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Abstract

The construction of symmetric and symplectic exponentially-fitted Runge-Kutta

methods for the numerical integration of Hamiltonian systems with oscillatory so-

lutions is reconsidered. In previous papers fourth-order and sixth-order symplectic

exponentially-fitted integrators of Gauss type, either with fixed or variable nodes,

have been derived. In this paper new fourth-order integrators are constructed by

making use of the six-step procedure of Ixaru and Vanden Berghe (Exponential

fitting, Kluwer Academic Publishers, 2004). Numerical experiments for some os-

cillatory problems are presented and compared to the results obtained by previous

methods.

MSC: 65L05,65L06
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1 Introduction

The construction of Runge-Kutta (RK) methods for the numerical solution of ODEs,

which have periodic or oscillating solutions has been considered extensively in the litera-

ture [1]-[12]. In this approach the available information on the solutions is used in order

to derive more accurate and/or efficient algorithms than the general purpose algorithms

for such type of problems. In [13] a particular six-step flow chart is proposed by which

specific exponentially-fitted algorithms can be constructed. Up to now this procedure has
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not yet been applied in all its aspects for the construction of symplectic RK methods of

Gauss type.

In principle the derivation of exponentially-fitted (EF) RK methods consists in selecting

the coefficients of the method such that it integrates exactly all functions of a particular

given linear space, i.e. the set of functions

{1, t, . . . , tK , exp(±λt), t exp(±λt), . . . , tP exp(±λt)} , (1)

where λ ∈ C is a prescribed frequency. In particular when λ = iω, ω ∈ R the couple

exp(±λt) is replaced by sin(ωt), cos(ωt). In all previous papers other set of functions

have been introduced.

On the other hand, oscillatory problems arise in different fields of applied sciences such

as celestial mechanics, astrophysics, chemistry, molecular dynamics and in many cases

the modelling gives rise to Hamiltonian systems. It has been widely recognized by sev-

eral authors [8, 12],[14]-[16] that symplectic integrators have some advantages for the

preservation of qualitative properties of the flow over the standard integrators when they

are applied to Hamiltonian systems. In this sense it may be appropriate to consider

symplectic EFRK methods that preserve the structure of the original flow. In [12] the

well-known theory of symplectic RK methods is extended to modified (i.e. by introducing

additional parameters) EFRK methods, where the set of functions {exp(±λt)} has been

introduced, giving sufficient conditions on the coefficients of the method so that symplec-

ticness for general Hamiltonian systems is preserved. Van de Vyver [12] was able to derive

a two-stage fourth-order symplectic modified EFRK method of Gauss type with constant

knot-points. Calvo et al. [2]-[4] have studied two-stage as well as three-stage methods.

In their applications for fourth-order methods they consider pure EFRK methods. Their

set of functions is the trigonometric polynomial one consisting essentially of the func-

tions exp(±λt) combined with exp(±2λt).They constructed fourth-order (two-stage case)

methods of Gauss type with frequency dependent knot points. On the other hand Vanden

Berghe et al. have constructed a two-stage EFRK method of fourth-order integrating the

set of functions (1) with (K = 2, P = 0) and (K = 0, P = 1), but unfortunately these

methods are not symplectic. In addition it has been pointed out in [14] that symmetric

methods show a better long time behaviour than non-symmetric ones when applied to

reversible differential systems.

In this paper we investigate the construction of two-stage (fourth-order) symmetric and

symplectic modified EFRK methods which integrate exactly first-order differential sys-

tems whose solutions can be expressed as linear combinations of functions present in the

set (1), but also give a review of previous work [2, 12]. Our purpose consists in deriving

accurate and efficient modified EF geometric integrators based on the combination of the

EF approach, followed from the sixth step flow chart [13], and symmetry and symplectic-
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ness conditions. The paper is organized as follows. In Section 2 we present the notations

and definitions used in the rest of the paper. In Section 3 we present the previously

derived methods of order four. In Section 4 we derive a class of new two-stage symplectic

modified EFRK integrators with frequency dependent nodes and based upon some prop-

erties of symplectic and symmetric methods also described in [4]. In Section 5 we present

some numerical experiments for fourth-order methods with oscillatory Hamiltonian sys-

tems and we compare them with the results obtained by other symplectic (EF)RK Gauss

integrators given in [2, 12, 14].

2 Notations and definitions

We consider initial value problems for first-order differential systems

y′(t) = f(t, y(t)), y(t0) = y0 ∈ R
m . (2)

In case of Hamiltonian systems m = 2d and there exits a scalar Hamiltonian function

H = H(t, y), so that f(y) = −J∇yH(t, y), where J is the 2d-dimensional skew symmetric

matrix

J =

(

0d Id

−Id 0d

)

, J−1 = −J

and where ∇yH(t, y) is the column vector of the derivatives of H(t, y) with respect to the

components of y = (y1, y2, . . . , y2d)
T . The Hamiltonian system can then be written as

y′(t) = −J∇yH(t, y(t)), y(t0) = y0 ∈ R
2d . (3)

For each fixed t0 the flow map of (2) will be denoted by φh : Rm → R
m so that φh(y0) =

y(t0+h; t0, y0). In particular, in the case of Hamiltonian systems, φh is a symplectic map

for all h in its domain of definition, i.e. the Jacobian matrix of φh(y0) satisfies

φ′
h(y0)Jφ

′
h(y0)

T = J .

A desirable property of a numerical method ψh for the numerical integration of a Hamil-

tonian system is to preserve qualitative properties of the original flow φh such as the

symplecticness, in addition to provide an accurate approximation of the exact φh.

Definition 2.1

A numerical method defined by the flow map ψh is called symplectic if for all Hamiltonian

systems (3) it satisfies the condition

ψ′
h(y0)Jψ

′
h(y0)

T = J . (4)

One of the well-known examples of symplectic numerical methods is the s-stage RK Gauss

methods which possess order 2s. In this paper we shall deal with so-called (modified)
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implicit RK-methods, introduced for the first time to obtain explicit EFRK methods

[9] and re-used by Van de Vyver [12] for the construction of two-stage symplectic RK

methods.

Definition 2.2

A s-stage modified RK method for solving the initial value problems (1) is a one step

method defined by

y1 = ψh(y0) = y0 + h
s
∑

i=1

bif(t0 + cih, Yi) , (5)

Yi = γiy0 + h

s
∑

j=1

aijf(t0 + cjh, Yj), i = 1, . . . , s , (6)

where the real parameters ci and bi are respectively the nodes and the weights of the

method. The parameters γi make the method modified with repect to the classical RK

method, where γi = 1, i = 1, . . . , s. The s-stage modified RK-method (5)-(6) can also be

represented by means of its Butcher’s tableau

c1 γ1 a11 . . . a1s

c2 γ2 a21 . . . a2s
... . . .

...
. . .

...

cs γs as1 . . . ass

b1 . . . bs

(7)

or equivalently by the quartet (c, γ, A, b).

The conditions for a modified RK method to be symplectic have been obtained by Van

de Vyver [12] and they are given in the following theorem.

Definition 2.3

A modified RK-method (5)-(6) for solving the Hamiltonian system (3) is symplectic if the

following conditions are satisfied

mij ≡ bibj −
bi
γi
aij −

bj
γj
aji = 0, 1 ≤ i, j ≤ s . (8)

In [2] it is shown that a modified RK-method not only preserves the linear invariants but

also quadratic invariants if its coefficients satisfy conditions (8).

3 A review of previously constructed two-stage methods

In all applications we shall write down the results in terms of exponential or hyperbolic

functions in order to make it easy for the reader to compare the formulae with previously

published material.
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3.1 The method of Van de Vyver [12]

Van de Vyver considers the modified RK method (7) with s = 2 and associates with the

internal stages the following linear operators:

Li[h, a]y(t) = y(t+ cih)− γiy(t)− h
2
∑

j=1

aijy
′(t+ cjh), i = 1, 2 , (9)

and with the final stage the linear operator

L[h,b]y(t) = y(t+ h)− y(t)− h

2
∑

i=1

biy
′(t + cih) (10)

Requiring that the operators vanish for the functions exp(±λt) with fixed nodes ci, i = 1, 2

gives respectively rise to the following equations for the internal (i = 1, 2) and final stages

cosh(ciz)− γi − z(ai1 sinh(c1z) + ai2 sinh(c2z)) = 0

(11)

sinh(ciz)− z(ai1 cosh(c1z) + ai2 cosh(c2z)) = 0

with z = λh and

cosh(z)− 1− z(b1 sinh(c1z) + b2 sinh(c2z)) = 0

(12)

sinh(z)− z(b1 cosh(c1z) + b2 cosh(c2z)) = 0

The equations (11) and (12) together with the symplecticity conditions

b1
a11
γ1

+ b1
a11
γ1

− b1b1 = 0, b1
a12
γ1

+ b2
a21
γ2

− b2b1 = 0,

b2
a22
γ2

+ b2
a22
γ2

− b2b2 = 0,

form a consistent non-linear system for the unknowns aij , bi and γi. In order to obtain

a fourth-order method the Gauss nodes are chosen, i.e. c1,2 = 1

2
±

√
3

6
. The following

solution was obtained:

a11 =
(exp(z)− 1)(1 + E2)

z(exp(z) + 1)(1 + E)2
, a12 =

2(exp(z)− E2)

z(exp(z) + 1)(1 + E)2
,

a21 =
2(−1 + exp(z)E2)

z(exp(z) + 1)(1 + E)2
, a22 = a11,

γ1 =
2 exp(z/2)(1 + E + E2 + E3)√

E(1 + E)2(exp(z) + 1)
, γ2 = γ1,

b1 =
exp(z)− 1

z exp(c1z)(1 + E)
, b2 = b1,

with E = exp(z
√
3/3).

(13)
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The series expansions for these coefficients for small values of z are given by:

b1 =
1

2
+

1

8640
z4 − 1

272160
z6 +

13

104509440
z8 − 163

38799129600
z10 + . . .

γ1 = 1− 1

288
z4 +

1

2160
z6 − 881

17418240
z8 +

617

117573120
z10 + . . .

a11 =
1

4
− 7

8640
z4 +

31

272160
z6 − 167

13063680
z8 +

1861

1385683200
z10 + . . .

a12 = −
√
3

6
+

1

4
+

√
3

216
z2 − (

√
3

6480
+

7

8640
)z4 + (

17
√
3

3265920
+

31

272160
)z6 −

(
31
√
3

176359680
+

167

13063680
)z8 + (

691
√
3

116397388800
+

1861

1385683200
)z10 + . . .

a21 =

√
3

6
+

1

4
−

√
3

216
z2 + (

√
3

6480
− 7

8640
)z4 + (− 17

√
3

3265920
+

31

272160
)z6

+(
31
√
3

176359680
− 167

13063680
)z8 + (− 691

√
3

116397388800
+

1861

1385683200
)z10 + . . .

Let us remark that these series are slowly converging and up to terms z22 have to be taken

into account to reach an acceptable accuracy. It is also clear that in the limit z → 0 the

well-known classical fourth-order Gauss method is reproduced (see also (21)).

3.2 The method of Calvo et al. [2]

The method of Calvo et al. starts by considering two-stage methods with variable sym-

metric nodes c1,2 = 1

2
± θ(h, λ) such that all linear functionals(9) and (10) are exact for

the set {1, exp(±λt)}. The requirement Li[h, a]1 = 0, i = 1, 2 implies that γi = 1, i = 1, 2,

meaning that classical RK are considered. The conditions L[h,b] exp(±λt) = 0 and

Li[h, a] exp(±λt) = 0, i = 1, 2 results in a unique solution for the bi’s and aij ’s, i.e.

b1 = b2 =
sinh(z/2)

z cosh(zθ)

a11 = −cosh(2zθ)− cosh(z(θ + 1/2))

z sinh(2zθ)
, a12 = −−1 + cosh(z(θ − 1/2))

z sinh(2zθ)
(14)

a21 =
−1 + cos(z(θ + 1/2))

z sinh(2zθ)
, a22 =

cosh(2zθ)− cosh(z(θ − 1/2))

z sinh(2zθ)

The symplecticness conditions (8) become here

m11 = b1(2a11 − b1) = 0

m22 = b1(2a22 − b1) = 0 (15)

m12 = m21 = b1(b1 − a12 − a21) = 0

The last condition of (15) is automatically satisfied in view of (14). The conditions m11

and m22 hold iff

θ =
1

z
arccosh





cosh(z/2) +
√

8 + cosh2(z/2)

4



 . (16)
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Further (14) and (16) imply that L[h,b] exp(±2λt) = 0 automatically and therefore

the final state is exact for the basis {1, exp(±λt), exp(±2λt)} or when λ = iω for the

trigonometric polynomial basis {1, sin(ωt), cos(ωt), sin(2ωt), cos(2ωt)}.
Also here it is worthwhile to give the series expansions:

b1 =
1

2
− 1

2160
z4 + 1

108864
z6 + 1

2799360
z8 − 23

1939956480
z10 + . . .

a11 =
1

4
− 7

8640
z4 + 31

272160
z6 − 167

13063680
z8 + 1861

1385683200
z10 + . . .

a12 = (−
√
3

6
+ 1

4
) +

√
3

432
z2 + (− 1

4320
+ 13

√
3

311040
)z4 + (− 37

√
3

17418240
+ 1

217728
)z6+

(− 1121
√
3

45148078080
+ 1

5598720
)z8 + ( 355363

√
3

178786389196800
− 23

3879912960
)z10 + . . .

a21 = (
√
3

6
+ 1

4
)−

√
3

432
z2 − ( 1

4320
+ 13

√
3

311040
)z4 + ( 37

√
3

17418240
+ 1

217728
)z6+

( 1121
√
3

45148078080
+ 1

5598720
)z8 − ( 355363

√
3

178786389196800
+ 23

3879912960
)z10 + . . .

a22 =
1

4
− 1

4320
z4 + 1

217728
z6 + 1

5598720
z8 − 23

3879912960
z10 + . . .

θ =
√
3

6
+

√
3

432
z2 −

√
3

311040
z4 − 17

√
3

17418240
z6 − 61

√
3

15049359360
z8 + 15073

√
3

16253308108800
z10 + . . .

Let us remark here that these series are also slowly converging and up to terms z22 have

to be taken into account to reach an acceptable accuracy.

4 New two-stage methods

It has been remarked by Hairer et al. [14] that symmetric numerical methods show a

better long time behaviour than nonsymmetric ones when applied to reversible differential

equations, as it is the case of conservative mechanical systems. In [3] it is observed that for

modified RK methods whose coefficients are even functions of h the symmetry conditions

are given by

c(h) + Sc(h) = e, b(h) = Sb(h), γ(h) = Sγ(h), SA(h) +A(h)S = γ(h)bT (h) , (17)

where

e = (1, ..., 1)T ∈ R
s and S = (sij) ∈ R

s×s with sij =

{

1, if i+ j = s + 1,

0, if i+ j 6= s + 1.

Since for symmetric EFRK methods the coefficients contain only even powers of h, the

symmetry conditions can be written in a more convenient form by putting [3]

c(h) =
1

2
e + θ(h), A(h) =

1

2
γ(h)bT (h) + Λ(h) , (18)

where

d(h) = (θ1, . . . , θs)
T ∈ R

s and Λ = (λij) ∈ R
s×s .
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Therefore, for a symmetric EFRK method whose coefficients aij are defined by

aij =
1

2
γibj + λij, 1 ≤ i, j ≤ s

the symplecticness conditions (8) reduce to

µij ≡
bi
γi
λij +

bj
γj
λji = 0, 1 ≤ i, j,≤ s . (19)

The idea of constructing symplectic EFRK taking into account the six-step procedure [13]

is new. We briefly shall survey this procedure and suggest some adaptation in order to

make the comparison with previous work more easy.

In step (i) we define the appropriate form of an operator related to the discussed problem.

Each of the s internal stages (6) and the final stage (5) can be regarded as being a

generalized linear multistep method on a nonequidistant grid; we can associated with each

of them a linear operator (see (9) and (10)). We further construct the so-called moments

which are for Gauss methods the expressions for Li,j(h, a) = Li[h, a]t
j , j = 0, . . . , s − 1

and Li(h,b) = L[h,b]tj , j = 0, . . . , 2s− 1 at t = 0, respectively, with s = 2.

In step (ii) the linear systems

Lij(h, a) = 0, i = 1, . . . , s, j = 0, 1, . . . , s− 1 ,

Li(h,b) = 0, i = 0, 1, . . . , 2s− 1 .

are solved to reproduce the classical Gauss RK collocation methods, showing the maxi-

mum number of functions which can be annihilated by each of the operators.

The steps (iii) and (iv) can be combined in the present context. First of all we have to

define all reference sets of s and 2s functions which are appropriate for the internal and

final stages respectively. These sets are in general hybrid sets of the following form

1, t, t2, . . . , tK or tK
′

exp(±λt), t exp(±λt), . . . , tP exp(±λt) or tP ′

exp(±λt)

where for the internal stages K + 2P = s− 3 and for the final stage K ′ + 2P ′ = 2s− 3.

The set in which there is no classical component is identified by K = −1 and K ′ = −1,

while the set in which there is no exponential fitting component is identified by P = −1

or P ′ = −1. It is important to note that such reference sets should contain all successive

functions inbetween. Lacunary sets are in principle not allowed.

Once the sets chosen the operators (9)-(10) are applied to the members of the sets, in this

particular case by taking into account the symmetry and the symplecticness conditions

described above. The obtained independent expressions are put to zero and in step (v) the

available linear systems are solved. The numerical values for λij(h), bi(h), γi(h) and θi(h)
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are expressed for real values of λ (the pure exponential case) or for pure imaginary λ = i ω

(oscillatory case). In order to make the comparison with previous work transparable we

have opted to denote the results for real λ-values.

After the coefficients in the Butcher tableau have been filled in, the principal term of the

local truncation error can be written down (step (vi)). Essentially, we know [11] that the

algebraic order of the EFRK methods remains the same as the one of the classical Gauss

method when this six-step procedure is followed, in other words the algebraic order is

O(h2s), while the stage order is O(hs). Explicit expressions for this local truncation error

will not be discussed here.

Here we shall analyze in particular the construction of symmetric and symplectic EFRK

Gauss methods with s = 2 stages whose coefficients are even functions of h. These EFRK

methods have stage order 2 and algebraic order 4. From the symmetry conditions (17),

taking into account (18) it follows that the nodes cj = cj(h
2) and weights bj = bj(h

2)

satisfy

c1 =
1

2
− θ, c2 =

1

2
+ θ, b1 = b2 ,

θ being a real parameter, and the coefficients aij = aij(h
2) and γi(h

2) satisfy:

a11 + a22 = γ1b1, a21 + a12 = γ2b1 .

The symplecticness conditions (8) or (19) are equivalent to

a11 = γ1b1/2,
a12
γ1

+
a21
γ2

= b1, a22 = γ2b2/2 ,

which results in

γ1 = γ2, λ21 = −λ12 .

Taking into account the above relations the Butcher tableau can be expressed in terms of

the unknowns θ, γ1, λ12 and b1 :

1

2
− θ γ1

γ1b1
2

γ1b1
2

+ λ12

1

2
+ θ γ1

γ1b1
2

− λ12
γ1b1
2

b1 b1

(20)

For the internal stages, the relation K +2P = −1 results in the respective (K,P )-values:

• (K = 1, P = −1) (the classical polynomial case with hybrid set {1, t}), and

• (K = −1, P = 0) (the full exponential case with hybrid set {exp(λt), exp(−λt)}).

For the outer stage, we have K ′ + 2P ′ = 1, resulting in the respective (K ′, P ′)-values:

• (K ′ = 3, P ′ = −1) (the classical polynomial case with hybrid set {1, t, t2, t3}),
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• (K ′ = 1, P ′ = 0) (mixed case with hybrid set {1, t, exp(±λt)}) and

• (K ′ = −1, P ′ = 1)( the full exponential case with hybrid set {exp(±λt), t exp(±λt)}).

The hybrid sets (K = 1, P = −1) and (K ′ = 3, P ′ = −1) are related to the polynomial

case, giving rise to the well-known RK order conditions and to the fourth order Gauss

method [17]
1

2
−

√
3

6
1 1

4

1

4
−

√
3

6

1

2
+

√
3

6
1 1

4
+

√
3

6

1

4

1

2

1

2

(21)

Let us remark that considering the (K = 1, P = −1) set for the internal stages gives rise

to γ1 = 1, a value which is not compatible with the additional symmetry, symplecticity

and order conditions imposed. Therefore in what follows we combine the (K = −1, P = 0)

case with either (K ′ = 1, P ′ = 0) or (K ′ = −1, P ′ = 1).

Case (K ′ = 1, P ′ = 0)

The operators (9) and (10) are applied to the functions present in the occurring hybrid

sets, taking into account the structure of the Butcher tableau (20). Following equations

arise with z = λh:

2b1 = 1 (22)

2b1 cosh(z/2) cosh(θz) =
sinh(z)

z
(23)

λ12 cosh(θz) = −sinh(θz)

z
(24)

λ12 sinh(θz)−
cosh(θz)

z
= −γ1

z
cosh(z/2) (25)

resulting in the results

b1 = 1/2, θ =
1

z
arccosh

(

2 sinh(z/2)

z

)

, λ12 = − sinh(θz)

z cosh(θz)

γ1 =
z

cosh(z/2)

(

sinh(θz)2

z cosh(θz)
+

cosh(θz)

z

)

.

The series expansions for these coefficients for small values of z are given by

θ =
√
3
(

1

6
+ 1

2160
z2 − 1

403200
z4 + 1

145152000
z6 + 533

9656672256000
z8 − 2599

2789705318400000
z10 + . . .

)

,

λ12 =
√
3
(

−1

6
+ 1

240
z2 − 137

1209600
z4 + 143

48384000
z6 − 81029

1072963584000
z8 + 16036667

8369115955200000
z10 + . . .

)

,

γ1 = 1− 1

360
z4 + 11

30240
z6 − 71

1814400
z8 + 241

59875200
z10 + . . . ,
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showing that for z → 0 the classical values are retrieved.

Case (K ′ = −1, P ′ = 1)

In this approach equations (23)-(25) remain unchanged and they deliver expressions for

b1, γ1 and λ12 in terms of θ. Only (22) is replaced by

b1(cosh(θz) (2 cosh(z/2) + z sinh(z/2)) + 2θz cosh(z/2) sinh(θz)) = cosh(z) (26)

By combining (23) and (26) one obtains an equation in θ and z, i.e.:

θ sinh(z) sinh(θz) = cosh(θz)

(

cosh(z)− sinh(z)

z
− sinh2(z/2)

)

It is not anymore possible to write down an analytical solution for θ, but iteratively a

series expansion can be derived. We give here those series expansions as obtained for the

four unknowns

θ =
√
3
(

1

6
+ 1

1080
z2 + 13

2721600
z4 − 1

7776000
z6 − 1481

1810626048000
z8 + 573509

63552974284800000
z10 + . . .

)

,

b1 =
1

2
− 1

8640
z4 + 1

1088640
z6 + 1

44789760
z8 − 149

775982592000
z10 + . . .

λ12 =
√
3
(

−1

6
+ 1

270
z2 − 223

2721600
z4 + 17

9072000
z6 − 259513

5431878144000
z8 + 9791387

7944121785600000
z10 + . . .

)

,

γ1 = 1− 1

480
z4 + 17

60480
z6 − 2629

87091200
z8 + 133603

43110144000
z10 + . . . .

5 Numerical experiments

In this section we report on some numerical experiments where we test the effectiveness of

the new and the previous [2, 12] (modified) Runge-Kutta methods when they are applied

to the numerical solution of several differential systems. All the considered codes have

the same qualitative properties for the Hamiltonian systems. In the figures we show the

decimal logarithm of the maximum global error versus the number of steps required by

each code in logarithmic scale. All computations were carried out in double precision and

series expansions are used for the coefficients when |z| < 0.1.

Problem 1: Kepler’s plane problem defined by the Hamiltonian function

H(p, q) =
1

2
(p2

1
+ p2

2
)− (q2

1
+ q2

2
)−1/2 ,

with the initial conditions q1(0) = 1 − e, q2(0) = 0, p1(0) = 0, p2(0) = ((1 + e)/(1 −
e))

1

2 , where e, (0 ≤ e < 1) represents the eccentricity of the elliptic orbit. The exact

solution of this IVP is a 2π-periodic elliptic orbit in the (q1, q2)-plane with semimajor

axis 1, corresponding the starting point to the pericenter of this orbit. In the numerical
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experiments presented here we have chosen the same values as in [4], i.e. e = 0.001, λ = iω

with ω = (q2
1
+ q2

2
)−

3

2 and the integration is carried out on the interval [0, 1000] with the

steps h = 1/2m, m = 1, . . . , 4. The numerical behaviour of the global error in the solution

is presented in figure 1. The results obtained by the four discussed methods (Calvo et

al. (Calvo), Van de Vyver (Vyver), the new methods with P = 0 and P = 1) and the

classical Gauss method (class.) are represented. The results for the four EFRK methods

are approximately falling together. They are however more accurate than the results of

the classical Gauss method of the same order.

3.2 3.4 3.6 3.8 4 4.2 4.4
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P=0
P=1
Vyver
Calvo

Figure 1.— Maximum global error in the solution of Problem 1.

Problem 2 A perturbed Kepler’s problem defined by the Hamiltonian function

H(p, q) =
1

2
(p2

1
+ p2

2
)− 1

(q2
1
+ q2

2
)1/2

− 2ǫ+ ǫ2

3(q2
1
+ q2

2
)3/2

,

with the initial conditions q1(0) = 1, q2(0) = 0, p1(0) = 0, p2(0) = 1+ ǫ , where ǫ is a small

positive parameter. The exact solution of this IVP is given by

q1(t) = cos(t+ ǫt), q2(t) = sin(t+ ǫt), pi(t) = q′i(t), i = 1, 2 .

As in [4] the numerical results are computed with the integration steps h = 1/2m, m =

1, . . . , 4. We take the parameter ǫ = 10−3, λ = iω with ω = 1 and the problem is integrated

up to tend = 1000.. The global error in the solution is presented in figure 2. The methods

of Van de Vyver with the constant nodes gives the most accurate values. Our two new

66



3.2 3.4 3.6 3.8 4 4.2 4.4
−8

−7

−6

−5

−4

−3

−2

−1

0

1

steps

er
ro

r

 

 
class.
P=0
P=1
Vyver
Calvo

Figure 2.— Maximum global error in the solution of Problem 2.

symmetric methods are more accurate that the one of Calvo et al. All EFRK methods

are more accurate than the classical Gauss method.

Problem 3 Euler’s equations that describe the motion of a rigid body under no forces

q̇ = f(q) = ((α− β)q2q3, (1− α)q3q1, (β − 1)q1q2)
T ,

with the initial values q(0) = (0, 1, 1)T , and the parameter values α = 1 +
1√
1.51

and

β = 1− 0.51√
1.51

. The exact solution of this IVP is given by

q(t) =
(√

1.51 sn(t, 0.51), cn(t, 0.51), dn(t, 0.51)
)T

,

it is periodic with period T = 7.45056320933095, and sn, cn, dn stand for the elliptic

Jacobi functions. Figure 3 shows the numerical results obtained for the global error

computed with the interation steps h = 1/2m, m = 1, . . . , 4, on the interval [0, 1000], and

respective λ-values λ = i2π/T (left) and λ = i/2 (right). In this problem the choice of

the frequency is not so obvious and therefore the differentiation between the classical and

the EF methods is not so pronounced. For λ = i2π/T only the results of Calvo et al. are

more accurate that the classical Gauss results. For λ = i/2 all EFRK results are falling

together and are slightly more accurate than the classical results.
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Figure 3.— Maximum global error in the solution of Problem 3. In the upper figure

the results obtained with λ = i2π/T are displayed. In the bottom figure the results

obtained with λ = i/2 are shown.
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6 Conclusions

In this paper another approach for constructing symmetric symplectic modified EFRK

methods based upon the sixth-step procedure of [13] is presented. Two-stage fourth-order

integrators of Gauss type which are symmetric and symplectic and which preserve linear

and quadratic invariants have been derived. When the frequency used in the exponen-

tial fitting process is put to zero all considered integrators reduce to the classical Gauss

integrator of the same order. Some numerical experiments show the utility of these new

integrators for some oscillatory problems. The results obtained here are quite similar to

the ones obtained in [2] and [12], but they differ in some of the details. The introduced

method can be extended to EFRK with larger algebraic order.
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