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Abstract

For a satellite orbiting a prolate body we determine the class of the so called
frozen orbits, a kind of trajectories for which either the eccentricity and the ar-
gument of the perigee are close to be stationary. This is done after an averaging
procedure that produces a one degree of freedom Hamiltonian system retaining the
main qualitative features of the original one. This reduced system can be studied
in a systematic way in order to calculate the equilibrium solutions, directly related

to the frozen orbits.

1 Introduction

In the problem of mission design for artificial satellites there is a set of orbits of
special interest for which the eccentricity and the argument of the perigee remain almost
stationary [10]. These orbits are called frozen orbits and, according to [5], they are
in correspondence with equilibrium solutions of an averaged system resulting from the
original one.

For the main problem of the artificial satellite, when only the effect of the oblateness
coefficient is taken into account, frozen orbits has been studied from the very beginning
of the spacial era, pointing out a singularity at the so called critical inclination [3]. This
singularity can be resolved when the problem is brought to normal form and the frozen
orbits are viewed as relative equilibria [3, 5]. Under this point of view, the critical in-
clination is just a value for which a parametric bifurcation of the family of frozen orbits
occurs. Numerical continuation of periodic orbits [9] and Poincaré surfaces of section [2]
have confirmed the appearance of this bifurcation. In this way, the class of frozen orbits
can be grouped into families in terms of the inclination, acting the critical inclination as

a value that separates different families.
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The main problem of the artificial satellite is linked to the Earth and the body around
the satellite orbits is supposed oblate. In this way, no much is known for prolate bodies.
However, recent missions to objects of the solar system with different shapes could find
of interest an extension of the main problem for prolate bodies. This is, for instance, the
point of view adopted in [8], where a special kind of halo orbits are derived. Nevertheless,
the family of frozen orbits remains unexplored, at least from an analytical point of view,
because they were presented in [4] as an application of the paint by number technique. The
aim of this contribution is to determine the families of frozen orbits for the main problem
of an artificial satellite around a prolate body analytically by means of the identification

of critical inclinations, when frozen orbits suffer a bifurcation.

2 Problem formulation

The main problem of the artificial satellite is described by the Hamiltonian

H:—%—ng'u—r (%)Q(SSinzlsiHQ(w+y)—1), (1)
where a is the semimajor axis of the orbit, r the distance of the satellite to the origin,
that is supposed at the center of the attracting body, « is the equatorial radius of the
attracting body, I the inclination of the orbit, w the argument of perigee, v the true
anomaly, p the mass parameter of the system and .J, the oblateness coefficient (see for
instance [1]).

Frozen orbits are referred as equilibrium solutions of an averaged system. This aver-
aged system is obtained by performing a Delaunay normalisation [6] up to second order,
due to the fact that at first order it exhibits a degeneration. Indeed, there is a set of non-

isolated equilibria which corresponds to the critical inclination. Once the normalisation

is carried out, we arrive to the new Hamiltonian function

G2-3H2)
_ e 2, 4G2-3 H? 2 4,6 | =5G*4+18G2 H?2—5H* (
H=—5z — Lo gmm +3J5a" 128GY L5 32G10 4

(2)

5(G4-2G? H2-T H*) n (G2-1512) (G2-H?) (G2-1?) cos(29)>
128G 1.3 64 G L5 ’

where (L,G,H,{, g,h) are the Delaunay elements describing the orbit of the satellite.
L is related with the semimajor axis, GG is the total angular momentum, H the third
component of the angular momentum, ¢ the mean anomaly, g the argument of perigee
and h the argument of the node.

It is worth noting that ¢ and h are cyclic coordinates and then H and L are conserved
quantities in this averaged model. Thus, the dynamics is reduced to that of the pair of
variables (g, G), described by the canonical differential equations

L
Yol dg
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The equilibrium solutions of this system give rise to the families of frozen orbits and. They
are obtained by setting to zero the right hand sides of the two equations. As it happens
for a wide class of perturbed Keplerian systems [7], equilibria appear as the solutions of

a nonlinear system of the form

P (G, Jy)sin2g = 0,

3
PZ(G7 J2)+P3(G7 JQ) COSQQ :Oa ( )

such that g € [0,27), G € [|H|, L] and P;, P, and P; are real polynomials in G whose
coefficients are polynomial functions of Js, as well as of o and p. Nevertheless, a proper
choice of units yields o = p = 1.

For the case considered here, polynomials P;, P, and P; are given by
P =(G-H)(G+H)(G*-15H?) (G—-L) (G+ L),

Py=-32L%G8 + (160 H* L*> — 25 J,) G® — 24 J, LG°®
+ (126 H? Jy + 35 J, L*) G* + 192 H2 J, L G3
— (45 H* Jo +90 H? J, L?) G* — 360 H* J, LG (4)
— 385 H* Jo L,

Py =10J,G¢ — (224 H? Jy + 14 J, L?) G*
+ (270 H* Jy + 288 H? Jo L?) G? — 330 H* J, L*.

3 Bifurcations and families of frozen orbits

In order to establish the solutions of system (3) we observe that they can be divided
into different classes, attending to the structure of the first equation in (3). On the one
hand we have the solutions for which P;(G, J;) = 0. They are

G=|H|, G=1L, G=+15H|

The two first correspond with equatorial and circular orbits, respectively, and they consti-
tute equilibrium solutions that must be studied in a different way, as Delaunay variables
are singular for these kind of orbits. Thus, we are left with the third case G = /15| H|.
A direct substitution of G into the second equation of (3) yields

54000H*L? + J, (2835H2 — 307L% 4 144V15L|H| 4 42(15H? — L?) cos 29) =0.

Thus, if go is a solution of the last equation we have the equilibrium point (go, v/ 15| H|).
This point exists whenever —1 < cos2gy < 1. As a consequence, we obtain two bifurcation
surfaces when cos 2¢g reaches the extremum values, namely:

By = 54000H*L? + Jo(3465H? + 144+/15L|H| — 349L%) = 0,

()
By = 54000HL? + J5(3465H? 4 144y/15L|H| — 265L%) = 0.
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The other solutions of system (3) come from sin 2g = 0. In this case, cos2¢g = +1 and

G must be a root of one of the two following polynomials
P, = 32L*G® + (15Jy — 160H?L?)G® + 24J, LG® + (98H? — 21L%) J,G*
—192J,H?LG3 — (225H* + 198 H2L?) J,G? + 360J, H* LG
+ 715, HA L2,
P_ = 32L2G® + (35Jy — 160H?L?)G® + 24, LG5 — (350H? + 49L2%) J,G*
— 192J,H?LG3 + (315H* + 378 H2L?) J,G? + 360.J,H* LG
+ 55, HAL?,

where P, and P_ are obtained from cos2g = 1 and cos 2g = —1 respectively.

An explicit calculation of the roots of P, and P_ is not possible, and even the task
of counting the number of roots in the interval [|H|, L] is very difficult. Nevertheless, we
satisfy ourselves by determining a change in the number of roots in the interval [|H|, L].

In this way we consider the following two situations:

1. one of the roots reaches the extrema of the interval,

2. two or more roots join to produce a multiple root.

We emphasize that the first item is straightforward to compute, but not the second
one. Indeed, there is a multiple root if and only if the polynomial’s discriminant vanishes.
However, a vanishing discriminant is not enough to ensures that the multiple root lies
inside the interval [|H|, L]. Thus, the second item must be followed by a numerical
process in order to discard those situations accounting for multiple roots outside the
interval [|H|, L].

By considering all the above, we arrive to six new bifurcation surfaces. Four of then

obtained by application of the first item
Li: P.(|H|)=0— 8H*L*+ J, (TH*—12L|H| - 31 L% =0,
Ly: P.(L)=0— 16 L% —80 H* L% + J, (425 H* — 146 H* L> + 9 L*) = 0,
Ly: P.(H)=0—2H*L-3J, (|H|+2L) =0, g
Ly: P(L)=0—16L% —80H* L5 + J, (365 H* — 82 H?*L? +5L*) =0,
and two more derived from the second one

L5 . diSC<P+) = 0,
(8)
Lg : disc(P-) =0.

The expression of the equations defining Ls and Lg are too involved and they are given

in Appendix 1.
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Figure 1.— The plane (H, L) divided in different regions where the number and sta-
bility of frozen orbits change, for Jo, = —0.2. The right figure gives an enlarged view

of the lines when H is close to 0.

Now, we can depict the bifurcation surfaces in the parameter space (H, L, J3) once
we have discarded those branches of the surfaces Ly and Lg related with multiple roots
outside the interval [|H|, L]. However, for the sake of simplicity, we will plot on the plane
(H, L) a contour level of the surfaces of bifurcation for a fixed value of J,. In this way, we
choose Jo = —0.2, a large negative value of the oblateness coefficient, in order highlight
the many different regions where families of frozen orbits live, as Figure 1 shows.

Once the regions are established, we can determine the frozen orbits by solving the
corresponding equations in (3). Nevertheless, they can also be visualized by depicting
the phase flow on the reduced space, after normalisation. This is what we do by the
technique of paint by number on the spheres defined in [5], although these spheres do not
constitute the fully reduced space (see for instance [7]). As an example, we show in Figura
2 the phase flow in the regions enlarged in Figure 1, where frozen orbits correspond to
the equilibrium points. It can be seen how the number of frozen orbits changes as the
bifurcation lines are crossed. Indeed, if one of the lines is crossed the number of frozen
orbits changes in two, and the region with the largest number of frozen orbits (14 in total)

is that in between the red and yellow lines.

4 Conclusions

We have presented an analytical study of the families of frozen orbits in the main
problem of artificial satellite for a prolate body. Despite the general treatment, an example
is considered to see how the families of frozen orbits can be localized in the phase space. A
more detailed study, by considering bifurcations surfaces in the general parameter space
(H, L, Jy) is left for further development, as well as the evolution of the families in terms

of physical parameters, inclination and eccentricity.
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Figure 2.— Phase flow in four different regions. Frozen orbits correspond with equi-

librium points.
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Appendix 1

L5 : diSC(PJr) =0

1460825020800000000000000000 H 28 J2 L2 — 1517817485847600000000000000.H 26 J3 1,10 —
6514285680000000000000000000.H 26,J2 L4 + 553073913243648000000000000000 H 2.7, L1 +
754300195115261737500000000.H 24.J4 L# + 7905181680943070400000000000H24J3 12—
644925648175376256000000000000.H 2472 L6 — 1025781554081636352000000000000H 24.J, L20+
2856851368800878592000000000000H24L2* — 191164215583205221500000000 H 2275 L6 —
4464257829208807983120000000 H22.J3 L' 4 354476508197652213926400000000 H 2273 L4+
1462057761592077502464000000000 H22J2 L8 — 3357523140723573719040000000000H 22.J, .22+
24324762401659352542500000 H2°.JS L* + 1274579767733827063989600000 H 2075 L8 —
104057827780680328527064000000 H20.J4 L2 — 968782905228030331599360000000H20.J3 L6+
1425856809875954896281600000000 H2°.J2 L2° + 1180209565056458686464000000000.H20,J, [24—
507715241019510093750000.H 18,77 L2 — 178141991565371073324192000H 8.J$ L6+
16456310471624429441474240000 H 875 L0 + 330941450135594277969136000000 H 8. J4 L4+
14728556083442997805568000000H 8.J3 L8 — 1384559140988938641408000000000H 18 J2 L2+
2904909935541943359375 H 16,78 + 4038987010146577939350000 H16.J7 L4 —
1001899604639726674363804000 H 6JS L8 — 59279926288579283731903936000.H 6,75 L12—
183551232581881119270540960000H 6.J4 L6 + 491205909716027481181184000000.H 6 J3 204
247154224515915654299648000000H 16, J2 L24 — 22516011274717746562500H 4 J§ L2+
15369847567625584910610000 H 1477 L5 + 3664910869133419394291516160 H *4.J$ L0+
53634282783571674772042348800 H4.J5 L4 — 19812634436319727062896640000 H 14.J4 L8 —
212498960185413325797457920000 H *4.J3 L22 — 86027207524605635062500H 2 J5 L* —
69100474363599536145522000 H 12J7 L8 — 2762359102762387862378994720H 2, J$ 12—
24800710578681156941510334720 H 2.J3 L6 + 46066758175305339165337190400 H12.J L 20+
25799825734910413644496896000 H 12.J3 L2+ + 343781101823937430162500H 0J5 L6+
68091516826067345195905200 H 1077 L0 + 863920550586708072958874112H 107§ L 144
7375845048850121442806403072.H 10,75 L8 — 14026665497657341925735792640 H 0J2 22—
265033862085859013913750H8J5 L8 — 31058558536786528865068080 H8.J7 L12—
120425013704246647334202144 H8 J$ L'6 — 1369933748774047384658583552H8.J5 L20+
1357746013783980895942213632 HE J2 L + 88336999941437518042500 HC.J§ L0+
7656268593558883813300080 H0.J5 L1 4 6896525752240801270069248 H6JS L18+
119829067487105599404638208 HC.J3 L?2 — 14166675763774403566500 H*J5 L 12—
1004680970906735464703856 H*.J] L6 — 638150376927820591959552 H*JS 20—
1629402673022656227311616 H.J5 L** + 888475280639647189500 H2JS L4+
54234372035912043811968 H2J] L' 4 100213085349883223359488 H2.JS L22+
4935191167699167375J5L6 + 304473296707603575552.J4 L2+

483387416599791255552J5L24 = 0.
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Le : disc(P-)=0

—7694331346944000000000000 H?* L?* — 3816840127463424000000000000 H25 J, L8+
8874874573627392000000000000 H?4 .J, L2 — 4886175680467107840000000000 H22 J; L2+
270609416796635136000000000 H2° J, L?* 4 612801777079296000000000000 H28 J,* L2 —
182075567772672000000000000 H26 .J,? L' — 5739795262157644800000000000 H 2* J52 L1064+
35330622559577708544000000000 H22 J,2 L8 — 31913209726141444300800000000 H2° .J,? L29—
12125089252785777868800000000 H'® J,% 22 — 2479494456282210566144000000 H 16 .J,% 24+
1701844157442925440000000000 H2¢ J5* L0 — 1609624029893761728000000000 H?* J,* L2+
2740380144664352601600000000 H22 .J,® L' + 43339382909407371594240000000 H2° J,* 16—
65759661902719397913088000000 H '8 J,3 L8 — 14540593111986883929497600000 H 16 .J,3 1,20+
7243310898190775308779520000 H ' J,® L?2 + 1762031350348406803398656000 H 12 .J,> L24+
1807138788065323542900000000 H2* J,* L8 — 2834423738483661480240000000 H22 J,* L10+
10621774701307627706296000000 H2° Jo* L'2 4 17869117132780398125468800000 H '8 Jy* L14—
53298063855368778692389600000 H 6 J,* L16 + 2271090733227795022880768000 H 4 J,* L8+
8389778320558649948492595200 H 12 Jo* 120 — 752249718608159703372922880 H 10 J,* 122 —
337673902665735363327688704 H® J,* L?* + 891456806222842860000000000 H?2.J,° L6 —
1921408254885633199560000000 H20 J,° L8 + 7753214426378951781888000000 H '8 J,° L10—
1473802952870947312208000000 H'6 J,° L2 — 16271176520930492082917120000 H 4 J,° L4+
5059690419516009454967744000 H'2 .J,% L6 + 925277536558038956232192000 H 10 J,° 18—
269379630516921325893345280 H® J,° L0 — 5722980856728173677248512 HO .J,° L2+
4330209137530011408662528 H* J,° L** + 191319806832557661562500000 H 20 .J,% 14—
511336919905960445325000000 H'® J,5 L6 + 2091837124236543474465500000 H 6 J,6 18—
2140712250333763358697200000 H'* J,° L0 — 933696982390801376336260000 H'2 J,° 12+
489513903070900926026808000 H 10 J,5 L14 — 25440629499738431570831200 H® J,° L16—
15882756961986257933721600 H J,° L8 + 2853392253048818374899712 H* .J,% L20+
145109853157362994102272 H? .J,° L?2 — 14380481401220825268224 J,0 L4+
11641166932702781250000000 H'® J,7 L2 — 33781049336359958062500000 H'6 J,7 L4+
137618205999304226595000000 H 4 J,7 LS — 174070961394917201398700000 H12 J," L8+
7005233913818735803152000 H'° J,7 L10 4 10875710919845737377328800 H8 .J,” L12—
3555559753075217472691520 HO J,7 L1* + 79643672171452493301984 H* J,” L16+
109582034737133950975872 H2 J,” L'® — 7873519910190148180736 J," L20+
212208772210727783203125 H'6 J,® — 659890079247464296875000 H'* J,® L2+
2663403731428196804687500 H'2 J,® L* — 3817681335804557626125000 H'C J,® Lo+
1093109177792065584018750 H® J,® L& — 148700459548578550445000 H6 J,® L10—
24596916523981525888500 H* .J,® L12 + 9460712840378347317000 H2 J,® L14—
594632672565549492875 J,° L6 = 0.
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