the study of partial derivatives [8], high precision calculations

[1, 9, 15] or detection of events. It also may be implemented by using interval arithmetic

in order to attain a rigorous method of integration [10,17,23] which guarantees the results,

a needful step in Computer Aided Proofs [13, 16].

Here we present an implementation of the Taylor Series Method adapted to integrate

ODEs, partial derivatives up to any order and ready to use multiple precision if needed. A

piece of the software has been written in Mathematica under the easy-to-use philosophy,

so with very simple commands we will have all the necessary code for our purposes.

The main idea of the Taylor Method is very simple. Let is consider the initial value

problem:

dy(t)

dt
= f(t, y(t); p), y(t0) = y0, t ∈ R, y ∈ R

s, p ∈ R
k. (1)

where p represents a vector of k ≥ 0 parameters.

Now, the value of the solution at ti+1 = ti + hi+1 (that is, y(ti+1)) is approximated

from the n-th degree Taylor series of y(t) developed at ti and evaluated at t = ti+1 (the

function f has to be a smooth function, in this paper we will consider f to be analytic).

y(t0)
def
= y0,

y(ti+1) ≃ y(ti) +
dy(ti)

dt
hi+1 +

1

2!

d2y(ti)

dt2
h2

i+1 + . . . +
1

n!

dny(ti)

dtn
hn

i+1

≃ yi + f(ti, yi) hi+1 +
1

2!

df (ti, yi)

dt
h2

i+1 + . . . +
1

n!

dn−1f(ti, yi)

dtn−1
hn

i+1
def
= yi+1.

(2)

The practical way of computing the coefficients {djy(tj)/dtj}j is using the automatic

differentiation techniques [12,21]. In the literature we can find many software implementa-

tions of the TSM which compute these coefficients automatically, for example ATOMFT

(Corliss et al.), COSY INFINITY (Berz et al.), DAETS (Nedialkov et al.), TAYLOR

(Jorba and Zou) and, of course, TIDES.

2 AUTOMATIC DIFFERENTIATION WITH PARTIAL DERIVATIVES

The practical calculation of the coefficients of a Taylor series expansion of a function is

done with the classical rules of automatic differentiation. Automatic differentiation gives

us a recursive procedure to obtain the numerical value of reiterated derivatives with no

error (but the round off one).

The technique is based on the decomposition of the function into a sequence of arith-

metic operations and calls to standard unary functions. For example, if we consider

f(x) = log (x2 + 1)/(x2 − 1) + x, we evaluate the function starting from the value of the
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variable x and obtain the value of f(x) as follows:

l1 = x,

l2 = l1 l1,

l3 = l2 + 1,

l4 = l2 − 1,

l5 = log l3,

l6 = l5/l4,

l7 = l6 + l1

f(x) = l7.

(3)

and by applying differentiation rules at each step we can obtain the value of the derivatives

of f for any order. Once we have these values, from equation (1) we obtain the coefficients

of the Taylor series of the solution y:

y[j](t)
def
=

1

j!

djy(t)

dtj
=

1

j!

dj−1f (t)

dtj−1
=

1

j
f [j−1] (4)

If we also want to calculate the Taylor coefficients of the partial derivatives of the

solution with respect to some parameter or initial condition we can use also automatic

differentiation. First we introduce some notation. We will call N0 the set of the natural

numbers with zero, i = (i1, . . . , is) ∈ N
s
0 a multi-index with the partial derivative orders,

i∗ = i − (0, . . . , 0, 1, 0, . . . , 0), that is i∗ = (0, . . . , 0, ik − 1, ik+1, . . . , is) (we subtract 1

to de first non-zero element of i), |i| =
∑

ij the total order of partial derivation, and

i − j = (i1 − j1, . . . , is − js). For v ∈ N
s
0, we define the multi-combinatorial number

(

i

v

)

=
(

i1
v1

)

· · ·
(

is
is

)

. Finally we define the the Taylor j-th coefficient of the partial derivative

of f as:

f
[j]
i

(t) =
∂i1+...+isf [j](t)

∂yi1
1 · · ·∂yis

s

(5)

and

h̃
[j,n]
v,i = h[j]

v
if (j 6= n or v 6= i); h̃[n,n]

v,v = 0. (6)

The basic rules of automatic differentiation extended with partial derivatives can be found

in [8] (with the same notation). We show as an example the rule of the logarithm.

Proposition 1. Let f be a function of class Cn. Then, if we define h(t) = log f(t), the

automatic differentiation rule for h is:

h
[0]
0

= log (f [0](t)),

h
[0]
i

=
1

f [0]

(

f
[0]
i

−
∑

0<v≤i∗

(

i∗

v

)

h
[0]
i−v

· f [0]
v

)

, i > 0,

h
[n]
i

=
1

f [0]

(

f
[n]
i

−
1

n

n−1
∑

j=0

(n − j)

{

∑

v≤i

(

i

v

)

h̃
[n−j,n]
i−v,i · f [j]

v

})

, n > 0.

(7)
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Proof. For h0
i
, first we derive with respect ek (k is the first non-zero component of i)

and we have the relation f
[0]
ek

= h
[0]
ek

· f . Now we perform i − ek = i∗ derivatives by

applying the Leibniz rule for partial derivation of the product (see [8]) and we have

f
[0]
i

=
∑

v≤i∗

(

i∗

v

)

h
[0]
i−v

· f
[0]
v . Finally we just have to work out the value of h

[0]
i

.

For h
[n]
i

, we first derive once with respect to time to reach the expression f [1] = h[1] ·f .

Then we apply the well known automatic differentiation rule of the product [21] to reach

nf [n] =
n−1
∑

j=0

(n − j)h[n−j] · f [j]

. At this point we derive with respect to i applying the Leibniz rule again:

nf
[n]
i

=

n−j
∑

j=0

(n − j)
∑

v≤i

(

i

v

)

h
[n−j]
i−v

· f [j]
v

. Finally, considering the definition of h̃ (6), we work out the value of h
[n]
i

.

2.1 Dealing with partial derivatives

Here we are going to explain briefly how Mathematica deals with the partial deriva-

tives and how it transforms expressions of the form v ≤ i into sums with natural indexes

which can be traduced into C or Fortran codes. We call Dm
s = {i, |i| ≤ m}, the set of all

partial derivatives of the function f of order less or equal to m. We may easily define a

total order relationship in this set by considering i < j if
∑

ik <
∑

jk or
∑

ik =
∑

jk

and there exists an index p such as ik = jk, ∀k < p, and ip < jp, and i = j if ik = jk, ∀k.

This order relationship is the one used in the extended formulas of automatic differ-

entiation (see equation (7) for example). Mathematica, for each index i computes the

set V(i) = {v,v ≤ i}, the set of all partial derivatives needed to perform the calculation

of the i partial derivative. If instead of one partial derivative we have a set of partial

derivatives D, we define V(D) =
⋃

i∈D
V(i) ⊂ Dm

s . Then we order this set and identify

each element of the set V(D) with an integer number between 0 and N − 1, with N = ♯D

the number of elements of V(D). This index will represent the position in the ordered set

V(D).

We notice that in the process of computing partial derivatives in the Taylor series

method only two kind of expressions are involved (see equation (7)):

∑

v,w∈V(i)

Ci,vf
[−]
v

g[−]
w

,
∑

v,w∈V(i∗)

Ci∗,vf
[−]
v

g[−]
w

, w = i − v, Ci,v =

(

i

v

)

,

where i goes over the set V(D).

In order to write the code to compute the Taylor series of the partial derivatives of the

solution of an ODE we need to know the sets V(i),V(i∗) of every derivative that appears
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in the process. The Mathematica package MathTIDES computes automatically these

sets and uses them to write the final C code. The way to perform this is by building two

lists of integers that represent the indexes for v, and another two lists for the indexes of

w = i − v. Mathematica also computes the lists with the integer value of the multi-

combinatorial numbers Ci,v and Ci∗,v. Finally, Mathematica also writes two lists with

the initial and final position in each list for each value of i and i∗.

We show the process with an example. If we want to compute the partial derivative

∂4f

∂y3
1∂y2

first we construct the set of all derivatives we want to compute: D = {(3, 1)}. Now we

need to calculate the set of all necessary derivatives for the elements of D, to order that

set, and to identify each element with an integer:

V(D) = {(0, 0), (1, 0), (0, 1), (2, 0), (1, 1), (3, 0), (2, 1), (3, 1)} = {0, 1, 2, 3, 4, 5, 6, 7}

And for each element we will have:

V(0) = V((0, 0)) = {(0, 0)} = {0}

V(1) = V((1, 0)) = {(0, 0), (1, 0)} = {0, 1}

V(2) = V((0, 1)) = {(0, 0), (0, 1)} = {0, 2}

V(3) = V((2, 0)) = {(0, 0), (1, 0), (2, 0)} = {0, 1, 3}

V(4) = V((1, 1)) = {(0, 0), (1, 0), (0, 1), (1, 1)} = {0, 1, 2, 4}

V(5) = V((3, 0)) = {(0, 0), (1, 0), (2, 0), (3, 0)} = {0, 1, 3, 5}

V(6) = V((2, 1)) = {(0, 0), (1, 0), (0, 1), (2, 0), (1, 1), (2, 1)} = {0, 1, 2, 3, 4, 6}

V(7) = V((3, 1)) = {(0, 0), (1, 0), (0, 1), (2, 0), (1, 1), (3, 0), (2, 1), (3, 1)} = {0, 1, 2, 3, 4, 5, 6, 7}

3 MULTIPLE PRECISION LIBRARIES

In this section we are going to comment briefly the high precision libraries used and the

reason for choosing them. In the scientific community there are many libraries which im-

plement arbitrary precision. Different libraries have different ways to represent arbitrary-

precision numbers so the election of one or other library will determine the program. There

are libraries for C (GMP, MPFR, IMSL, decNUMBER), Fortran (FMLIB, ARPREC,

MPFUN), java (APFLOAT), C++ (APFLOAT), etc. Also these libraries are designed to

manage only integer numbers (LiDIA), real numbers (almost all of them) or even complex

arithmetic (MPFR).

Another important aspect when choosing one of them is the kind of license it has. We

have avoided commercial or proprietary licenses in order to be able to distribute it within

our software, so good options are GPL (GNU Public License) and LGPL (Lesser GNU

Public License).
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Finally we wanted an easy-to-use library which fits properly in the global philosophy of

TIDES. The library having all these features is MPFR1. To compile and use this library it

is necessary to have compiled and installed the high precision library of the GNU project

GMP2 both with LGPL license.

The use of the libraries is internal and the program can be used easily with the interface

in Mathematica as it is described in the next section.

4 USE OF TIDES

In this section we are going to explain in the first place the structure of TIDES.

Afterwards we will comment the basic commands in Mathematica necessary to use the

library.

4.1 Structure of TIDES

TIDES has two different parts (pieces of software): The Mathematica package Math-

TIDES and the C library libTIDES. The structure is shown in this table:

TIDES

Product Language

MathTIDES preprocessor Mathematica

libTIDES library C

(objects or source code)

Mathematica builds automatically the necessary code to integrate the differential

equation. The files generated by Mathematica usually are enough to solve the equation,

therefore the user just has to compile and execute them. If the user wants additional

features, such as high precision or partial derivatives of the solution, the use of the library

libTIDES is required.

Depending on the demands of the user one engine or other engine is used. This table

illustrates the features of the different engines of TIDES:

1http://www.mpfr.org
2http://gmplib.org
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Engine Contents mathTIDES generates linked with

minf-tides basic TSM Fortran files

minc-tides basic TSM C files

dp-tides complete TSM C files libTIDES

with partial derivatives

mp-tides complete TSM C files libTIDES

with partial derivatives GMP library

with arbitrary precision MPFR library

The two first engines (minf-tides and minc-tides) are minimal versions thought to be

fast and simple. They are developed to integrate ordinary differential equations in which

only simple functions appear: x ± y, x × y, x/y, 1/x, xα (α ∈ R), αx (α > 0), ex, log x,

sin x and cos x. In these cases Mathematica generates files (C or Fortran) with the

integration engine, the implementation of the automatic differentiation (without partial

derivatives) and the driver (main program).

If we want to integrate hyperbolic functions or inverse of trigonometric or inverse of

hyperbolic functions, we have to use the next engine (dp-tides). It is also necessary to use

this engine if we want to integrate with partial derivatives. MathTIDES generates files

with the implementation of the automatic differentiation for the function, and with the

driver (main program). In this case, the engine is included in the library libTIDES, so it

is needed to link with this library when compiling.

The last engine, mp-tides, is the complete integrator with all the features: all the

functions, partial derivatives and arbitrary precision. MathTIDES builds, like in the case

of dp-tides, files with automatic differentiation and with the driver (main program). The

engine is also in library libTIDES, but when compiling it is also required to link with high

precision libraries GMP and MPFR (GMP needed by MPFR).

4.2 The Mathematica interface

Along this subsection we are going to see the easy-to-use concept underlying in TIDES.

We are going to explain the basic commands taking the example of the Lorenz equations

[18]:

ẋ = −σ(x + y), ẏ = −xz + rx − y, ż = xy − bz (8)

First we load the package with the command <<MathTIDES`, and then we can use

the basic commands: FirstOrderODE and CodeFiles. The first one generates the in-

ternal expression that represents the differential equation. The second one generates the

codes. To generate the differential equation other commands can be used, NthOrderODE,

PotentialToODE or HamiltonianToODE, which creates the differential system from a n-th
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order differential equation, a potential or a Hamiltonian, respectively. In our case we

have to use FirstOrderODE. The arguments are: a list with the symbolic expression of

the ODE, the independent variable, a list with the dependent variables and optionally a

list with the parameters that appear in the equation. So, the command is:

lorenz = FirstOrderODE[{s(y-x), -x z + r x - y, x y - b z},

t, {x, y, z}, {s, r, b}]

Once we have created the differential equation, we just have to execute the command

CodeFiles according to our needs. The first argument is the equation, in our case lorenz.

The second one is an string with the desired name for the files in C or Fortran. The next

arguments are optional. These are the basic ones:

• MinTIDES->"Fortran" or MinTIDES->"C". This generates the appropriated files to

use the minimal engines in Fortran or C.

• Output->Screen, Output->"filename" or Output->False. Specifies the output

stream, on the screen or in a file called filename. If False (default value) no

output is shown or written (the final result is in an output variable).

• PrecisionDigits->n. With this option we control the number of digits of precision

we are working with. If greater than 16 the engine mp-tides and all its libraries are

required. The default value is 16.

• AddPartials->{{x, y}, n, Until} or AddPartials->{{x, s}, n, Only}. With

this option we add the calculation of partial derivatives. The firs argument is the list

of variables or parameters with respect to we want to perform the partial derivative.

The next number is the maximum order of partial derivation. The next option may

be Until, or Only, in case we want all partials until that order, or just the ones of

order n. For example:

AddPartials->{{y,a},2, Until} computes:

∂x

∂y0
,
∂x

∂a
,

∂y

∂y0
,
∂y

∂a
,

∂z

∂y0
,
∂z

∂a
,
∂2x

∂y2
0

,
∂2x

∂a2
,

∂2x

∂y0∂a
,
∂2y

∂y2
0

,
∂2y

∂a2
,

∂2y

∂y0∂a
,
∂2z

∂y2
0

,
∂2z

∂a2
,

∂2z

∂y0∂a
.

Here we have some examples we can execute in our case:

CodeFiles[lorenz, "lorenzMinF",

MinTIDES->"Fortran",

Output->Screen]

to generate a minimal Fortran code with output on the screen. Or we can execute
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CodeFiles[lorenz, "lorenzMP",

Output->"lorenzMP.txt",

PrecisionDigits->500,

AddPartials->{{x, y, z, s}, 2, Until}]

if we want high precision integration (with 500) digits. In this case the output will be

written in a file called lorenzMP.txt.

There are many other options and combinations which use is carefully described in

the user guide within the software.

5 NUMERICAL EXPERIMENTS

In the numerical experiments we have used three kinds of architectures. Fortran

integrations both in double and quadruple precision have been performed in a PC Pentium

D 3.40 GHz. with Windows XP SP2. The high precision computation has been done in

a PC Intel R© CoreTM 2 Duo CPU E6750 2.66 GHz with Linux Kernel 2.6.27.7-smp

compiled for i686. The compiler for Fortran has been gcc 4.2 (gfortran) for double

precision and Lahey LF95 for quadruple precision. The compiler for C has been also gcc

4.2.

5.1 Test Problems

To illustrate the use of the integrator we present two classical problems in dynamical

systems.

Arenstorf orbits [2]. These are the particular case of the planar orbits in the restricted

three body problem. One considers two bodies of masses 1 − µ and µ, in circular

rotation in a plane and a third body of negligible mass moving around in the same

plane. The interval of integration is t ∈ [0, 30]. and the equations are:

x′′ = x + 2y′ − µ′
x + µ

D1
− µ

x − µ′

D2
,

y′′ = y − 2x′ − µ′
y

D1
− µ

y

D2
,































D1 = ((x + µ)2 + y2)3/2, D2 = ((x − µ′)2 + y2)3/2,

x(0) = 0.994, y(0) = 0,

x′(0) = 0, y′(0) = −2.00158510637908252240537862224,

µ = 0.012277471, µ′ = 1 − µ.

Lorenz Model [18]. The classical system given by equations (8) and the classical Salztman

values of the paramenters: r = 28, σ = 10 and b = 8/3. We use the initial

91



conditions of an unstable periodic orbit up to 500 digits thanks to professor Divakar

Viswanath [22].

x(0) = −13.763610682134200 . . .

y(0) = −19.578751942451795 . . .

z(0) = 27,

T = 1.5586522107161747 . . .

5.2 Numerical tests

In the first test we are going to compare TIDES with dop853 and odex. Since we have

used the implementation of dop853 and odex made by Hairer and Wanner [14] and it

has been written in Fortran, we have compared them with the minf-tides engine, also in

Fortran. We present in the figures relative error vs CPU time diagrams, a standard in

numerical ODE community.

In the Figure 1 we have compiled all the programs using gfortran and the optimization

option -O2, and allowing dense output. We can observe the same behavior for both

for Arenstorf and Lorenz problems: For low precision demands dop853 is the fastest

integrator. However, when we achieve 10−10 precision level minf-tides becomes the fastest

option. The reason is the variable order formulation of the Taylor series method which

guarantees a softer growing slope. odex also has variable order formulation, but the

extrapolation method needs more precision in order to beat the Runge-Kutta code.

Relative error  
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C
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U
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e
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odex
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−2

C
P

U
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im
e

 

 

dop853

odex

TIDES

Figure 1.— Computational relative error vs CPU time diagrams in double precision

In Figure 2 we present the same tests, but we have used Lahey LF95 Fortran compiler

to have native quadruple precision. Since we can go farther than double precision we

can appreciate that minf-tides and odex have almost the same slope, due to their variable
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order formulation. We also can see that the difference between the variable order methods

and Runge-Kutta is quite big for more accurate demands.
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Figure 2.— Computational relative error vs CPU time diagrams in quadruple precision

High precision has become very useful both in theoretical and practical applications [3].

Our software includes a high precision engine, mp-tides, which can integrate differential

equations (with partial derivatives if needed) with all the desired precision in a very easy

way.

−20−15−10−505101520−40
−20

0
20

40
0

10

20

30

40

50

 

z

y
x

300 periods − TIDES (200 digits)

  50 periods − dop853

Figure 3.— 300 periods using mp-tides and 50 periods using dopri853 in double pre-

cision

There are many problems in which, even if we are interested in results in double

precision, the operations must be performed with enough digits of precision due to the

unstable nature of the underlying system. The Lorenz system is a good example of system
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of this nature. In Figure 3 we present integrations of the same orbit. We have drawn in

red 300 revolutions using mp-tides with high precision arithmetic, and we can appreciate

that the structure of the periodic orbit is preserved. In blue we have plotted only 50

periods performed with dopri853 compiled and executed in double precision. In this case

the loss of digits of precision is too fast, so with only a small number of periods, compared

to the high precision computation, we have fallen into the famous chaotic attractor.
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