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Abstract

For a satellite orbiting a prolate body we determine the class of the so called

frozen orbits, a kind of trajectories for which either the eccentricity and the ar-

gument of the perigee are close to be stationary. This is done after an averaging

procedure that produces a one degree of freedom Hamiltonian system retaining the

main qualitative features of the original one. This reduced system can be studied

in a systematic way in order to calculate the equilibrium solutions, directly related

to the frozen orbits.

1 Introduction

In the problem of mission design for artificial satellites there is a set of orbits of

special interest for which the eccentricity and the argument of the perigee remain almost

stationary [10]. These orbits are called frozen orbits and, according to [5], they are

in correspondence with equilibrium solutions of an averaged system resulting from the

original one.

For the main problem of the artificial satellite, when only the effect of the oblateness

coefficient is taken into account, frozen orbits has been studied from the very beginning

of the spacial era, pointing out a singularity at the so called critical inclination [3]. This

singularity can be resolved when the problem is brought to normal form and the frozen

orbits are viewed as relative equilibria [3, 5]. Under this point of view, the critical in-

clination is just a value for which a parametric bifurcation of the family of frozen orbits

occurs. Numerical continuation of periodic orbits [9] and Poincaré surfaces of section [2]

have confirmed the appearance of this bifurcation. In this way, the class of frozen orbits

can be grouped into families in terms of the inclination, acting the critical inclination as

a value that separates different families.
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The main problem of the artificial satellite is linked to the Earth and the body around

the satellite orbits is supposed oblate. In this way, no much is known for prolate bodies.

However, recent missions to objects of the solar system with different shapes could find

of interest an extension of the main problem for prolate bodies. This is, for instance, the

point of view adopted in [8], where a special kind of halo orbits are derived. Nevertheless,

the family of frozen orbits remains unexplored, at least from an analytical point of view,

because they were presented in [4] as an application of the paint by number technique. The

aim of this contribution is to determine the families of frozen orbits for the main problem

of an artificial satellite around a prolate body analytically by means of the identification

of critical inclinations, when frozen orbits suffer a bifurcation.

2 Problem formulation

The main problem of the artificial satellite is described by the Hamiltonian

H = − 1

2a
− J2

µ

2r

(

α

r

)2

(3 sin2 I sin2(ω + ν)− 1), (1)

where a is the semimajor axis of the orbit, r the distance of the satellite to the origin,

that is supposed at the center of the attracting body, α is the equatorial radius of the

attracting body, I the inclination of the orbit, ω the argument of perigee, ν the true

anomaly, µ the mass parameter of the system and J2 the oblateness coefficient (see for

instance [1]).

Frozen orbits are referred as equilibrium solutions of an averaged system. This aver-

aged system is obtained by performing a Delaunay normalisation [6] up to second order,

due to the fact that at first order it exhibits a degeneration. Indeed, there is a set of non-

isolated equilibria which corresponds to the critical inclination. Once the normalisation

is carried out, we arrive to the new Hamiltonian function

H = − µ

2L2 − J2 α
2µ4G2

−3H2

4G5L3 + 3 J2
2 α

4 µ6

(

−5G4+18G2 H2
−5H4

128G9 L5 − (G2
−3H2)

2

32G10 L4

+
5 (G4

−2G2 H2
−7H4)

128G11 L3 +
(G2

−15H2) (G2
−H2) (G2

−L2) cos(2 g)

64G11 L5

)

,

(2)

where (L,G,H, ℓ, g, h) are the Delaunay elements describing the orbit of the satellite.

L is related with the semimajor axis, G is the total angular momentum, H the third

component of the angular momentum, ℓ the mean anomaly, g the argument of perigee

and h the argument of the node.

It is worth noting that ℓ and h are cyclic coordinates and then H and L are conserved

quantities in this averaged model. Thus, the dynamics is reduced to that of the pair of

variables (g,G), described by the canonical differential equations

ġ =
∂H
∂G

, Ġ = −∂H
∂g

.
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The equilibrium solutions of this system give rise to the families of frozen orbits and. They

are obtained by setting to zero the right hand sides of the two equations. As it happens

for a wide class of perturbed Keplerian systems [7], equilibria appear as the solutions of

a nonlinear system of the form

P1(G, J2) sin 2g = 0,

P2(G, J2) + P3(G, J2) cos 2g = 0,
(3)

such that g ∈ [0, 2π), G ∈ [|H|, L] and P1, P2 and P3 are real polynomials in G whose

coefficients are polynomial functions of J2, as well as of α and µ. Nevertheless, a proper

choice of units yields α = µ = 1.

For the case considered here, polynomials P1, P2 and P3 are given by

P1 ≡ (G−H) (G+H) (G2 − 15H2) (G− L) (G+ L) ,

P2 ≡ −32L2G8 + (160H2L2 − 25 J2)G
6 − 24 J2LG5

+ (126H2 J2 + 35 J2L
2)G4 + 192H2 J2 L G3

− (45H4 J2 + 90H2 J2L
2)G2 − 360H4 J2 LG

− 385H4 J2 L
2,

P3 ≡ 10 J2G
6 − (224H2 J2 + 14 J2L

2)G4

+ (270H4 J2 + 288H2 J2 L
2)G2 − 330H4 J2 L

2.

(4)

3 Bifurcations and families of frozen orbits

In order to establish the solutions of system (3) we observe that they can be divided

into different classes, attending to the structure of the first equation in (3). On the one

hand we have the solutions for which P1(G, J2) = 0. They are

G = |H|, G = L, G =
√
15|H|.

The two first correspond with equatorial and circular orbits, respectively, and they consti-

tute equilibrium solutions that must be studied in a different way, as Delaunay variables

are singular for these kind of orbits. Thus, we are left with the third case G =
√
15|H|.

A direct substitution of G into the second equation of (3) yields

54000H4L2 + J2

(

2835H2 − 307L2 + 144
√
15L|H|+ 42(15H2 − L2) cos 2g

)

= 0.

Thus, if g0 is a solution of the last equation we have the equilibrium point (g0,
√
15|H|).

This point exists whenever −1 ≤ cos 2g0 ≤ 1. As a consequence, we obtain two bifurcation

surfaces when cos 2g reaches the extremum values, namely:

B1 ≡ 54000H4L2 + J2(3465H
2 + 144

√
15L|H| − 349L2) = 0,

B2 ≡ 54000H4L2 + J2(3465H
2 + 144

√
15L|H| − 265L2) = 0.

(5)
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The other solutions of system (3) come from sin 2g = 0. In this case, cos 2g = ±1 and

G must be a root of one of the two following polynomials

P+ = 32L2G8 + (15J2 − 160H2L2)G6 + 24J2LG
5 + (98H2 − 21L2)J2G

4

− 192J2H
2LG3 − (225H4 + 198H2L2)J2G

2 + 360J2H
4LG

+ 715J2H
4L2,

P
−
= 32L2G8 + (35J2 − 160H2L2)G6 + 24J2LG

5 − (350H2 + 49L2)J2G
4

− 192J2H
2LG3 + (315H4 + 378H2L2)J2G

2 + 360J2H
4LG

+ 55J2H
4L2,

(6)

where P+ and P
−
are obtained from cos 2g = 1 and cos 2g = −1 respectively.

An explicit calculation of the roots of P+ and P
−
is not possible, and even the task

of counting the number of roots in the interval [|H|, L] is very difficult. Nevertheless, we

satisfy ourselves by determining a change in the number of roots in the interval [|H|, L].
In this way we consider the following two situations:

1. one of the roots reaches the extrema of the interval,

2. two or more roots join to produce a multiple root.

We emphasize that the first item is straightforward to compute, but not the second

one. Indeed, there is a multiple root if and only if the polynomial’s discriminant vanishes.

However, a vanishing discriminant is not enough to ensures that the multiple root lies

inside the interval [|H|, L]. Thus, the second item must be followed by a numerical

process in order to discard those situations accounting for multiple roots outside the

interval [|H|, L].
By considering all the above, we arrive to six new bifurcation surfaces. Four of then

obtained by application of the first item

L1 : P+(|H|) = 0 −→ 8H4L2 + J2 (7H2 − 12L |H| − 31L2) = 0,

L2 : P+(L) = 0 −→ 16L8 − 80H2L6 + J2 (425H4 − 146H2L2 + 9L4) = 0,

L3 : P
−
(H) = 0 −→ 2H4L− 3 J2 (|H|+ 2L) = 0,

L4 : P
−
(L) = 0 −→ 16L8 − 80H2L6 + J2 (365H4 − 82H2L2 + 5L4) = 0,

(7)

and two more derived from the second one

L5 : disc(P+) = 0,

L6 : disc(P
−
) = 0.

(8)

The expression of the equations defining L5 and L6 are too involved and they are given

in Appendix 1.
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Figure 1.— The plane (H,L) divided in different regions where the number and sta-

bility of frozen orbits change, for J2 = −0.2. The right figure gives an enlarged view

of the lines when H is close to 0.

Now, we can depict the bifurcation surfaces in the parameter space (H,L, J2) once

we have discarded those branches of the surfaces L5 and L6 related with multiple roots

outside the interval [|H|, L]. However, for the sake of simplicity, we will plot on the plane

(H,L) a contour level of the surfaces of bifurcation for a fixed value of J2. In this way, we

choose J2 = −0.2, a large negative value of the oblateness coefficient, in order highlight

the many different regions where families of frozen orbits live, as Figure 1 shows.

Once the regions are established, we can determine the frozen orbits by solving the

corresponding equations in (3). Nevertheless, they can also be visualized by depicting

the phase flow on the reduced space, after normalisation. This is what we do by the

technique of paint by number on the spheres defined in [5], although these spheres do not

constitute the fully reduced space (see for instance [7]). As an example, we show in Figura

2 the phase flow in the regions enlarged in Figure 1, where frozen orbits correspond to

the equilibrium points. It can be seen how the number of frozen orbits changes as the

bifurcation lines are crossed. Indeed, if one of the lines is crossed the number of frozen

orbits changes in two, and the region with the largest number of frozen orbits (14 in total)

is that in between the red and yellow lines.

4 Conclusions

We have presented an analytical study of the families of frozen orbits in the main

problem of artificial satellite for a prolate body. Despite the general treatment, an example

is considered to see how the families of frozen orbits can be localized in the phase space. A

more detailed study, by considering bifurcations surfaces in the general parameter space

(H,L, J2) is left for further development, as well as the evolution of the families in terms

of physical parameters, inclination and eccentricity.
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Figure 2.— Phase flow in four different regions. Frozen orbits correspond with equi-

librium points.
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Appendix 1

L5 : disc(P+) = 0

1460825020800000000000000000H28J2
2L

12 − 1517817485847600000000000000H26J3
2L

10−
6514285680000000000000000000H26J2

2L
14 + 553073913243648000000000000000H26J2L

18+

754300195115261737500000000H24J4
2L

8 + 7905181680943070400000000000H24J3
2L

12−
644925648175376256000000000000H24J2

2L
16 − 1025781554081636352000000000000H24J2L

20+

2856851368800878592000000000000H24L24 − 191164215583205221500000000H22J5
2L

6−
4464257829208807983120000000H22J4

2L
10 + 354476508197652213926400000000H22J3

2L
14+

1462057761592077502464000000000H22J2
2L

18 − 3357523140723573719040000000000H22J2L
22+

24324762401659352542500000H20J6
2L

4 + 1274579767733827063989600000H20J5
2L

8−
104057827780680328527064000000H20J4

2L
12 − 968782905228030331599360000000H20J3

2L
16+

1425856809875954896281600000000H20J2
2L

20 + 1180209565056458686464000000000H20J2L
24−

507715241019510093750000H18J7
2L

2 − 178141991565371073324192000H18J6
2L

6+

16456310471624429441474240000H18J5
2L

10 + 330941450135594277969136000000H18J4
2L

14+

14728556083442997805568000000H18J3
2L

18 − 1384559140988938641408000000000H18J2
2L

22+

2904909935541943359375H16J8
2 + 4038987010146577939350000H16J7

2L
4−

1001899604639726674363804000H16J6
2L

8 − 59279926288579283731903936000H16J5
2L

12−
183551232581881119270540960000H16J4

2L
16 + 491205909716027481181184000000H16J3

2L
20+

247154224515915654299648000000H16J2
2L

24 − 22516011274717746562500H14J8
2L

2+

15369847567625584910610000H14J7
2L

6 + 3664910869133419394291516160H14J6
2L

10+

53634282783571674772042348800H14J5
2L

14 − 19812634436319727062896640000H14J4
2L

18−
212498960185413325797457920000H14J3

2L
22 − 86027207524605635062500H12J8

2L
4−

69100474363599536145522000H12J7
2L

8 − 2762359102762387862378994720H12J6
2L

12−
24800710578681156941510334720H12J5

2L
16 + 46066758175305339165337190400H12J4

2L
20+

25799825734910413644496896000H12J3
2L

24 + 343781101823937430162500H10J8
2L

6+

68091516826067345195905200H10J7
2L

10 + 863920550586708072958874112H10J6
2L

14+

7375845048850121442806403072H10J5
2L

18 − 14026665497657341925735792640H10J4
2L

22−
265033862085859013913750H8J8

2L
8 − 31058558536786528865068080H8J7

2L
12−

120425013704246647334202144H8J6
2L

16 − 1369933748774047384658583552H8J5
2L

20+

1357746013783980895942213632H8J4
2L

24 + 88336999941437518042500H6J8
2L

10+

7656268593558883813300080H6J7
2L

14 + 6896525752240801270069248H6J6
2L

18+

119829067487105599404638208H6J5
2L

22 − 14166675763774403566500H4J8
2L

12−
1004680970906735464703856H4J7

2L
16 − 638150376927829591959552H4J6

2L
20−

1629402673022656227311616H4J5
2L

24 + 888475280639647189500H2J8
2L

14+

54234372035912043811968H2J7
2L

18 + 100213085349883223359488H2J6
2L

22+

4935191167699167375J8
2L

16 + 304473296707603575552J7
2L

20+

483387416599791255552J6
2L

24 = 0.
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L6 : disc(P
−
) = 0

−7694331346944000000000000H24L24 − 3816840127463424000000000000H26J2 L
18+

8874874573627392000000000000H24J2 L
20 − 4886175680467107840000000000H22J2 L

22+

270609416796635136000000000H20J2 L
24 + 612801777079296000000000000H28J2

2 L12−
182075567772672000000000000H26J2

2 L14 − 5739795262157644800000000000H24J2
2 L16+

35330622559577708544000000000H22J2
2
L18 − 31913209726141444300800000000H20J2

2
L20−

12125089252785777868800000000H18J2
2 L22 − 2479494456282210566144000000H16J2

2 L24+

1701844157442925440000000000H26J2
3 L10 − 1609624029893761728000000000H24J2

3 L12+

2740380144664352601600000000H22J2
3 L14 + 43339382909407371594240000000H20J2

3 L16−
65759661902719397913088000000H18J2

3 L18 − 14540593111986883929497600000H16J2
3 L20+

7243310898190775308779520000H14J2
3
L22 + 1762031350348406803398656000H12J2

3
L24+

1807138788065323542900000000H24J2
4 L8 − 2834423738483661480240000000H22J2

4 L10+

10621774701307627706296000000H20J2
4 L12 + 17869117132780398125468800000H18J2

4 L14−
53298063855368778692389600000H16J2

4 L16 + 2271090733227795022880768000H14J2
4 L18+

8389778320558649948492595200H12J2
4 L20 − 752249718608159703372922880H10J2

4 L22−
337673902665735363327688704H8J2

4
L24 + 891456806222842860000000000H22J2

5
L6−

1921408254885633199560000000H20J2
5 L8 + 7753214426378951781888000000H18J2

5 L10−
1473802952870947312208000000H16J2

5 L12 − 16271176520930492082917120000H14J2
5 L14+

5059690419516009454967744000H12J2
5 L16 + 925277536558038956232192000H10J2

5 L18−
269379630516921325893345280H8J2

5 L20 − 5722980856728173677248512H6J2
5 L22+

4330209137530011408662528H4J2
5
L24 + 191319806832557661562500000H20J2

6
L4−

511336919905960445325000000H18J2
6 L6 + 2091837124236543474465500000H16J2

6 L8−
2140712250333763358697200000H14J2

6 L10 − 933696982390801376336260000H12J2
6 L12+

489513903070900926026808000H10J2
6 L14 − 25440629499738431570831200H8J2

6 L16−
15882756961986257933721600H6J2

6 L18 + 2853392253048818374899712H4J2
6 L20+

145109853157362994102272H2J2
6
L22 − 14380481401220825268224J2

6
L24+

11641166932702781250000000H18J2
7 L2 − 33781049336359958062500000H16J2

7 L4+

137618205999304226595000000H14J2
7 L6 − 174070961394917201398700000H12J2

7 L8+

7005233913818735803152000H10J2
7 L10 + 10875710919845737377328800H8J2

7 L12−
3555559753075217472691520H6J2

7
L14 + 79643672171452493301984H4J2

7
L16+

109582034737133950975872H2J2
7 L18 − 7873519910190148180736 J2

7 L20+

212208772210727783203125H16J2
8 − 659890079247464296875000H14J2

8 L2+

2663403731428196804687500H12J2
8 L4 − 3817681335804557626125000H10J2

8 L6+

1093109177792065584018750H8J2
8 L8 − 148700459548578550445000H6J2

8 L10−
24596916523981525888500H4J2

8
L12 + 9460712840378347317000H2J2

8
L14−

594632672565549492875 J2
8 L16 = 0.
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