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Abstract

This paper focuses on the impact of Racah on crystal- and ligand-field theories,

two branches of molecular physics and condensed matter physics (dealing with ions

embedded in aggregates of finite symmetry). The role of Racah and some of his stu-

dents in developing a symmetry-adapted weak-field model for crystal-field theory is

examined. Then, we discuss the extension of this model to a generalized symmetry-

adapted weak-field model for ligand-field theory. Symmetry considerations via the

use of the Wigner-Racah algebra for chains of type SU(2) ⊃ G is essential for these

weak-field models. Therefore, the basic ingredients for the Wigner-Racah algebra

of a finite or compact group are reviewed with a special attention paid to the SU(2)

group in a SU(2) ⊃ G basis. Finally, as an unexpected application of nonstandard

SU(2) bases, it is shown how SU(2) bases adapted to the cyclic group allow to build

bases of relevance in quantum information.

1 Introduction

The legacy of Giulio Racah (Firenze, 1909-1965) stems mainly from his four papers Theory

of complex spectra published between 1942 and 1949 [1, 2, 3, 4], his notes on group-theoretical

methods in spectroscopy based on lectures given at the Institute for Advanced Study in Princeton

in 1951 [5, 6], and his book on irreducible tensorial sets written in collaboration with his cousin

Ugo Fano [7].
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It was the purpose of the first paper of his famous series [1, 2, 3, 4] to substitute to the

numerical methods of Slater, Condon and Shortley general methods more conformable to the

Dirac representation of state vectors. The main achievements realized in [1, 2, 3, 4, 5, 6, 7] deal

with irreducible tensor methods, Wigner-Racah algebra (or Racah-Wigner algebra or Racah

algebra, a concept to be precisely defined in Section 3) and group-theoretical methods involving

chains of Lie groups. More precisely, let us mention the following important contributions.

• The development of the algebra of coupling and recoupling coefficients for the SU(2) group

in a SU(2) ⊃ U(1) basis, with introduction of the V and V functions (the V symbol is

identical to the 3–jm Wigner symbol up to a permutation of its columns) and of the

W , W and X functions (the W and X symbols are identical to the 6–j and 9–j Wigner

symbols, respectively).

• The introduction of the concept of a SU(2) irreducible tensor operator that generalizes the

notion of a vector operator and the generalization to tensor operators of the Wigner-Eckart

theorem for vector operators.

• The introduction of the notion of a unit tensor operator, the matrix elements of which in

a SU(2) ⊃ U(1) basis are nothing but Clebsch-Gordan coefficients (up to a multiplicative

factor), with the advantage that any tensor operator is proportional to a unit tensor

operator.

• The introduction of the concept of seniority which is related to the state labeling problem.

• The development of the notion of coefficients of fractional parentage, previously introduced

by Goudsmit and Bacher, which make it possible to develop a n–particle wavefunction in

terms of (n− 1)–particle wavefunctions.

• The introduction of chains of Lie groups, involving both invariance and classification

groups, for characterizing state vectors and interactions involved in spectroscopic prob-

lems. To implement the use of chains of groups, Racah introduced a factorization lemma

and developed the notion of a complete set of commuting operators (involving Cartan

operators, invariant or Casimir operators and labeling operators) in a group-theoretical

context.

The series of seminal works [1, 2, 3, 4, 5, 6, 7] opened the way for many applications by

Racah himself, his students and a large part of the community of scientists working in atomic

and nuclear spectroscopy (see the list of Racah’s publications in [8]). In particular, the meth-

ods of Racah were popularized by Judd [9], Wybourne [10], and Condon and Odabaşi [11] in

atomic physics and by de-Shalit and Talmi [12] in nuclear physics (see also [13, 14, 15, 16] for

recent developments in nuclear and molecular physics). The basic concepts introduced and/or

developed by Racah in his pioneer works were also of considerable importance in molecular and

condensed matter physics. More specifically, these works stimulated an enormous quantity of
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developments in vibration-rotational spectroscopy of molecules and in crystal- and ligand-field

theories as will be shown below.

We shall be concerned here with the impact of Racah on crystal- and ligand-field theories,

two theories which deal with optical, magnetic and thermal properties of ions embedded in

molecular, condensed matter or biological surroundings. Racah never published papers about

these theories. However, he was interested in molecular physics as shown by the fact that he

published in 1943 a short note on the structure of the Mo(CN)4−
8

complex ion [17]. His interest for

molecular physics and the physics of ions in crystals was reinforced and stimulated by a seminar

given by his colleague Willy Low in the Department of Physics of the Hebrew University of

Jerusalem in 1956 [18, 19, 20]. The seminar was devoted to the role of crystalline fields on the

optical spectra of transition-metal ions (like Ni2+ and Co2+) in crystals. Racah became very

much interested in this research subject and decided to guide students in this direction. His

idea was to combine his irreducible tensor methods with the group-theoretical methods largely

used in crystal-field theory (but principally applied in those times to a qualitative explanation

of the level splitting for a given ion embedded in a finite symmetry surrounding). Along this

line, Racah and Low directed two graduate students, Schoenfeld who studied the case of the d2

and d3 configurations in cubic symmetry [21] and Rosengarten who dealt with the case of d4

and d5 configurations in the same symmetry [22]. Then, Racah asked another student, Flato,

to work out the more involved case of the d2 and d3 configurations in trigonal and tetragonal

symmetries [23]. Five years after having completed his thesis, the material contained in Flato’s

thesis was still of such an interest that he was asked to publish it (for the main part) [24] (see also

[25]). Research in that direction continued with a general formalism and a symmetry-adapted

weak-field model developed by the present author in his thesis prepared under the guidance of

Flato [26, 27, 28].

It is one of the aims of the present review to show how Racah directly and indirectly con-

tributed to the penetration in crystal- and ligand-field theories of the tools he originally de-

veloped for atomic and nuclear spectroscopy. Another aim of this article is to show how the

Wigner-Racah algebra for a group of molecular or crystallographic interest can be deduced from

the one of SU(2) in a nonstandard basis. To a large extent, this paper constitutes a brief review

of the methods and models used in crystal- and ligand-field theories as well as a pedestrian

presentation of the Wigner-Racah algebra for a chain of groups involving finite and/or compact

groups. As an application of the SU(2) ⊃ G chain, where G is a cyclic group, a brief contact is

established with quantum information, a field of considerable interest in the present days.

The material in this paper is organized as follows. Section 2 deals with crystal- and ligand-

field theories. The basic ingredients for the Wigner-Racah algebra of a finite or compact group

together with some illustrative examples are given in Section 3. Section 4 is devoted to a short

incursion in quantum information via the use of specific chains of type SU(2) ⊃ G.

Most of the notations are standard. The star denotes complex conjugation, δab the Kronecker

delta symbol of a and b, and A† the adjoint of the operator A. We use a notation of type |ψ)
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(as in Racah’s papers), or |ψ〉 (as in quantum information), for a vector in an Hilbert space and

we denote 〈φ|ψ〉 and |φ〉〈ψ| respectively the inner and outer products of the vectors |ψ〉 and |φ〉.

Specific notations on group theory shall be introduced later.

2 Crystal- and ligand-field theories

2.1 Generalities

Crystal- and ligand-field theories deal with the description and interpretation of electronic

and magnetic properties (optical spectra, electron paramagnetic resonance spectra, photo-electron

spectra, etc.) of a partly-filled shell ion in a molecular, condensed matter or biological environ-

ment. Crystal-field theory (based on the use of atomic orbitals) goes back to the end of the

twenties with the seminal work by Bethe [29] and was applied to the spectroscopy of ions in

solids in the early days of quantum mechanics. It is only in the fifties that ligand-field theory

(based on the use of molecular orbitals) was the object of numerous studies. In modern parlance,

crystal- and ligand-field theories are special cases of the theory of level splitting.

As a typical example, let us consider the case of a ruby crystal. It consists of corindon (Al2O3)

doped with trivalent chromium ions (Cr3+) in substitution with trivalent aluminum ions (Al3+).

The electrons of each Cr3+ ion are thus subjected to inhomogeneous electric fields arising from

the ligands or coordinats constituted by the oxygen atoms. These electric (or crystalline) fields

yield a level splitting of the energy levels of the Cr3+ ion. One-photon transitions in the visible

between the split levels are responsible for the nice pink to blood-red color of ruby.

The distinction between crystal-field theory and ligand-field theory is as follows. In crystal-

field theory one uses atomic orbitals for the central partly-filled shell ion (the Cr3+ ion in

our example) whereas in ligand-field theory one considers molecular orbitals made of linear

combinations of atomic orbitals of the central ion and of the ligands or coordinats (the O2− ions

in our example).

2.2 The Hamiltonian

We shall consider the common case of an ion with a ℓN atomic configuration (N equivalent

electrons on a nℓ shell outside of a set of closed shells). The ℓ = 2 case corresponds to transition

metal-ions and the ℓ = 3 case to rare earth and actinide ions. In first approximation, the

perturbation Hamiltonian H for such an ion embedded in a crystalline field reads

H := HC + Hso + Hcf (1)

where HC stands for the two-body Coulomb interaction between the N electrons, Hso the one-

body spin-orbit interaction for the N electrons and Hcf the one-body interaction between the

N electrons and the environment of the central ion. Obviously, HC and Hso are rotationally

invariant and Hcf is invariant under the point symmetry group G of the ion and its surrounding.
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Therefore, the O(3) ⊃ G chain of groups naturally plays an important role in the description of

the ion in its environment (the three-dimensional orthogonal group O(3) is isomorphic with the

three-dimensional rotation group). When G contains only rotations, it is sufficient to consider

the SO(3) ⊃ G chain for N even (SO(3) is the three-dimensional special orthogonal group) or

the SU(2) ⊃ G∗ chain for N odd, where SU(2) and G∗ are the spinor groups (double groups

in the terminology of Bethe) of SO(3) ∼ SU(2)/Z2 and G ∼ G∗/Z2, respectively. We can

thus understand the importance of both continuous and finite groups in crystal- and ligand-field

theories.

In view of the various terms in H, we can have several families of models. The situations

HC > Hso > Hcf (2)

and

Hcf > HC > Hso (3)

correspond to the so-called weak-field model and the strong-field model, respectively. The

strong-field model was mainly developed in the fifties by Tanabe, Sugano and Kamimura in

Japan [30, 31, 32, 33, 34, 35] and by Griffith in England [36, 37, 38, 39, 40, 41, 42, 43, 44, 45],

and later by Tang Au-chin and his collaborators in China [46, 47, 48, 49, 50] as well as by

Smirnov and his collaborators in the former USSR [51, 52, 53, 54, 55]. The weak-field model,

although worked out in the early days of crystal-field theory, was systematically developed from

the sixties. In particular, a symmetry-adapted version of the weak-field model was introduced,

as we mentioned in the introduction, following a suggestion of Racah by two of his students,

Schoenfeld [21] and Flato [23, 24]. It was further developed by the present author and some

of his collaborators [26, 27, 56, 57, 58, 59] (see also [46, 47, 48, 49, 50, 51, 52, 53, 54, 55]). In

crystal-field theory, the weak- and strong-field models are a priori equivalent if the matrix of H

is set up on the

CN
4ℓ+2

:=
(4ℓ + 2)!

(4ℓ + 2 −N)!N !
(4)

state vectors of the ℓN configuration. Nevertheless, the implementations of the two models are

quite different as it will be shown below. As an illustration, we shall now discuss in turn the

two models (strong- and weak-field models) in the special case of dN ions in cubic symmetry.

2.3 Strong-field models

It is difficult to describe the strong-field model in the general case of ℓN in G. Hence,

we consider the case of a dN ion (ℓ = 2) in octahedral symmetry (G = O). The restriction

SO(3) → O yields the following decomposition

2 = E ⊕ T2 (5)

of the irreducible representation class (IRC) of SO(3) associated with ℓ = 2 into a direct sum

of the IRCs E and T2 of finite group O. As a consequence, there is a splitting level: the five
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degenerate d orbitals give rise to a E doublet (with two degenerate orbitals e) and a T2 triplet

(with three degenerate orbitals t2). The e and t2 orbitals can be considered as symmetry-

adapted atomic orbitals (in crystal-field theory) or as molecular orbitals (in ligand-field theory).

The distribution of the N electrons on the t2 and e orbitals, according to the Pauli exclusion

principle, yields (molecular) configurations of type tx
2
eN−x. Then, we can form (molecular) terms

tx
2
(S1Γ1)e

N−x(S2Γ2), where S1 and S2 are the total spins for the x and N−x electrons on the t2

and e orbitals, respectively. Furthermore, Γ1 (contained in T⊗x
2

) and Γ2 (contained in E⊗(N−x))

denote the IRCs characterizing the orbital parts of the t2 and e electrons. The next step is to

couple S1 with S2 to get the total spin S (contained in S1 ⊗ S2) and Γ1 with Γ2 to obtain Γ

(contained in Γ1 ⊗ Γ2). This leads to (molecular) states tx
2
(S1Γ1)eN−x(S2Γ2)SΓ. Finally, the

coupling of S (decomposed into IRCs of O∗) with Γ gives the total IRC ΓT (an internal branching

multiplicity label b is necessary when ΓT occurs several times in the reduction of S ⊗ Γ). As a

result, we get state vectors of type

|tx2(S1Γ1)e
N−x(S2Γ2)SΓbΓTγT ) (6)

which are expressed (via complicated formulas) in terms of one-electron state vectors by means

of coupling coefficients and coefficients of fractional parentage. Note that the label γT in (6) is

necessary when the dimension of ΓT is greater than 1.

The calculation of the matrix elements of Hcf in the strong-field basis (6) is elementary.

However, this is not the case for HC + Hso. The construction of the matrix of HC + Hso on

CN
4ℓ+2

state vectors (6) requires the knowledge of coupling and recoupling coefficients for both

SU(2) and G∗ as well as coefficients of fractional parentage for the configurations tx
2
eN−x.

From the practical point of view, the just described strong-field approach leads to:

• a five-parameter model in a crystal-field framework where the t2 and e orbitals are atomic

orbitals, called ordinary strong-field model, with 3 parameters for HC (F0, F2 and F4

of Slater or A, B and C of Racah, see the appendix), 1 parameter for Hso (ζnd) and 1

parameter for Hcf (10Dq)

• a fourteen-parameter model in a ligand-field framework where the t2 and e orbitals are

molecular orbitals, called generalized strong-field model, with 10 parameters for HC , 2

parameters for Hso and 2 parameters for Hcf .

The strong-field models present several drawbacks. The case of dN in O is difficult to extend

to the case of ℓN in G: replacing O by G and/or dN by ℓN requires that the calculation for HC

and Hso, which involves complicated Wigner-Racah algebra developments for the G or G∗ group

with several phase problems, have to be done again. This kind of difficulty does not appear in

a weak-field approach as shown below.
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2.4 Weak-field models

In the case of ℓN in G, we may think to use atomic state vectors of type |nℓNαSLJM).

However, such state vectors, adapted to the SU(2) ⊃ U(1) chain, are not generally adapted

to the G∗ symmetry group. The idea of Racah was to use linear combinations of the vectors

|nℓNαSLJM) transforming as IRCs of G∗ and to employ his methods for calculating the energy

matrix of H. Therefore, the matrices for HC and Hso, in a SU(2) ⊃ G∗ symmetry-adapted

basis, are the same as the ones of atomic spectroscopy (already calculated by Racah or easily

calculable from Racah’s methods) and the matrix of Hcf depends on reduced matrix elements of

one-electron Racah unit tensor operators and SU(2) ⊃ G∗ symmetry-adapted Clebsch-Gordan

coefficients. Thus, the implementation of the symmetry-adapted weak-field model is easier

than the one of the ordinary strong-field model. Following Racah’s idea, Schoenfeld and Flato

calculated the matrix of H for the d2 and d3 configurations in cubic symmetry [21] and in

tetragonal and trigonal symmetries [23, 24]. Later, Low and Rosengarten dealt with the case

of the d5 configuration in cubic symmetry in connection with the optical spectra of Mn2+

2
and

Fe3+ ions in crystalline fields [22].

The Wigner-Racah algebra for the SU(2) group in a SU(2) ⊃ G∗ symmetry-adapted basis

of interest for the symmetry-adapted weak-field model was developed by the present author

[26, 27, 28, 60] and further considered by several authors [61, 62, 63, 64, 65, 66, 67, 68, 69].

The main ingredients of the resulting symmetry-adapted weak-field model for ℓN in G can be

summed up as follows.

The symmetry-adapted weak-field state vectors are of type

|nℓNαSLJaΓγ) :=
J
∑

M=−J

|nℓNαSLJM)(JM |JaΓγ) (7)

where Γ is an IRC of G∗, a a branching multiplicity label to be used when the (J) IRC of SU(2),

associated with the J quantum number, contains Γ several times and γ a multiplicity label to

be used when the dimension of the Γ IRC is greater than 1. In (7), the (JM |JaΓγ) reduction

coefficients are elements of a unitary matrix which reduces the representation matrix associated

with the (J) IRC of SU(2) into a direct sum of representation matrices of G∗. They have to be

distinguished from the reduction coefficients obtained from the diagonalization of an operator

invariant under the G group [70, 71, 72, 73, 74, 75]. The (JM |JaΓγ) reduction coefficients are

chosen in such a way that the set

{|nℓNαSLJaΓγ) : γ ranging} (8)

spans a representation matrix associated with Γ independent of the atomic quantum numbers

and that the values of the corresponding coupling coefficients (the f coefficients below) are

square roots of rational numbers. Then, the matrices for HC and Hso follow from

(nℓNαSLJaΓγ|HC |nℓ
Nα′S′L′J ′a′Γ′γ′) = δSS′δLL′δJJ ′δaa′δΓΓ′δγγ′

×∆(S,L, J)(nℓNαSLMSML|HC |nℓ
Nα′SLMSML) (9)
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and

(nℓNαSLJaΓγ|Hso|nℓ
Nα′S′L′J ′a′Γ′γ′) = δJJ ′δaa′δΓΓ′δγγ′

×(nℓNαSLJM |Hso|nℓ
Nα′S′L′JM) (10)

where ∆(S,L, J) is 1 if S, L and J satisfy the triangular condition and 0 otherwise ; in (9)

and (10), the matrix elements in the right-hand sides are independent of the magnetic quantum

numbers MS ,ML and M , respectively. Clearly, the energy matrices for HC and Hso do not

depend on the G group and are easily built from the works of Racah (the matrix elements in the

right-hand sides of (9) and (10) are known for the pN , dN and fN configurations [76] or easily

calculable from computer programs). On the other hand, the matrix of Hcf can be readily set

up by making use of the development

Hcf =
∑

ka0

D[ka0]U
(k)
a0Γ0γ0

(11)

where U
(k)
a0Γ0γ0

is a component of a Racah unit tensor operator U
k invariant under G (i.e.,

transforming as the Γ0 identity IRC of G). In (11), D[ka0] are crystal-field parameters connected

to the Bk
q parameters (in Wybourne’s normalization [10, 77]) via

D[ka0] = (−1)ℓ(2ℓ+ 1)

(

ℓ k ℓ

0 0 0

) k
∑

q=−k

Bk
q (kq|ka0Γ0γ0)

∗ (12)

and a0 is a branching multiplicity label to be used when Γ0 appears several times in the decom-

position of the (k) IRC of SO(3). (The index γ0 in (11) and (12) is not really necessary since Γ0

is a one-dimensional IRC; it is mentioned only for aesthetic reasons.) Then, the matrix elements

of Hcf in a SU(2) ⊃ G∗ symmetry-adapted weak-field basis are given by

(nℓNαSLJaΓγ|Hcf |nℓ
Nα′S′L′J ′a′Γ′γ′) = δSS′δΓΓ′δγγ′

× (−1)S+L′+J
√

(2J + 1)(2J ′ + 1)
∑

ka0

D[ka0] (13)

× (nℓNαSL‖U (k)
‖nℓNα′SL′)

{

L k L′

J ′ S J

}

f

(

J J ′ k

aΓ a′Γ a0Γ0

)

where {. . .} stands for a 6–j Wigner symbol and f is a coupling coefficient defined by

f

(

J J ′ k

aΓ a′Γ a0Γ0

)

:=

J
∑

M=−J

J ′

∑

M ′=−J ′

k
∑

q=−k

(JM |JaΓγ)∗(kq|ka0Γ0γ0)(J ′M ′
|J ′a′Γγ)

× (−1)J−M

(

J k J ′

−M q M ′

)

(14)

This f coefficient is independent of γ [24, 26]. It is a particular case of the f coefficient defined

in [26] by

f

(

j1 j2 k

µ1 µ2 µ

)

:=

j1
∑

m1=−j1

j2
∑

m2=−j2

k
∑

q=−k

(j1m1|j1µ1)∗(kq|kµ)(j2m2|j2µ2)

× (−1)j1−m1

(

j1 k j2

−m1 q m2

)

(15)
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where

µ1 := a1Γ1γ1, µ2 := a2Γ2γ2, µ := aΓγ (16)

(see also [60]). As a conclusion, the calculation of the matrix of H in a symmetry-adapted

weak-field basis (via (9), (10) and (13)) is considerably simpler than in a strong-field basis.

In the case of dN in O, the just described symmetry-adapted weak-field approach, based on

(9), (10) and (13), leads to a weak-field model which is equivalent to the ordinary (or ionic)

strong-field model with the parameters A, B, C, ζnd and 10Dq. More generally for ℓN in G, the

symmetry-adapted weak-field model and the ionic strong-field model are equivalent. However

for ℓN in G, the symmetry-adapted weak-field model and the generalized (or covalent) strong-

field model are not equivalent. Thus, it is desirable to develop a generalized symmetry-adapted

weak-field model equivalent to the generalized strong-field model. This will be done in the next

section.

2.5 Generalized weak-field model

To generalize the symmetry-adapted weak-field model, we keep the symmetry-adapted weak-

field basis (7) intact in order to take advantage of its simplicity. The sole modification to be done

consists in replacing the Hamiltonian H by an effective Hamiltonian Heff . The Hamiltonian Heff

for ℓN in G should reduce to H for some special values of its parameters, should be an Hermitian

operator invariant under the G group and the time-reversal operator, and should contain one-

and two-body spin and orbit interactions. For the sake of easy calculations, Heff should involve

a coupling scheme which is reminiscent of the {SLJ} coupling scheme of the state vectors (7).

Therefore, we take Heff in the form

Heff :=
∑

i,j

∑

all k

∑

a0

D[(k1k2)kS(k3k4)kLka0]

× {{u
(k1)(i) ⊗ u

(k2)(j)}(kS ) ⊗ {u
(k3)(i) ⊗ u

(k4)(j)}(kL)
}
(k)
a0Γ0γ0

(17)

where the u’s are one-electron Racah unit tensor operators with {u
(k1)(i) ⊗ u

(k2)(j)}(kS ) acting

on the spin part and {u
(k3)(i) ⊗ u

(k4)(j)}(kL) on the orbital part of the state vectors (7). The

sums over i and j in (17) are extended over the N electrons and the sums over the k’s and a0

are limited, like in (11), by hermiticity and symmetry properties of Heff (invariance under the G

group and the time-reversal operator) and by the selection rules on the matrix elements of Heff

in the basis (7). Furthermore, the parameters D[(k1k2)kS(k3k4)kLka0] comprise the Coulomb

interelectronic parameters, the spin-orbit parameters and the crystal-field parameters of the

ordinary weak-field model plus some additional parameters to be described below. The most

important (as far as a comparison with the generalized strong-field model is in order) parameters

in Heff can be classified in the following way.

1. The D[(00)0(kk)00] parameters correspond to the ordinary or isotropic Coulomb interac-

tion between the N electrons.
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2. The D[(00)0(k3k4)kLkLa0] parameters with kL 6= 0 correspond to anisotropic Coulomb

interactions between the N electrons or ligand-field correlated Coulomb interactions.

3. The D[(ss)1(ℓℓ)10] parameter corresponds to the ordinary or isotropic spin-orbit interac-

tion for the N electrons (s = 1/2).

4. The D[(ss)1(ℓℓ)kLka0] parameters with kL 6= 1 correspond to anisotropic spin-orbit in-

teractions for the N electrons or ligand-field correlated spin-orbit interactions.

5. The D[(ss)0(ℓℓ)kLkLa0] parameters correspond to the ligand-field interaction.

The building of the energy matrix of Heff in the basis (7) is very simple. Indeed, we have

the following matrix elements

(nℓNαSLJaΓγ|Heff |nℓ
Nα′S′L′J ′a′Γ′γ′) = δΓΓ′δγγ′

×

∑

all k

∑

a0

D[(k1k2)kS(k3k4)kLka0]f

(

J J ′ k

aΓ a′Γ a0Γ0

)

∑

i,j

(18)

× (nℓNαSLJ‖{{u(k1)(i) ⊗ u
(k2)(j)}(kS ) ⊗ {u

(k3)(i) ⊗ u
(k4)(j)}(kL)

}
(k)

‖nℓNα′S′L′J ′)

where the reduced matrix element (‖ . . . ‖) can be calculated from the Racah’s standard methods.

The symmetry-adapted weak-field approach based on (17) and (18) leads to a model that

turns out to be equivalent to the generalized strong-field model. However, the generalized

symmetry-adapted weak-field model contains more parameters than the generalized strong-field

model (e.g., the Hamiltonian given by (17) contains spin-spin and orbit-orbit interaction pa-

rameters that do not occur in the generalized strong-field model). The D[(k1k2)kS(k3k4)kLka0]

parameters can be considered as phenomenological global parameters to be fitted on experimen-

tal data. All or part of these parameters can be interpreted and calculated in the framework of

ab initio microscopic models as for instance the angular overlap model [78, 79], the superposi-

tion model [80] and the MO-LCAO model [81, 82, 83, 84]. (See the appendix for the connection

between the isotropic Coulomb interaction parameters and the Slater-Condon-Shortley param-

eters.) Of course, the generalized symmetry-adapted weak-field model gives back the ordinary

symmetry-adapted weak-field model as a particular case when some parameters vanish.

By way of illustration, let us consider the case of dN in O. The corresponding Hamiltonian

Heff can be restricted to an operator containing 14 parameters, namely,

• 10 Coulomb parameters:

D[(00)0(00)00], D[(00)0(22)00], D[(00)0(44)00],

D[(00)0(04)44], D[(00)0(22)44], D[(00)0(24)44],

D[(00)0(44)44], D[(00)0(24)66], D[(00)0(44)66], D[(00)0(44)88];

• 2 spin-orbit parameters:

D[(ss)1(22)10], D[(ss)1(22)34];

• 2 ligand-field parameters:

D[(ss)0(22)00], D[(ss)0(22)44];
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It can be shown that the generalized symmetry-adapted weak-field model with these 14 param-

eters is equivalent to the generalized strong-field model for dN in O [58]. Such an equivalence

was also worked out for the case of fN in O. In this case, the generalized symmetry-adapted

weak-field model can be restricted to involve the following 33 parameters

• 26 Coulomb parameters:

D[(00)0(00)00], D[(00)0(22)00], D[(00)0(44)00], D[(00)0(66)00],

D[(00)0(04)44], D[(00)0(22)44], D[(00)0(24)44], D[(00)0(26)44],

D[(00)0(44)44], D[(00)0(46)44], D[(00)0(66)44], D[(00)0(06)66],

D[(00)0(24)66], D[(00)0(26)66], D[(00)0(44)66], D[(00)0(46)66],

D[(00)0(66)66], D[(00)0(26)88], D[(00)0(44)88], D[(00)0(46)88],

D[(00)0(66)88], D[(00)0(46)99], D[(00)0(46)10, 10], D[(00)0(66)10, 10],

D[(00)0(66)12, 12a], D[(00)0(66)12, 12b];

• 4 spin-orbit parameters:

D[(ss)1(33)10], D[(ss)1(33)34], D[(ss)1(33)54], D[(ss)1(33)56];

• 3 ligand-field parameters:

D[(ss)0(33)00], D[(ss)0(33)44], D[(ss)0(33)66].

The generalized symmetry-adapted weak-field model with these 33 parameters is equivalent to

the generalized strong-field model for fN in O [58].

2.6 Transition intensities

In addition to be useful for the calculation of energy levels of a partly-filled shell ion in a given

surrounding, the Racah’s methods proved to be of considerable importance for the calculation

of transitions between levels. We shall not develop these facets of crystal- and ligand-field

theory here. It is enough to mention the pioneer works by Judd [85] and Ofelt [86] for one-

photon electric dipolar transitions between split levels of the same parity (see also [10]). Let

us also mention that the symmetry considerations developed by Bader and Gold [87] for two-

photon electric dipolar transitions between states of opposite parities were reformulated in the

symmetry-adapted weak-field model [59, 88, 89]. Finally, let us mention that irreducible tensor

methods for finite groups were used for calculating the intensities of photoelectron spectra of

partly-filled shell ion systems [90, 91, 92, 93, 94].

3 Wigner-Racah algebra for a finite or compact group

An important task in spectroscopy is to calculate matrix elements in order to determine

energy spectra and transition intensities. In the case of many-fermionic systems, this can be

done either in the Slater-Condon-Shortley approach (with determinantal states) or in the Dirac-

Wigner-Racah approach (with states characterized by quantum numbers). In the Dirac-Wigner-

Racah approach, one way to incorporate symmetry considerations connected to a chain of groups
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(involving symmetry groups and classification groups) is to use the ‘Wigner-Racah calculus’

associated with the chain under consideration. The ‘Wigner-Racah calculus’ or ‘Wigner-Racah

algebra’ associated with a group G (or a chain of groups Ga ⊃ GΓ) is generally understood as

the set of algebraic manipulations concerning the coupling and recoupling coefficients for the

group G (or the head group Ga). This ‘algebra’ may be also understood as a true algebra in the

mathematical sense: It is the (in)finite-dimensional Lie algebra spanned by the irreducible unit

tensor operators or Wigner operators of G (or Ga) [5, 6, 9, 95, 96, 97]. We shall mainly focus here

on the very basic aspects of the ‘algebra’ of the coupling and recoupling coefficients of a finite

or compact group G. The Wigner-Racah calculus was originally developed for simply-reducible

(i.e., ambivalent plus multiplicity-free) groups [98, 99, 100]. (Let us recall that a group G is said

to be ambivalent if each element of G and its inverse belong to a same conjugation class. It is

said to be multiplicity-free if the Kronecker product of two arbitrary irreducible representations

of G contains at most once each irreducible representation of G.) The bases of the Wigner-Racah

algebra of the rotation group, a simply-reducible group, were introduced at the beginning of the

forties by Wigner [99] and Racah [2, 3]. In the sixties and seventies, the idea of a Wigner-Racah

algebra was extended to an arbitrary finite or compact group [101, 102, 103] (see the review in

[104]) and started to be applied to some groups or chains of groups of interest in crystal- and

ligand-field theory [35, 45, 47, 55, 60]. Regarding molecular and solid-state physics, let us also

mention that Koster et al. published the first complete set of tables of coupling coefficients for

the thirty-two (single and double) crystallographic point groups [105]. Most of the developments

concerning chains of groups were strongly influenced by a lemma due to Racah derived in [4] for

an arbitrary chain involving finite and/or compact groups.

We present in what follows the basic ingredients for the Wigner-Racah algebra of a finite or

compact group in a terminology easily adaptable to nuclear, atomic, molecular, and condensed

matter physics as well as in quantum chemistry.

3.1 Preliminaries

Let us consider an arbitrary finite or compact continuous group G having the IRCs a, b, . . ..

The identity IRC, often noted A or A1 or Γ1 in molecular physics, is denoted by 0 in this section

(it is noted Γ0 in Section 2). To each IRC a, we associate a unitary matrix representation

Da. Let [a] be the dimension of Da. The α-α′ matrix element of the representative Da(R)

for the element R in G is written Da(R)αα′ . (For a = 0, we have α = α′ = 0.) The sum

χa(R) =
∑

αD
a(R)αα stands for the character of R in Da. The Da(R)αα′ and χa(R) satisfy

orthogonality relations (e.g., the so-called great orthogonality theorem for Da(R)αα′) that are

very familiar to the physicist and the chemist. We use |G| to denote the order of G when G is a

finite group or the volume
∫

G dR of G when G is a compact continuous group. Furthermore, the

notation
∫

G . . . dR, which applies when G is a compact continuous group, should be understood

as
∑

R∈G . . . when G is a finite group.
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3.2 Clebsch-Gordan coefficients

The direct product a ⊗ b of two IRCs a and b of G can be in general decomposed into a

direct sum of IRCs of G. This leads to the Clebsch-Gordan series

a⊗ b =
⊕

c

σ(c|a⊗ b)c (19)

where σ(c|a⊗ b) denotes the number of times the c IRC occurs in a⊗ b. The integers σ(c|a⊗ b)

may be determined through the character formula

σ(c|a⊗ b) = |G|
−1

∫

G
χc(R)∗χa(R)χb(R)dR (20)

In terms of matrix representations, (19) reads

Da
⊗Db

∼

⊕

c

σ(c|a ⊗ b)Dc (21)

Therefore, there exists a unitary matrix Uab such that

(Uab)†Da(R) ⊗Db(R)Uab =
⊕

c

σ(c|a ⊗ b)Dc(R) (22)

or equivalently

Da(R) ⊗Db(R) =
⊕

c

σ(c|a⊗ b)UabDc(R)(Uab)† (23)

for any R in G. It is a simple exercise in linear algebra to transcribe (22) and (23) in matrix

elements. We thus have

∑

αβα′β′

(

Uab
)

∗

αβ,ρcγ
Da(R)αα′Db(R)ββ′

(

Uab
)

α′β′,ρ′c′γ′

= ∆(c|a⊗ b)δρρ′δcc′D
c(R)γγ′ (24)

and

Da(R)αα′Db(R)ββ′ =
∑

ρcγγ′

(

Uab
)

αβ,ρcγ
Dc(R)γγ′

(

Uab
)

∗

α′β′,ρcγ′

(25)

for any R in G. Each row index of Uab consists of two labels (α and β) according to the rules of

the direct product of two matrices. Similarly, two labels (c and γ) are required for characterizing

each column index of Uab. However, when c appears several times in a ⊗ b, a third label (the

multiplicity label ρ) is necessary besides c and γ. Hence, the summation over ρ in (25) ranges

from 1 to σ(c|a⊗ b). Finally in (24), ∆(c|a⊗ b) = 0 or 1 according to whether as c is contained

or not in a⊗ b. (Note that ∆(c|a⊗ b) is the analog of ∆(S,L, J) used in Section 2.)

Following the tradition in quantum mechanics, we put

(abαβ|ρcγ) :=
(

Uab
)

αβ,ρcγ
(26)

so that (24) and (25) can be rewritten as

∑

αβα′β′

(abαβ|ρcγ)∗Da(R)αα′Db(R)ββ′(abα′β′|ρ′c′γ′) = ∆(c|a⊗ b)δρρ′δcc′D
c(R)γγ′ (27)

49



and

Da(R)αα′Db(R)ββ′ =
∑

ρcγγ′

(abαβ|ρcγ)Dc(R)γγ′(abα′β′|ρcγ′)∗ (28)

The matrix elements (abαβ|ρcγ) are termed Clebsch-Gordan coefficients (CGCs) or vector cou-

pling coefficients. The present introduction clearly emphasizes that the CGCs of a group G are

nothing but the elements of a unitary matrix which reduces the direct product of two irreducible

matrix representations of G. As a consequence, the CGCs satisfy two orthonormality relations

associated with the unitary property of Uab:

∑

αβ

(abαβ|ρcγ)∗(abαβ|ρ′c′γ′) = ∆(c|a⊗ b)δρρ′δcc′δγγ′ (29)

and

∑

ρcγ

(abαβ|ρcγ)(abα′β′|ρcγ)∗ = δαα′δββ′ (30)

Note that (29) and (30) are conveniently recovered by specializing R to the unit element E of

G in (27) and (28), respectively. As an evident selection rule on the CCGs, it is clear that in

order to have (abαβ|ρcγ) 6= 0 it is necessary (but not sufficient) that c be contained in a⊗ b.

Equations (27) and (28) show that the CGCs are basis-dependent coefficients. In this regard,

it is important to realize that (27) and (28) are not sufficient to define unambiguously the CGCs

of the G group once its irreducible representation matrices are known. As a matter of fact, the

relation

(abαβ|rcγ) :=
∑

ρ

(abαβ|ρcγ)M(ab, c)ρr (31)

where M(ab, c) is an arbitrary unitary matrix of dimension σ(c|a ⊗ b) × σ(c|a ⊗ b), defines a

new set of CGCs since (27) and (28) are satisfied by making replacements of type ρ → r.

The CGCs associated with a definite choice for the irreducible representation matrices of G are

thus defined up to a unitary transformation, a fact that may be exploited to generate special

symmetry properties of the CGCs.

Various relations involving elements of irreducible representation matrices and CGCs can be

derived from (27) and (28) by using the unitarity property both for the representation matrices

and the Clebsch-Gordan matrices. For instance, we obtain

∑

α′β′

Da(R)αα′Db(R)ββ′(abα′β′|ρcγ′) =
∑

γ

(abαβ|ρcγ)Dc(R)γγ′ (32)

∑

α′

Da(R)αα′(abα′β′|ρcγ′) =
∑

βγ

(abαβ|ρcγ)Db(R)∗ββ′D
c(R)γγ′ (33)

(abα′β′|ρcγ′) =
∑

αβγ

(abαβ|ρcγ)Da(R)∗αα′D
b(R)∗ββ′D

c(R)γγ′ (34)
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for any R in G. In the situation where the elements of the irreducible representation matrices

of G are known, Eqs. (32), (33) and (34) provide us with linear equations useful for checking

the numerical values of the CGCs of G.

The combination of (28) with the great orthogonality theorem for G yields the relation

|G|−1

∫

G
Da(R)αα′Db(R)ββ′Dc(R)∗γγ′dR = [c]−1

∑

ρ

(abαβ|ρcγ)(abα′β′|ρcγ′)∗ (35)

which is useful for the calculation of the CGCs of G in terms of the elements of the irreducible

representation matrices of G. Note that when a ⊗ b is multiplicity-free (i.e., when there is no

summation on ρ in (35)), Eq. (35) allows us to determine (abαβ|cγ) for all α, β and γ up to

arbitrary phase factors ; more precisely, we then have

(abαβ|cγ) = eih(ab,c)
(

[c]

|G|

)1/2
∫

GD
a(R)αα′Db(R)ββ′Dc(R)∗γγ′

dR

{

∫

GD
a(R)α′α′Db(R)β′β′Dc(R)∗γ′γ′

dR}1/2
(36)

where h(ab, c) ∈ R.

It appears from (32)-(36) that c does not generally play the same role as a and b in

(abαβ|ρcγ). Indeed, (34) shows that the CGCs (abαβ|ρcγ) are the components of a third rank

tensor, twice contravariant and once covariant. Therefore, (abαβ|ρcγ) does not generally exhibit

simple symmetry properties under permutations of a, b and c. It will be shown in the following

how the CGCs may be symmetrized thanks to a 2–aα symbol.

3.3 The 2–aα symbol

Let us define the 2–aα symbol through

(

a b

α β

)

:= [a]1/2(baβα|00) (37)

The 2–aα symbol makes it possible to pass from a given irreducible matrix representation to its

complex conjugate. This is reflected by the two relations

∑

αα′

(

a b

α β

)∗

Da(R)αα′

(

a b′

α′ β′

)

= ∆(0|a⊗ b)δbb′D
b(R)∗ββ′ (38)

and

∑

ββ′

(

a b

α β

)

Db(R)∗ββ′

(

a′ b

α′ β′

)∗

= ∆(0|a⊗ b)δaa′D
a(R)αα′ (39)

that hold for any R in G. The proof of (38) and (39) is long; it starts with the introduction of

(37) into the left-hand sides of (38) and (39) and requires repeated use of relations involving the

irreducible matrix representations and CGCs as well as the great orthogonality theorem of G.

By taking R = E in (38) and (39), we get the useful relations

∑

α

(

a b

α β

)∗( a b′

α β′

)

= ∆(0|a ⊗ b)δbb′δββ′ (40)
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and

∑

β

(

a b

α β

)(

a′ b

α′ β

)∗

= ∆(0|a⊗ b)δaa′δαα′ (41)

which give back (29) as particular case.

The 2–aα symbol turns out to be of relevance for handling phase problems. In this regard,

both (38) and (39) lead to

δab
∑

αβ

(

a b

α β

)∗ (

b a

β α

)

= ∆(0|a⊗ b)[a]ca (42)

where the Frobenius-Schur coefficient

ca := |G|−1

∫

G
χa(R2)dR (43)

is 1, −1, or 0 according to as Da is orthogonal, symplectic, or complex (i.e., integer, half-integer

or complex in Wigner’s terminology). Note that

ca

(

b a

β α

)

= δab

(

a b

α β

)

(44)

satisfies (42). Equation (44) reflects the symmetry of the matrix which enables to pass from

the matrix Da to its complex conjugate (Da)∗ (cf., the Frobenius-Schur theorem). Thus, the

2–aα symbol plays the role of a metric tensor that transforms Da into (Da)∗. It generalizes the

Herring-Wigner metric tensor introduced for the SU(2) group (see [99]).

3.4 The (3–aα)ρ symbol

We now define the (3–aα)ρ symbol via

(

a b c

α β γ

)

ρ

:=
∑

ρ′c′γ′

[c′]−1/2M(ba, c′)ρ′ρ

(

c c′

γ γ′

)

(baβα|ρ′c′γ′) (45)

where M(ba, c′) is an arbitrary unitary matrix. Conversely, each CGC can be developed in terms

of (3–aα)ρ symbols since the inversion of (45) gives

(abαβ|ρcγ) = [c]1/2
∑

ρ′c′γ′

M(ab, c)∗ρρ′

(

c′ c

γ′ γ

)∗ (

b a c′

β α γ′

)

ρ′
(46)

after utilization of the unitarity property of the 2–aα symbol and of the matrix M(ba, c′).

All the relations involving CGCs may be transcribed in terms of (3–aα)ρ symbols. For

example, the orthonormality relations (29) and (30) are easily amenable to the form

∑

ρcγ

[c]

(

a b c

α β γ

)

ρ

(

a b c

α′ β′ γ

)∗

ρ

= δαα′δββ′ (47)

and

∑

αβ

(

a b c

α β γ

)∗

ρ

(

a b c′

α β γ′

)

ρ′
= ∆(0|a⊗ b⊗ c)δρρ′δcc′δγγ′ [c]−1 (48)
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Along the same line, the introduction of (46) into (28) yields

Da(R)αα′Db(R)ββ′ =
∑

ρcγγ′

[c]

(

a b c

α β γ

)

ρ

Dc(R)∗γγ′

(

a b c

α′ β′ γ′

)∗

ρ

(49)

which in turn leads to
∑

αβα′β′

(

a b c

α β γ

)∗

ρ

Da(R)αα′Db(R)ββ′

(

a b c′

α′ β′ γ′

)

ρ′

= ∆(0|a⊗ b⊗ c)δρρ′δcc′ [c]
−1Dc(R)∗γγ′ (50)

owing to the orthogonality relation (48). Equations (49) and (50) hold for any element R in G.

As a check, note that for R = E, they can be specialized to (47) and (48).

Relation (49) and its dual relation (50) show that Da, Db and Dc present the same variance.

This can be made precise by
(

a b c

α′ β′ γ′

)

ρ

=
∑

αβγ

(

a b c

α β γ

)

ρ

Da(R)∗αα′D
b(R)∗ββ′D

c(R)∗γγ′ (51)

which shows that the behavior of the (3–aα)ρ symbol under permutations of a, b and c should

be easier to describe than the one of the CGC (abαβ|ρcγ). This is reflected by the following

relation (to be compared to (35))

|G|−1

∫

G
Da(R)αα′Db(R)ββ′Dc(R)γγ′dR =

∑

ρ

(

a b c

α β γ

)

ρ

(

a b c

α′ β′ γ′

)∗

ρ

(52)

which may be proved directly by combining (49) with the great orthogonality theorem for the G

group. When the triple direct product a⊗b⊗c contains the identity IRC of G only once (i.e., when

there is no label ρ and no summation in (52)), Eq. (52) shows that the square modulus of the

3–aα symbol is invariant under permutation of its columns. In this case, we may take advantage

of the arbitrariness of the matrix M in (31) or (45) to produce convenient symmetry properties

of the 3–aα symbol under permutations of its columns. By way of illustration, let us mention the

following result [99]: For G simply reducible, it is possible to arrange that the numerical value

of the 3–aα symbol be multiplied by the phase factor (−1)a+b+c, with (−1)2x = cx, under an

odd permutation of its columns ; consequently, the numerical value of the 3–aα symbol remains

unchanged under an even permutation of its columns (since cacbcc = 1).

To close this subsection, we note that the (3–aα)ρ symbol constitutes a generalization to the

case of an arbitrary finite or compact group of the 3–jm symbol introduced by Wigner for simply

reducible groups (in particular for the rotation group) [99] and of the V symbol introduced by

Fano and Racah for the SU(2) group [7] (the V symbol is a symmetrized version of the V symbol

defined by Racah [2]).

3.5 Recoupling coefficients

We now define two new coefficients:

(a(bc)ρbccbcρ
′d′δ′|(ab)ρabcabcρdδ) :=

∑

αβγ

∑

γ
ab
γ
bc

(abαβ|ρabcabγab)(cabcγabγ|ρdδ)
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× (bcβγ|ρbccbcγbc)
∗(acbcαγbc|ρ

′d′δ′)∗ (53)

and

((ac)ρaccac(bd)ρbdcbdρ
′e′ε′|(ab)ρabcab(cd)ρcdccdρeε)

:=
∑

αβγδ

∑

γ
ab
γ
cd

∑

γacγbd

(abαβ|ρabcabγab)(cdγδ|ρcdccdγcd)(cabccdγabγcd|ρeε) (54)

× (acαγ|ρaccacγac)
∗(bdβδ|ρbdcbdγbd)∗(caccbdγacγbd|ρ

′e′ε′)∗

The introduction in these definitions of (34) and the use of the great orthogonality theorem for

G leads to the properties

(a(bc)ρbccbcρ
′d′δ′|(ab)ρabcabcρdδ)

= δdd′δδδ′ [d]−1
∑

δ

(a(bc)ρbccbcρ
′dδ|(ab)ρabcabcρdδ) (55)

and

((ac)ρaccac(bd)ρbdcbdρ
′e′ε′|(ab)ρabcab(cd)ρcdccdρeε)

= δee′δεε′ [e]
−1

∑

ε

((ac)ρaccac(bd)ρbdcbdρ
′eε|(ab)ρabcab(cd)ρcdccdρeε) (56)

so that the recoupling coefficients defined by (53) and (54) are basis-independent (i.e., they do

not depend on the labels of type α) in contrast with the coupling coefficients (abαβ|ρcγ).

By using the orthonormality of the CGCs, it can be shown that the CCGs occurring in

Eqs. (53) and (54) can be moved from the right hand side to the left hand side in such a way to

produce new relations for which the total number of CGCs remains equal to 4 and 6, respectively.

Repeated actions of this type lead to orthonormality relations for the recoupling coefficients (53)

and (54).

In a way paralleling the passage from the coupling coefficients to the (3–aα)ρ symbol, one

can define (6–a)4ρ and (9–a)6ρ symbols from the recoupling coefficients defined by (53)-(56).

The defining expressions (6–a)4ρ and (9–a)6ρ symbols are very complicated and not especially

instructive in the case of an arbitrary compact group G. Hence, they shall be omitted as well

as the defining expressions for higher (3N–a)2Nρ symbols corresponding to the recoupling of

N ≥ 4 IRCs. Finally, note that the recoupling coefficients and their associated (3N–a)2Nρ

symbols, N > 1, for a G group can be connected to other basis-independent quantities, viz., the

characters of G [101, 106].

3.6 Irreducible tensorial sets

Let {|τaα) : α = 1, 2, . . . , [a]} be a basis for the irreducible matrix representation Da of G.

The vectors |τaα) are defined on a unitary or pre-Hilbert space E (indeed, a Hilbert space in

the quantum-mechanical applications) and there exists an application R 7→ PR such that

PR|τaα) =

[a]
∑

α′=1

|τaα′)Da(R)α′α (57)
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for any R in G. Following the work by Fano and Racah [7] on the SU(2) group, we refer the set

{|τaα) : α = 1, 2, . . . , [a]} to as an irreducible tensorial set (ITS) of vectors associated with Da.

The label τ may serve to distinguish different ITSs of vectors associated with the same irreducible

matrix representation Da. (In practical applications, this label consists of various quantum

numbers arising from nuclear, atomic or molecular configurations.) In this connection, note the

following standardization: It is always possible to arrange that {|τaα) : α = 1, 2, . . . , [a]} and

{|τ ′aα) : α = 1, 2, . . . , [a]} span the same matrix representation Da rather than two equivalent

representations. We shall assume that such a standardization is always satisfied.

From two ITSs {|τaaα) : α = 1, 2, . . . , [a]} and {|τbbβ) : β = 1, 2, . . . , [b]}, we can construct

another ITS of vectors. Let us define

|τaτbabρcγ) :=
∑

αβ

|τaaα) ⊗ |τbbβ)(abαβ|ρcγ) (58)

Then, as a simple corollary of (28), the set {|τaτbabρcγ) : γ = 1, 2, . . . , [c]} can be shown to be

an ITS associated with Dc.

In a similar way, let us consider a set {T a
α : α = 1, 2, . . . , [a]} of (linear) operators defined on

E and such that

PRT
a
αP

−1

R =

[a]
∑

α′=1

T a
α′D

a(R)α′α (59)

for any R in G. This set is called an ITS of operators associated with Da. We also say

that this set defines an irreducible tensor operator T
a associated with Da. Note the implicit

standardization: The sets {T a
α : α = 1, 2, . . . , [a]} and {Ua

α : α = 1, 2, . . . , [a]} span the same

matrix representation Da rather than two equivalent representations.

In full analogy with (58), we define

{T
a
⊗U

b
}
ρc
γ :=

∑

αβ

T a
αU

b
β(abαβ|ρcγ) (60)

from the two ITSs {T a
α : α = 1, 2, . . . , [a]} and {U b

α : β = 1, 2, . . . , [b]}. As a result, the set

{{T
a
⊗ U

b
}
ρc
γ : γ = 1, 2, . . . , [c]} is an ITS of operators associated with Dc. We say that

{T
a
⊗U

b
} is the direct product of the irreducible tensor operators T

a and U
b. Observe that

this direct product defines a tensor operator which is reducible in general. Equation (60) gives

the various irreducible components of {Ta
⊗U

b
}.

3.7 The Wigner-Eckart theorem

The connection between most of the quantities introduced up to now appears in the calcu-

lation of the matrix element (τ ′a′α′
|T b

β |τaα), the scalar product on E of the T b
β|τaα) vector by

the |τ ′a′α′) vector. By developing the identity

(τ ′a′α′
|T b

β|τaα) = (τ ′a′α′
|P

†

RPRT
b
βP

−1

R PR|τaα) (61)
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we get, after some manipulations, the following basic theorem.

Theorem 1 (Wigner-Eckart’s theorem). The scalar product (τ ′a′α′
|T b

β |τaα) can be decom-

posed as

(τ ′a′α′
|T b

β |τaα) =
∑

ρ

(τ ′a′||T b
||τa)ρ

∑

a′′α′′

(

a′′ a′

α′′ α′

)(

b a a′′

β α α′′

)∗

ρ

(62)

Alternatively, (62) can be cast into the form

(τ ′a′α′
|T b

β|τaα) = [a′]−
1

2

∑

ρ

〈τ ′a′||T b
||τa〉ρ(abαβ|ρa′α′)∗ (63)

with

〈τ ′a′||T b
||τa〉ρ :=

∑

ρ′

M(ab, a′)∗ρρ′(τ
′a′||T b

||τa)ρ′ (64)

where M(ab, a′) is an arbitrary unitary matrix (cf., (45) and (46)).

In the summation-factorization afforded by (62) or (63), there are two types of terms, namely,

the (3–aα)ρ symbols or the CGCs (abαβ|ρa′α′) that depend on the G group only and the so-

called reduced matrix elements (τ ′a′||T b
||τa)ρ or 〈τ ′a′||T b

||τa〉ρ that depend both on G and on

the physics of the problem under consideration. The reduced matrix elements do not depend on

the ‘magnetic quantum numbers’ (α′, β and α) and therefore, like the recoupling coefficients, are

basis-independent. We then understand the interest of the recoupling coefficients in applications:

The reduced matrix elements for a composed system may be developed as functions of reduced

matrix elements for elementary systems and recoupling coefficients. In this direction, it can

be verified that the matrix element (τ ′aτ
′

ba
′b′ρ′c′γ′|{Td

⊗U
e
}
σf
ϕ |τaτbabρcγ) can be expressed in

terms of the recoupling coefficients defined by (54) and (56).

Equations (62) and (63) generalize the Wigner-Eckart theorem originally derived by Eckart

for vector operators of the rotation group [107], by Wigner for tensor operators of the rotation

group [108] and of simply reducible groups [99], and by Racah for tensor operators of the rotation

group [2].

A useful selection rule on the matrix element (τ ′a′α′
|T b

β|τaα) immediately follows from the

CGCs in (63). The latter matrix element vanishes if the direct product a⊗ b does not contains

a′. Consequently, in order to have (τ ′a′α′
|T b

β |τaα) 6= 0, it is necessary (but not sufficient in

general) that the IRC a′ be contained in a⊗ b.

As an interesting particular case, let us consider the situation where b is the identity IRC of

G. This means that the operator H = T 0
0

is invariant under G (see (59)). Equation (63) can be

particularized to

(τ ′a′α′
|H|τaα) = δaa′δαα′〈τ ′a||T 0

||τa〉 (65)

where the index ρ is not necessary since a⊗0 = a. The Kronecker deltas in (65) show that there

are no a′-a and/or α′-α mixing. We say that a and α are ‘good quantum numbers’ for H. The

56



initial and final states have the same quantum numbers as far as these numbers are associated

with the invariance group G. The invariant H does not mix state vectors belonging to different

irreducible representations a and a′. Furthermore, it does not mix state vectors belonging to

the same irreducible representation a but having different labels α and α′.

It is very important to realize that phase factors of type (−1)a, (−1)a−α and (−1)a+b+c do

not appear in (62) and (63). Indeed, the present exposure is entirely free of such phase factors,

in contrast with other presentations. As a matter of fact, in many works the passage from

the Clebsh-Gordan or unsymmetrical form to the (3–aα)ρ or symmetrical form of the coupling

coefficients involves unpleasant questions of phase. This is not the case in (45) and (46). Such

a fact does not mean that (45) and (46) as well as other general relations are free of arbitrary

phase factors. In fact, all the phase factors are implicitly contained in the matrices M , the 2–aα

symbols and the (basis-independent) Frobenius-Schur coefficient.

3.8 The Racah lemma

We have already emphasized the interest of considering chains of groups rather than isolated

groups. Let us now denote G as Ga and let GΓ be a subgroup of Ga. In this case, the labels

of type α, that occur in what precedes, may be replaced by triplets of type αΓγ. The label

of type Γ stands for an IRC of the group GΓ, the label of type γ is absolutely necessary when

[Γ] > 1 and the new label of type α is a branching multiplicity label to be used when the Γ

IRC of GΓ is contained several times in the a IRC of the Ga head group. (The γ label is an

internal multiplicity label for GΓ and the a label is an external multiplicity label inherent to

the restriction Ga → GΓ.) Then, the (a1a2α1α2|ρaα) CGC for the Ga group is replaced by

the (a1a2α1Γ1γ1α2Γ2γ2|ρaαΓγ) CGC for the Ga group in a Ga ⊃ GΓ basis. We can prove the

following theorem.

Theorem 2 (Racah’s lemma). The CGCs of the Ga group in a Ga ⊃ GΓ basis can be

developed according to

(a1a2α1Γ1γ1α2Γ2γ2|ρaαΓγ) =
∑

β

(Γ1Γ2γ1γ2|βΓγ)(a1α1Γ1 + a2α2Γ2|ρaαΓ)β (66)

where the (Γ1Γ2γ1γ2|βΓγ) coefficients are CGCs for the GΓ group considered as an isolated

group and the (a1α1Γ1 + a2α2Γ2|ρaαΓ)β coefficients do not depend on γ1, γ2 and γ.

The proof of Racah’s lemma was originally obtained from Schur’s lemma [4]. However, the

analogy between (62), (63) and (66) should be noted. Hence, the Racah lemma for a Ga ⊃ GΓ

chain may be derived from the Wigner-Eckart theorem, for the Ga group in a Ga ⊃ GΓ basis,

applied to the Wigner operator, i.e., the operator whose matrix elements are the CGCs. The

(a1α1Γ1 + a2α2Γ2|ρaαΓ)β in the development given by (66) are sometimes named isoscalar

factors, a terminology that comes from the SU(3) ⊃ U(1) ⊗ SU(2) chain used in the eightfold

way model of subatomic physics.

From a purely group-theoretical point of view, it is worth to note that Racah’s lemma enables
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us to calculate the CGCs of the GΓ subgroup of Ga when those of the Ga group are known (see

for example [109] and references therein). In particular, for those triplets (Γ1Γ2Γ) for which

Γ1 ⊗ Γ2 contains Γ only once, the CGCs (Γ1Γ2γ1γ2|Γγ) are given by a simple formula in terms

of the CGCs of Ga.

The summation-factorization in (66) can be applied to each CGC entering the definition of

any recoupling coefficient for the Ga group. Therefore, the recoupling coefficients for Ga can be

developed in terms of the recoupling coefficients for its subgroup GΓ [28, 60].

3.9 Illustrative examples

3.9.1 The SU(2) group in a SU(2) ⊃ U(1) basis

As a first example, we take Ga ≡ SU(2) and GΓ ≡ U(1) where SU(2 and U(1) are the uni-

versal covering groups or, in the terminology of molecular physics, the ‘double’ groups of the

proper rotation groups R(3) ∼ SO(3) and R(2) ∼ SO(2), respectively. In this case, a ≡ (j)

where j is either an integer (for vector representations) or a half-of-an-odd integer (for spinor

representations), αΓγ ≡ m ranges from −j to j by unit step, and Da(R)αα′ can be identified

to the element D(j)(R)mm′ of the well-known Wigner rotation matrix of dimension [j] ≡ 2j + 1.

The matrix representation D(j) corresponds to the standard basis {|j,m) : m = j, j−1, . . . ,−j}

where |j,m) denotes an eigenvector of the (generalized) angular momentum operators J2 and

Jz. (For j integer, the label ℓ often replaces j.) The labels of type m clearly refer to IRCs of

the rotation group C∞ ∼ R(2). Therefore, the basis {|j,m) : m = j, j − 1, . . . ,−j} is called a

R(3) ⊃ R(2) or SU(2) ⊃ U(1) basis. Furthermore, the multiplicity label ρ is not necessary since

SU(2) is multiplicity-free. Consequently, the (real) CGCs of SU(2) in a SU(2) ⊃ U(1) basis are

written (j1j2m1m2|jm). They are also called Wigner coefficients.

In view of the ambivalent nature of SU(2), the 2–aα symbol reduces here to

(

j j′

m m′

)

= δjj′

(

j

m m′

)

(67)

We can take
(

j

m m′

)

:= (−1)j+mδ(m′,−m) (68)

where (−1)j+mδ(m′,−m) is a component of the 1−jm Herring-Wigner metric tensor (in the

Edmonds normalization [110]). Then, the introduction of (67) and (68) into (45) for the SU(2) ⊃

U(1) chain shows that the 3–aα symbol identifies to the 3–jm Wigner symbol

(

j1 j2 j3

m1 m2 m3

)

:= (2j3 + 1)−
1

2 (−1)j3−m3−2j2(j2j1m2m1|j3,−m3) (69)

provided we chose M(j2j1, j3) = (−1)2j1 . Such a choice ensures that the 3–jm symbol is highly

symmetrical under permutation of its columns.
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In the SU(2) case, the (6–a)4ρ and (9–a)6ρ symbols may be chosen to coincide with the 6–j

Wigner (or W̄ Fano-Racah) symbol and the 9–j Wigner (or X Fano-Racah) symbol, respectively.

More precisely, we have

{

j1 j23 j

j3 j12 j2

}

:= (−1)j1+j2+j3+j [(2j12 + 1)(2j23 + 1)]−
1

2

× (j1(j2j3)j23jm|(j1j2)j12j3jm) (70)

and










j1 j2 j12

j3 j4 j34

j13 j24 j











:= [(2j12 + 1)(2j34 + 1)(2j13 + 1)(2j24 + 1)]−
1

2

× ((j1j3)j13(j2j4)j24jm|(j1j2)j12(j3j4)j34jm) (71)

in terms of recoupling coefficients (cf., (55) and (56)).

Finally, for a ≡ (k), the T
a ITS coincides with the T

(k) irreducible tensor operator of rank

k (and having 2k + 1 components) introduced by Racah. We denote by T
(k)
q the components of

T
(k) in a SU(2) ⊃ U(1) basis.

All the relations of subsections 3.1-3.7 may be rewritten as familiar relations of angular

momentum theory owing to the just described correspondence rules. For example, (38) or (39)

and (62) can be specialized to

D(j)(R)∗mm′ = (−1)m−m′

D(j)(R)−m,−m′ (72)

and

(τ ′j′m′
|T (k)

q |τjm) = (−1)j
′

−m′

(

j′ k j

−m′ q m

)

(τ ′j′||T (k)
||τj) (73)

respectively. For more details, the reader should consult the textbooks in Refs. [7, 110] (see also

[9, 10, 11]).

3.9.2 The SU(2) group in a SU(2) ⊃ G∗
basis

We now consider the case Ga ≡ SU(2) and GΓ ≡ G∗, where G∗ is isomorphic to the double

group of a point (proper) rotation group G. Then, we have a ≡ (j) and we take αΓγ ≡ aΓγ for

the labels a and αΓγ of Section 3.8. This will be clarified below.

1 - The restriction of SU(2) to G∗

Each IRC (j) of SU(2) can be decomposed into a direct sum of IRC’s of G∗:

(j) =
∑

Γ

σ(Γ|j)Γ (74)

where

σ(Γ|j) = |G∗
|
−1

∫

G∗

dRχΓ(R)∗χ(j)(R) (75)
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stands for the multiplicity of the Γ IRC of G∗ in (j). In terms of unitary matrix representations,

this means that

D(j)
∼

⊕

Γ

σ(Γ|j)DΓ (76)

In other words, there exists a unitary matrix U j such that

(U j)†D(j)(R)U j =
⊕

Γ

σ(Γ|j)DΓ(R) (77)

holds for any R in G∗. This leads to

∑

mm′

(jm|jaΓγ)∗D(j)(R)mm′(jm′
|ja′Γ′γ′) = δaa′δΓΓ′DΓ(R)γγ′ (78)

or

D(j)(R)mm′ =
∑

aΓγγ′

(jm|jaΓγ)DΓ(R)γγ′(jm′
|jaΓγ′)∗ (79)

for any R in G∗. In (78) and (79), (jm|jaΓγ) denotes an element of the matrix U j :

(jm|jaΓγ) := (U j)m,aΓγ (80)

The label a (cf., the column index aΓγ of U j) is a branching multiplicity label indispensable when

Γ appears more than once in (j). Note that the unitary property of the matrix U j corresponds

to R = E, the unit element of G∗, in (78) and (79):

∑

m

(jm|jaΓγ)∗(jm|ja′Γ′γ′) = δaa′δΓΓ′δγγ′ (81)

or inversely

∑

aΓγ

(jm|jaΓγ)(jm′
|jaΓγ)∗ = δmm′ (82)

Observe that (78) and (79) are note sufficient for determining the reduction coefficients (jm|jaΓγ)

once the irreducible representation matrices of G∗ and SU(2) are known since the coefficients

(jm|jbΓγ) :=
∑

a

(jm|jaΓγ)Mab (83)

where M is an arbitrary unitary matrix satisfy (78) and (79) with the replacement a→ b. Nev-

ertheless, (78) and (79) lead to systems that may be useful for the calculation of the (jm|jaΓγ)

coefficients.

2 - Irreducible tensorial sets

From the ITS of vectors {|τjm) : m = j, j − 1, . . . ,−j} associated with D(j), we define

|τjaΓγ) :=
∑

m

|τjm)(jm|jaΓγ) (84)
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Equation (79) allows us to show

PR|τjaΓγ) =
∑

γ′

|τjaΓγ′)DΓ(R)γ′γ (85)

for any R in G∗. Similarly, from the ITS of operators {T
(k)
q : q = k, k − 1, . . . ,−k} associated

with D
(k), we define

T (kaΓ)
γ ≡ T

(k)
aΓγ :=

∑

q

T (k)
q (kq|kaΓγ) (86)

so that

PRT
(kaΓ)
γ P−1

R =
∑

γ′

T
(kaΓ)
γ′

DΓ(R)γ′γ (87)

holds for any R in G∗.

At this point, it is important to remark that (84) and (86) provide us with ITSs both

for SU(2) and G∗. Indeed {|τjaΓγ) : γ ranging } is an ITS of vectors spanning the matrix

representation DΓ of G∗ while {|τjaΓγ) : aΓγ ranging } is an ITS of vectors spanning the

matrix representation D
(j) of SU(2) defined by

D
(j)(R)aΓγ,a′Γ′γ′ :=

∑

mm′

(jm|jaΓγ)∗D(j)(R)mm′(jm′
|ja′Γ′γ′) (88)

for any R in SU(2). A similar remark applies to the sets {T
(kaΓ)
γ : γ ranging } and {T

(k)
aΓγ :

aΓγ ranging}.

3 - Wigner-Eckart theorems

As an important consequence of the latter two remarks, we may apply the Wigner-Eckart

theorem either for the group SU(2) in a SU(2) ⊃ G∗ basis or for the group G∗ in a G∗
⊂ SU(2)

basis. For G∗ in a G∗
⊂ SU(2) basis, (62) gives

(τ1j1a1Γ1γ1|T
(kaΓ)
γ |τ2j2a2Γ2γ2) =

∑

ρ

(τ1j1a1Γ1||T
(kaΓ)

||τ2j2a2Γ2)ρ

×

∑

Γ′

1
γ′

1

(

Γ′

1
Γ1

γ′
1

γ1

)(

Γ Γ2 Γ′

1

γ γ2 γ′
1

)∗

ρ

(89)

For SU(2) in a SU(2) ⊃ G∗ basis, we can combine (63), (84) and (86) to obtain the compact

formula

(τ1j1a1Γ1γ1|T
(k)
aΓγ |τ2j2a2Γ2γ2) = (τ1j1||T

(k)
||τ2j2)f

(

j1 j2 k

a1Γ1γ1 a2Γ2γ2 aΓγ

)

(90)

where the f symbol is defined by

f

(

j1 j2 k

a1Γ1γ1 a2Γ2γ2 aΓγ

)

:= (−1)2k(2j1 + 1)−1/2(j2ka2Γ2γ2aΓγ|j1a1Γ1γ1)∗ (91)

in function of the CGC

(j1j2a1Γ1γ1a2Γ2γ2|jaΓγ) :=
∑

m1m2m

(j1m1|j1a1Γ1γ1)
∗

× (j2m2|j2a2Γ2γ2)∗(j1j2m1m2|jm)(jm|jaΓγ) (92)
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of SU(2) in a SU(2) ⊃ G∗ basis [26].

There are many advantages to use (90) rather than (89). In (89), both the reduced matrix

elements and the coupling coefficients (cf., the 2–aα and (3–aα)ρ symbols) depend of the sym-

metry group G∗. Furthermore, the factorization offered by (89) is not complete in view of the

summation over the multiplicity label ρ. On the other side, the matrix element given by (90)

factorizes in two parts: a coupling coefficient (cf., the f symbol) for the SU(2) ⊃ G∗ chain and

a reduced matrix element which does not depend of the group G∗. This maximal factorization

takes place even in the case where G∗ is not multiplicity-free. The reduced matrix elements

in (90) applied to complex systems either are obtainable from tables or can be calculated from

Racah’s method in terms of recoupling coefficients of SU(2), coefficients of fractional parentage,

and elementary reduced matrix elements. The main calculation to do when dealing with (90)

most of the time concerns the f geometrical coefficient, a quantity which is independent of the

additional quantum numbers τ1 and τ2 and which remains invariant when the tensor operator

T
k is replaced by any tensor operator U

k of the same rank.

The calculation of the f coefficients defined by (91) and (92) touches a simple problem of

symmetry adaptation. In fact, the determination of the symmetry-adapted CGCs (92) require

the knowledge of the reduction coefficients (80). These reduction coefficients are the expansion

coefficients of symmetry adapted functions (cf., (84)) or symmetry-adapted operators (cf., (86)

so that their calculation may be achieved by numerous means (resolution of linear systems like

(78) or (79), projection operator techniques, . . . ).

4 - The f̄ symbol

Equation (91) shows that the behavior of the f symbol under the interchange of its first

and second columns is not easy to describe. The f symbol may be symmetrized owing to the

introduction of the 1–jaΓγ symbol

(

j

aΓγ a′Γ′γ′

)

:=
∑

mm′

(jm|jaΓγ)∗
(

j

m m′

)

(jm′
|ja′Γ′γ′)∗ (93)

where the 1–jm symbol is defined by (67) and (68). The f̄ or 3–jaΓγ symbol defined through

f̄

(

j1 j2 j3

a1Γ1γ1 a2Γ2γ2 a3Γ3γ3

)

:=
∑

a4Γ4γ4

(

j3

a3Γ3γ3 a4Γ4γ4

)

× f

(

j3 j2 j1

a4Γ4γ4 a2Γ2γ2 a1Γ1γ1

)∗

(94)

then exhibits a high (permutation) symmetry since a simple development of (94) leads to

f̄

(

j1 j2 j3

a1Γ1γ1 a2Γ2γ2 a3Γ3γ3

)

=
∑

m1m2m3

(

j1 j2 j3

m1 m2 m3

) 3
∏

i=1

(jimi|jiaiΓiγi)
∗ (95)

(see [26]).

For G∗
≡ U(1) the f̄ symbol and the 1–jaΓγ symbol reduce to the 3–jm Wigner symbol and

to the 1–jm Herring-Wigner symbol, respectively. The 1–jaΓγ and f̄ symbols are thus 2–aα
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and 3–aα symbols as defined in Sec. II (with a → j and α → aΓγ), respectively, for the group

SU(2) in a SU(2) ⊃ G∗ basis. The properties (existence conditions, selection rules, symmetry

properties, orthogonality relations, . . . ) of the f̄ (and f) symbols can be deduced from the

ones of the 3–jm symbols and the U j matrices and have been discussed at length elsewhere

[26, 27, 28]. Let us simply mention that, by applying Racah’s lemma, the f̄ symbol can be

developed as a linear combination of (3–Γγ)ρ according to

f̄

(

j1 j2 j3

a1Γ1γ1 a2Γ2γ2 a3Γ3γ3

)

=
∑

ρ

f̄

((

j1 j2 j3

a1Γ1 a2Γ2 a3Γ3

))

ρ

(

Γ1 Γ2 Γ3

γ1 γ2 γ3

)

ρ

(96)

where the f̄((. . .)) reduced coefficient is independent of γ1, γ2 et γ3.

We are now in a position to enunciate correspondence rules for passing from the Wigner-

Racah algebra of SU(2) in a SU(2) ⊃ U(1) basis (i.e., in the {jm} scheme) to the Wigner-

Racah algebra of SU(2) in a SU(2) ⊃ G∗ basis (i.e., in the {jaΓγ} scheme): All the m- or

q-dependent quantities are replaced by the corresponding aΓγ-dependent quantities while the

basis-independent quantities (like 6–j and 9–j symbols) are unchanged. More precisely, we have

D(j)(R)mm′ → D
(j)
aΓγ,a′Γ′γ′

(j1j2m1m2|jm) → (j1j2a1Γ1γ1a2Γ2γ2|jaΓγ)

1−jm symbol → 1−aΓγ symbol

3−jm symbol → f̄ symbol (97)

3(n − 1)−j symbol → 3(n − 1)−j symbol

|τjm) → |τjaΓγ)

T (k)
q → T

(k)
aΓγ

(see [27] for more details).

3.9.3 The G∗
group in a G∗

⊂ SU(2) basis

1 - The general case

Equations (32)-(36) were used in numerous works for calculating coupling coefficients and

V symbols of subgroups of SU(2). (Following Griffith [45], the (3–aα)ρ symbols of a group of

molecular interest are referred to as V symbols in what follows.) We now describe an alter-

native method for calculating the V coefficients of a subgroup G∗ of SU(2) as renormalized

f̄ coefficients of the SU(2) ⊃ G∗ chain. This method combines three basic ingredients scat-

tered in various (implicit or explicit) approaches starting with the pioneer works by Tanabe,

Sugano and Kamimura: the concept of quasi angular momentum, the definition of the f̄ sym-

bol and renormalization techniques. For the purpose of simplicity, we shall limit ourselves to

a multiplicity-free group G∗ but it should be noted that the method may be extended to an

arbitrary subgroup of SU(2).

Given the Γ IRC of G∗, let (̂(Γ)) or simply (̂) be the IRC of SU(2) that contains Γ once

and only once. Thus, ̂ is the smallest value of j for which σ(Γ|j) = 1. The value ̂ refers to a
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quasi angular momentum [111] (see [109] too). In the multiplicity-free case where the identity

IRC of G∗ appears once and only once in the triple direct product Γ1⊗Γ2⊗Γ3, there is no need

for the internal multiplicity label ρ in the 3–Γγ or V symbol. Therefore, let us put

V

(

Γ1 Γ2 Γ3

γ1 γ2 γ3

)

:= x(Γ1Γ2Γ3)f̄

(

̂1 ̂2 ̂3

Γ1γ1 Γ2γ2 Γ3γ3

)

×

[

∑

γ1γ2γ3

∣

∣

∣

∣

f̄

(

̂1 ̂2 ̂3

Γ1γ1 Γ2γ2 Γ3γ3

)
∣

∣

∣

∣

2
]

−1/2

(98)

where x(Γ1Γ2Γ3) is an a arbitrary phase factor that depends on Γ1, Γ2 and Γ3 only. It can be

verified by repeated application of (96) that the V symbol defined by (98) satisfies (49) and (50)

for G∗. Consequently, the V symbol is nothing but a 3–Γγ symbol for the G∗ group compatible

with the choice implicitly assumed through (95) with j = ̂(Γ) for the representation matrices

DΓ.

For the sake of simplifying calculations with (98), it should be noted that

∑

γ1γ2γ3

∣

∣

∣

∣

f̄

(

̂1 ̂2 ̂3

Γ1γ1 Γ2γ2 Γ3γ3

)
∣

∣

∣

∣

2

= [Γi]
∑

all γ
k
except γi

∣

∣

∣

∣

f̄

(

̂1 ̂2 ̂3

Γ1γ1 Γ2γ2 Γ3γ3

)
∣

∣

∣

∣

2

(99)

for i = 1, 2 or 3. In addition, if two of the three Γ’s are equivalent to two of the corresponding

three (̂)’s, the right-hand side of (99) can be simplified and (98) takes a simple form. For

instance, in the case (̂1) ≡ Γ1 and (̂2) ≡ Γ2, (98) becomes

V

(

Γ1 Γ2 Γ3

γ1 γ2 γ3

)

= x(Γ1Γ2Γ3)[Γ3]−1/2(2̂3 + 1)1/2f̄

(

̂1 ̂2 ̂3

Γ1γ1 Γ2γ2 Γ3γ3

)

(100)

which is very simple to handle.

The main advantages of the method based on (98)-(100) for calculating the V coefficients

of G∗ may be seen to be the following. First, the calculation is easy in the sense that the V

coefficients are deduced from a minimal set of f̄ coefficients which are readily calculated (by

hand or with the help of a computer) from (95). The thus obtained V coefficients of the G∗

group are simple linear combinations of 3–jm coefficients for the SU(2) ⊃ U(1) chain. Second,

such a method allows us to work with bases of interest for molecular physics and quantum

chemistry. In this respect, we may use in (95) reduction coefficients (jm|jaΓγ) corresponding

to Cartesian p, d and f spin-orbitals or corresponding to a chain of groups (for instance, the

SU(2) ⊃ O∗
⊃ D∗

4
⊃ D∗

2
tetragonal chain or the SU(2) ⊃ O∗

⊃ D∗

3
⊃ C∗

3
trigonal chain).

Third, it is possible to transfer some of the features (formulas, symmetry properties, . . . ) of the

3–jm symbol from the SU(2) ⊃ U(1) standard chain to the V symbol of G∗. For example, the

permutation symmetry properties of the V symbol can be chosen to be essentially the ones of

the 3–jm symbol. In fact, by choosing x(Γ1Γ2Γ3) invariant under the 3! permutations of its

arguments, the V symbol given by (98)-(100) is multiplied by (−1)̂1(Γ1)+̂2(Γ2)+̂3(Γ3) under an

odd permutation of its columns so that is is invariant under an even permutation.

2 - Application to the octahedral group
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As an illustration, we consider the case where G∗ is the O∗ double octahedral group and

limit ourselves to the determination of the V coefficients of the O octahedral group. Therefore,

we can replace SU(2) ⊃ O∗ by SO(3) ⊃ O. The restriction of SO(3) to O yields

̂(A1) = 0, ̂(A2) = 3, ̂(E) = 2, ̂(T1) = 1, ̂(T2) = 2 (101)

where A1, A2, E, T1 and T2 denote the various IRCs of O. In view of the permutation symmetry

properties of the V symbol, there are a priori 39 independent V coefficients to be calculated for

the O group. The |̂Γγ) vectors (the label a is not necessary here) required for calculating these

coefficients are given by

|0A1a1) = |0, 0)

|3A2a2) =
1
√

2
[|3, 2) − |3,−2)]

|2Eθ) = |2, 0), |2Eǫ) =
1
√

2
[|2, 2) + |2,−2)]

|1T1x) = −
i
√

2
[|1, 1) − |1,−1)]

|1T1y) =
1
√

2
[|1, 1) + |1,−1)] (102)

|1T1z) = i|1, 0)

|2T2x) =
i
√

2
[|2, 1) + |2,−1)]

|2T2y) =
1
√

2
[|2, 1) − |2,−1)]

|2T2z) = −
i
√

2
[|2, 2) − |2,−2)]

in terms of spherical basis vectors |j,m) (the generic symbol γ is a1 for A1; a2 for A2; θ and ǫ for

E; x, y and z for T1; and x, y and z for T2). The 39 independent V coefficients are then easily

calculated from (95) and (98)-(102). They are of course all real if we replace the pure imaginary

number i by 1 in (102). In the case i =
√

−1, it is possible to decrease the number of independent

V coefficients by conveniently choosing the x(Γ1Γ2Γ3) phase factors. Along this line, by taking

i =
√

−1 and x(Γ1Γ2Γ3) = 1 except x(ET2T2) = x(T1T1T1) = x(T1T1T2) = x(T2T2T2) = −1,

the reader will verify that Eqs. (95) and (98)-(102) lead to the real numerical values obtained

by Griffith [45] for the V coefficients of O in his real tetragonal component system.

It should be noted that each V coefficient calculated from (95) and (98)-(102) can be reduced

(up to a multiplicative factor) to a single 3–jm coefficient for the SO(3) ⊃ SO(2) chain. We

thus foresee that some properties of certain 3–jm symbols for the SU(2) ⊃ U(1) chain may be

derived by looking at some properties induced by a subgroup of SU(2). As an example, we have

V

(

A2 A2 E

a2 a2 θ

)

∼ f̄

(

3 3 2

A2a2 A2a2 Eθ

)

= −

(

3 3 2

−2 2 0

)

(103)

It is clear that the value of the V coefficient in (103) is zero since the A2⊗A2⊗E triple Kronecker

product does not contain the A1 IRC of the O group. As a consequence, the 3–jm symbol in

(103) corresponding to the SU(2) ⊃ U(1) chain vanishes (owing to a selection rule for O) in
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spite of the fact that the (trivial and Regge) symmetry properties for SU(2) ⊃ U(1) do not

impose such a result.

To close Section 3, it is to be mentioned that diagrammatic methods initially developed

for simplifying calculations within the Wigner-Racah algebra of the rotation group [112] where

extended to the case of a finite or compact group [113, 114, 115]. Note also that considerable

attention was paid in the nineties to the Wigner-Racah calculus for a q-deformed finite or

compact group (see [116] for some general considerations on this subject and [117, 118, 119] for

some developments on Uq(su(2)) and Uq(su(3))).

4 Contact with quantum information

4.1 Computational basis and standard SU(2) basis

In quantum information, we use qubits which are nothing but state vectors in the Hilbert

space C
2. The more general qubit

|ψ2〉 := c0|0〉 + c1|1〉, c0 ∈ C, c1 ∈ C, |c0|
2 + |c1|

2 = 1 (104)

is a linear combination of the vectors |0〉 and |1〉 which constitute an orthonormal basis

B2 := {|0〉, |1〉} (105)

of C2. The two vectors |0〉 and |1〉 can be considered as the basis vectors for the fundamental

IRC of SU(2), in the SU(2) ⊃ U(1) scheme, corresponding to j = 1/2 with

|0〉 ≡ |1/2, 1/2〉, |1〉 ≡ |1/2,−1/2〉 (106)

More generally, in dimension d we use qudits of the form

|ψd〉 :=

d−1
∑

n=0

cn|n〉, cn ∈ C, n = 0, 1, . . . , d− 1,

d−1
∑

n=0

|cn|
2 = 1 (107)

in terms of the orthonormal basis

Bd := {|n〉 : n = 0, 1, . . . , d− 1} (108)

of Cd. By introducing

j :=
1

2
(d− 1), m := n−

1

2
(d− 1), |j,m〉 := |d− 1 − n〉 (109)

the vectors |n〉 can be viewed as the basis vectors for the (j) IRC of SU(2) in the SU(2) ⊃ U(1)

scheme. In this scheme, the |j,m〉 vector is a common eigenvector of the Casimir operator J2

(the square of an angular momentum) and of a Cartan generator Jz (the z component of the

angular momentum) of the su(2) Lie algebra. More precisely, we have the relations

J2
|j,m〉 = j(j + 1)|j,m〉, Jz|j,m〉 = m|j,m〉 (110)
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which are familiar in angular momentum theory. In other words, the basis Bd, known in quantum

information as the computational basis, can be visualized as the SU(2) ⊃ U(1) standard basis

or angular momentum basis

B2j+1 := {|j,m〉 : m = j, j − 1, . . . ,−j} (111)

with the correspondence

|0〉 ≡ |j, j〉, |1〉 ≡ |j, j − 1〉, . . . , |d− 1〉 ≡ |j,−j〉 (112)

between qudits and angular momentum states.

4.2 Nonstandard SU(2) basis

We are now in a position to introduce nonstandard SU(2) bases which shall be connected in

the next subsection to the so-called mutually unbiased bases (MUBs) of quantum information.

As far as the representation theory of SU(2) is concerned, we can replace the set {J2, Jz} by

another complete set of two commuting operators. Following [120], we consider the commuting

set {J2, vra}, where the operator vra is defined by

vra := ei2πjr|j,−j〉〈j, j| +

j−1
∑

m=−j

q(j−m)a
|j,m + 1〉〈j,m| (113)

modulo its action on the space of constant angular momentum j spanned by the B2j+1 basis.

In (113), q is a primitive (2j + 1)-th root of unity, i.e.,

q := e2πi/(2j+1) (114)

and the parameters r and a are fixed parameters such that

r ∈ R, a ∈ Z/(2j + 1)Z (115)

It is to be noted that vra is pseudo-invariant under the cyclic group C2j+1 in the sense that it

transforms as an IRC of C2j+1 (different from the identity IRC). The common eigenstates of J2

and vra, associated with the SO(3) ⊃ C2j+1 chain, provide an alternative basis to that given by

the common eigenstates of J2 and Jz, associated with the SO(3) ⊃ SO(2) chain. This can be

made precise by the following result.

Theorem 3. For fixed j, r and a, the 2j + 1 common eigenvectors of vra and J2 can be

taken in the form

|jα; ra〉 =
1

√

2j + 1

j
∑

m=−j

q(j+m)(j−m+1)a/2−jmr+(j+m)α
|j,m〉 (116)

with α = 0, 1, . . . , 2j. The corresponding eigenvalues of vra are given by

vra|jα; ra〉 = qj(r+a)−α
|jα; ra〉 (117)
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so that the spectrum of vra is non degenerate.

The inner product

〈jα; ra|jβ; ra〉 = δα,β (118)

shows that

Bra := {|jα; ra〉 : α = 0, 1, . . . , 2j} (119)

is an orthonormal set which provides a nonstandard basis for the irreducible representation

matrix of SU(2) associated with j. For fixed j, there exists a (2j + 1)-multiple infinity of

orthonormal bases Bra since r can have any real value and a, which belongs to the ring Z/(2j+

1)Z, can take 2j + 1 distinct values (a = 0, 1, . . . , 2j).

4.3 Other bases in quantum information

We now go back to quantum information. By using the change of notations

d := 2j + 1, n := j +m, |n〉 := |j,−m〉, |aα; r〉 := |jα; ra〉 (120)

adapted to quantum information and in agreement with (109), the operator vra can be rewritten

as

vra = eiπ(d−1)r
|d− 1〉〈0| +

d−1
∑

n=1

qna|n− 1〉〈n| (121)

Each of the eigenvectors

|aα; r〉 = q(d−1)
2r/4 1

√

d

d−1
∑

n=0

qn(d−n)a/2+n[α−(d−1)r/2]
|d− 1 − n〉 (122)

(with α = 0, 1, . . . , d − 1) of vra is a linear combination of the qudits |0〉, |1〉, . . . , |d − 1〉. For

fixed d, r and a, the orthonormal basis

Bra := {|aα; r〉 : α = 0, 1, . . . , d− 1} (123)

is an alternative to the Bd computational basis. As already mentioned, there is d-multiple

infinity of orthonormal bases Bra.

All this can be transcribed in terms of matrices. Let Vra be the d× d matrix of the operator

vra. The unitary matrix Vra, built on the basis Bd with the ordering 0, 1, . . . , d− 1 for the lines

and columns, reads

Vra =

















0 qa 0 . . . 0

0 0 q2a . . . 0
...

...
... . . .

...

0 0 0 . . . q(d−1)a

eiπ(d−1)r 0 0 . . . 0

















(124)
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The eigenvectors of Vra are

φ(aα; r) = q(d−1)2r/4 1
√

d

d−1
∑

n=0

qn(d−n)a/2−n(d−1)r/2+nαφd−1−n (125)

(with α = 0, 1, . . . , d− 1), where the φk with k = 0, 1, . . . , d− 1 are the column vectors

φ0 :=











1

0
...

0











, φ1 :=











0

1
...

0











, . . . , φd−1 :=











0

0
...

1











(126)

representing the qudits |0〉, |1〉, . . . , |d− 1〉, respectively. They satisfy the eigenvalue equation

Vraφ(aα; r) = q(d−1)(r+a)/2−αφ(aα; r) (127)

with α = 0, 1, . . . , d−1. The Vra matrix can be diagonalized by means of the Hra unitary matrix

of elements

(Hra)nα :=
1
√

d
q(d−1−n)(n+1)a/2+(d−1)

2r/4+(d−1−n)[α−(d−1)r/2] (128)

with the lines and columns of Hra arranged from left to right and from top to bottom in the

order n, α = 0, 1, . . . , d− 1. Indeed, we have

(Hra)† VraHra = q(d−1)(r+a)/2











q0 0 . . . 0

0 q−1 . . . 0
...

... . . .
...

0 0 . . . q−(d−1)











(129)

in agreement with (127). As an illustration, let us consider the d = 2 and d = 3 cases.

For d = 2, we have two families of bases: the Br0 family and the Br1 family (a can take the

values a = 0 and a = 1). The matrix (see (124))

Vra :=

(

0 qa

eiπr 0

)

, q = eiπ (130)

has the eigenvectors (see (125))

φ(aα; r) =
1
√

2
(qa/2−r/4+αφ0 + qr/4φ1), α = 0, 1 (131)

which correspond to the basis Bra. For r = 0, the bases

B00 : φ(00; 0) =
1
√

2
(φ1 + φ0) , φ(01; 0) =

1
√

2
(φ1 − φ0) (132)

B01 : φ(10; 0) =
1
√

2
(φ1 + iφ0) , φ(11; 0) =

1
√

2
(φ1 − iφ0) (133)

are (up to a rearrangement) familiar bases for qubits.
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For d = 3, we have three families of bases, that is to say Br0, Br1 and Br2, since a can be 0,

1 and 2. In this case, the matrix

Vra :=







0 qa 0

0 0 q2a

eiπ2r 0 0






, q = ei2π/3 (134)

admits the eigenvectors

φ(aα; r) =
1
√

3
qr

(

qa+2α−2rφ0 + qa+α−rφ1 + φ2
)

, α = 0, 1, 2 (135)

For r = 0, the bases

B00 : φ(00; 0) =
1
√

3
(φ2 + φ1 + φ0)

φ(01; 0) =
1
√

3

(

φ2 + qφ1 + q2φ0
)

(136)

φ(02; 0) =
1
√

3

(

φ2 + q2φ1 + qφ0
)

B01 : φ(10; 0) =
1
√

3
(φ2 + qφ1 + qφ0)

φ(11; 0) =
1
√

3

(

φ2 + q2φ1 + φ0
)

(137)

φ(12; 0) =
1
√

3

(

φ2 + φ1 + q2φ0
)

B02 : φ(20; 0) =
1
√

3

(

φ2 + q2φ1 + q2φ0
)

φ(21; 0) =
1
√

3
(φ2 + φ1 + qφ0) (138)

φ(22; 0) =
1
√

3
(φ2 + qφ1 + φ0)

are useful for qutrits.

4.4 Mutually unbiased bases

Going back to the case where d is arbitrary, we now examine an important property of the

couple (Bra, Bd) and its generalization to couples (Bra, Brb) with b 6= a. For fixed d, r and a,

(122) gives

∀n, α ∈ {0, 1, . . . , d− 1} : |〈n|aα; r〉| =
1
√

d
(139)

Equation (139) shows that Bra and Bd are two unbiased bases. (Let us recall that two distinct

orthonormal bases Ba = {|aα〉 : α = 0, 1, . . . , d− 1} and Bb = {|bβ〉 : β = 0, 1, . . . , d− 1} of the

Hilbert space C
d are said to be unbiased if and only if the inner product 〈aα|bβ〉 has a modulus

independent of α and β.)

Other examples of unbiased bases can be obtained for d = 2 and 3. We easily verify that the

bases Br0 and Br1 for d = 2 given by (131) are unbiased. Similarly, the bases Br0, Br1 and Br2
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for d = 3 given by (135) are mutually unbiased. Therefore, by combining these particular results

with the general result implied by (139) we end up with 3 mutually unbiased bases (MUBs) for

d = 2 and 4 MUBs for d = 3. This is in agreement with the theorem according to which the

number N
MUB

of pairwise MUBs in C
d is such that 3 ≤ N

MUB
≤ d + 1 and that the maximum

number d+ 1 is attained when d is a prime number p or an integer power pe (e ≥ 2) of a prime

number p [121, 122, 123]. The results for d = 2 and 3 can be generalized in the case where d is

a prime number. This can be precised by the following theorem [124, 125, 126, 127, 128].

Theorem 4. For d = p, with p a prime number, the bases Br0, Br1, . . . , Brp−1, Bp corre-

sponding to a fixed value of r form a complete set of p+ 1 MUBs. The p2 vectors |aα; r〉, with

a, α = 0, 1, . . . , p−1, of the bases Br0, Br1, . . . , Brp−1 are given by a single formula, namely (122)

or (125). The index r makes it possible to distinguish different complete sets of p+ 1 MUBs.

The proof is as follows. First, according to (139), the computational basis Bp is unbiased

with any of the p bases Br0, Br1, . . . , Brp−1. Second, we get

〈aα; r|bβ; r〉 =
1

p

p−1
∑

k=0

qk(p−k)(b−a)/2+k(β−α) (140)

or

〈aα; r|bβ; r〉 =
1

p

p−1
∑

k=0

eiπ{(a−b)k2+[p(b−a)+2(β−α)]k}/p (141)

The right-hand side of (141) can be expressed in terms of a generalized quadratic Gauss sum

[129]

S(u, v, w) :=

|w|−1
∑

k=0

eiπ(uk
2+vk)/w (142)

where u, v and w are integers such that u and w are mutually prime, uw is non vanishing and

uw + v is even. This leads to

〈aα; r|bβ; r〉 =
1

p
S(u, v, w) (143)

with

u := a− b, v := −(a− b)p− 2(α − β), w := p (144)

The generalized Gauss sum S(u, v, w) in (143)-(144) can be calculated from the methods de-

scribed in [129]. We thus obtain

|〈aα; r|bβ; r〉| =
1
√
p

(145)

which completes the proof.�
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4.5 Mutually unbiased bases and Lie algebras

4.5.1 Weyl pairs

The matrix Vra can be decomposed as

Vra = PrXZ
a (146)

where

Pr :=

















1 0 0 . . . 0

0 1 0 . . . 0

0 0 1 . . . 0
...

...
... . . .

...

0 0 0 . . . eiπ(d−1)r

















(147)

and

X :=

















0 1 0 . . . 0

0 0 1 . . . 0
...

...
... . . .

...

0 0 0 . . . 1

1 0 0 . . . 0

















, Z :=

















1 0 0 . . . 0

0 q 0 . . . 0

0 0 q2 . . . 0
...

...
... . . .

...

0 0 0 . . . qd−1

















(148)

The linear operators corresponding to the matrices X and Z are known in quantum information

as shift and clock operators, respectively. The unitary matrices X and Z q-commute in the

sense that

XZ − qZX = 0 (149)

In addition, they satisfy

Xd = Zd = Id (150)

where Id is the d-dimensional unit matrix. Equations (149) and (150) show that X and Z

constitute a Weyl pair [130]. The (X,Z) Weyl pair turns out to be an integrity basis for

generating a set {XaZb : a, b = 0, 1, . . . , d− 1} of d2 generalized Pauli matrices in d dimensions

(see for instance [127, 131, 132, 133] in the context of MUBs and [134, 135, 136] in group-

theoretical contexts). In addition, the set {qaXbZc : a, b, c = 0, 1, . . . , d − 1} generates, with

respect to matrix multiplication, a finite group of order d3, the Pd Pauli group [127]. As an

example, for d = 2 we have

X = σx, Z = σz, XZ = −iσy, X0Z0 = σ0 (151)

in terms of the ordinary Pauli matrices σ0 = I2, σx, σy and σz, and the Pauli group P2 is

isomorphic with the hyperbolic quaternion group.

Equations (149) and (150) can be generalized through

VraZ − qZVra = 0, e−iπ(d−1)(r+a)(Vra)d = Zd = Id (152)
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so that other pairs of Weyl can be obtained from Vra and Z. Note that

X = V00, Z = (V00)† V01 (153)

which shows a further interest of the matrix Vra.

4.5.2 MUBs and the special linear group

In the case where d is a prime integer or a power of a prime integer, it is known that the set

{XaZb : a, b = 0, 1, . . . , d−1}\{X0Z0
} of cardinality d2−1 can be partitioned into d+1 subsets

containing each d− 1 commuting matrices (cf., [131]). Let us give an example.

For d = 5, we have the 6 following sets of 4 commuting matrices

V0 := {01, 02, 03, 04}, V1 := {10, 20, 30, 40}

V2 := {11, 22, 33, 44}, V3 := {12, 24, 31, 43} (154)

V4 := {13, 21, 34, 42}, V5 := {14, 23, 32, 41}

where ab is used as an abbreviation of XaZb.

More generally, for d = p with p prime, the p+ 1 sets of p− 1 commuting matrices are easily

seen to be

V0 := {X0Za : a = 1, 2, . . . , p− 1}

V1 := {XaZ0 : a = 1, 2, . . . , p− 1}

V2 := {XaZa : a = 1, 2, . . . , p− 1}

V3 := {XaZ2a : a = 1, 2, . . . , p − 1} (155)

...

Vp−1 := {XaZ(p−2)a : a = 1, 2, . . . , p− 1}

Vp := {XaZ(p−1)a : a = 1, 2, . . . , p− 1}

Each of the p + 1 sets V0,V1, . . . ,Vp can be put in a one-to-one correspondence with one basis

of the complete set of p+ 1 MUBs. In fact, V0 is associated with the computational basis while

V1,V2, . . . ,Vp are associated with the p remaining MUBs in view of

V0a ∈ Va+1 = {XbZab : b = 1, 2, . . . , p − 1}, a = 0, 1, . . . , p− 1 (156)

Keeping into account the fact that the set {XaZb : a, b = 0, 1, . . . , p − 1} \ {X0Z0
} spans the

Lie algebra of the special linear group SL(p,C), we have the following theorem.

Theorem 5. For d = p, with p a prime integer, the Lie algebra sl(p,C) of the group SL(p,C)

can be decomposed into a sum (vector space sum) of p+1 abelian subalgebras each of dimension

p− 1, i.e.

sl(p,C) ≃ v0 ⊎ v1 ⊎ . . . ⊎ vp (157)
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where the p+ 1 subalgebras v0, v1, . . . , vp are Cartan subalgebras generated respectively by the

sets V0,V1, . . . ,Vp containing each p− 1 commuting matrices.

The latter result can be extended when d = pe with p a prime integer and e an integer

(e ≥ 2): there exists a decomposition of sl(pe,C) into pe + 1 abelian subalgebras of dimension

pe − 1 (cf., [128, 136, 137, 138]).

5 Appendix: The Racah parameters

In the case of the ℓN configuration, the Coulomb Hamiltonian HC can be written as

HC = (2ℓ + 1)2
∑

k=0,2,...,2ℓ

F k

(

ℓ k ℓ

0 0 0

)2
∑

i<j

(

u
(k)(i) · u(k)(j)

)

(158)

where the F k
≡ Dk(ℓ)Fk parameters are the usual Slater-Condon-Shortley parameters. It is

clear that any linear transformation

E
λ =

∑

k=0,2,...,2ℓ

b(ℓ)λkF
k, λ = 0, 1, . . . , ℓ (159)

where b(ℓ) is a regular matrix of dimension ℓ+ 1 defines an equally acceptable parametrization.

As a trivial example, the D[. . .] parametrization in Section 2.5 corresponds to

D[(00)0(kk)00] = (s‖u(0)‖s)−2(ℓ‖u(k)‖ℓ)−2
√

2k + 1(2ℓ + 1)2
(

ℓ k ℓ

0 0 0

)2

F k (160)

i.e., to a renormalization of the F k parameters.

Less trivial examples are provided by the Racah parameters

A = F 0
−

1

9
F 4 = F0 − 49F4

B =
1

441
(9F 2

− 5F 4) = F2 − 5F4 (161)

C =
5

63
F 4 = 35F4

for the dN configuration [2] and the Racah parameters

E0 = F0 − 10F2 − 33F4 − 286F6

E1 =
1

9
(70F2 + 231F4 + 2002F6)

E2 =
1

9
(F2 − 3F4 + 7F6) (162)

E3 =
1

3
(5F2 + 6F4 − 91F6)

F0 = F 0, F2 =
1

225
F 2, F4 =

1

1089
F 4, F6 =

25

184081
F 6

for the fN configuration [4]. The term energies for dN assume, to some extent, a simple form

when expressed as functions of A, B and C. The Ej parameters (with j = 0, 1, 2, 3) for fN
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allow to decompose HC into parts having well-defined properties under the action of the groups

of the SO(7) ⊃ G2 ⊃ SO(3) chain.

As a last example, let us consider the parametrization defined by (159) with

b(ℓ)λk = (−1)λ(2ℓ + 1)

(

ℓ k ℓ

0 0 0

)(

ℓ k ℓ

−λ 0 λ

)

(163)

In this parametrization, the HC operator can be rewritten as

HC =

l
∑

λ=−l

Vλ (164)

with

Vλ = E
λ

∑

k=0,2,...,2ℓ

(2k + 1)b(ℓ)λk
∑

i<j

(

u
(k)(i) · u(k)(j)

)

(165)

We of course have Vλ = V−λ and therefore there are ℓ + 1 independent components Vλ in HC .

The E
λ parametrization was investigated in [139, 140, 141]. Let us simply mention that the part

V0 of HC corresponds to a sum of surface delta interactions and that HC can be reduced to V0

for

F k = (2k + 1)F 0 (166)

for k = 0, 2, . . . , 2ℓ. In the special case of the dN configuration, it is to be realized that relation

(166) corresponds to the Laporte-Platt degeneracies [142] (see also [9, 139, 143]) which occur

for B = 0.

6 Closing remarks

Starting with the idea to substitute for the numerical methods of Slater, Condon and Shortley

general methods close both to Dirac’s ideas on quantum mechanics and to those of Wigner about

the use of symmetries in physics, Racah developed practically in 20 years universal methods

(irreducible tensor methods and group theoretical methods) used in many fields of physics and

chemistry. In particular, the application of Racah’s methods in atomic, nuclear and elementary

particle physics as well as in group theory (Wigner-Racah algebra, state labeling problem) are

well-known. We have shown how the use of Racah’s methods in conjunction with SU(2) ⊃ G∗

or SO(3) ⊃ G symmetry adapted bases and effective operators yields sophisticated models in

crystal- and ligand-field theories. In last analysis, these models are fully described by chains

of groups, viz., the U(5) ⊃ SO(5) ⊃ SO(3) ⊃ G chain for the dN configuration in G and the

U(7) ⊃ SO(7) ⊃ G2 ⊃ SO(3) ⊃ G chain for the fN configuration in G.

As an application of current interest in the present days, we have shown the importance of

the chain SO(3) ⊃ Cd for deriving a complete set of mutually unbiased bases when d is a prime

integer. These bases are very useful in quantum information (quantum cryptography, quantum
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state tomography, quantum error codes) and equally in quantum mechanics (discrete Wigner

function, mean King problem, path integral formalism).

A common denominator to Sections 2, 3 and 4 is the notion of “chains of groups”. Although

chains of groups were in use before Racah (e.g., see the works by Ehlert on CH4 [144], Bethe

on crystal-field theory [29] and Wigner on supermultiplets of nuclei [145]), his contribution to

that part of applied group theory is essential and represents one of its major achievements.1

The interest for Physics and Chemistry of chains involving (noncompact and/or compact) con-

tinuous as well as finite groups is now well established. Such chains turn out to be useful in

the investigation of broken symmetries which may arise either via descent in symmetry (Zeeman

effect, homogeneous and inhomogeneous Stark effect, ligand-field effect, etc.) or via spontaneous

symmetry breaking (Landau and Jahn-Teller effect, symmetry breaking in elementary particle

physics, etc.). In Racah’s approach, which excludes the cases of external or Lorentzian and inter-

nal or gauge (super)symmetries, one group of the chain is a high symmetry group corresponding

to a zeroth order approximation (like the cubic group in ligand-field theory) and another one is

a low symmetry group corresponding to a first order approximation (like the tetragonal or trigo-

nal group in ligand-field theory). The two symmetry groups correspond to known or postulated

symmetries depending on whether the nature of the interactions involved is known or unknown.

According to Wigner’s theorem [147], these symmetry or invariance groups (which leave invariant

an Hamiltonian operator) provide representation labels or good quantum numbers for describing

the state vectors. The other groups of the chain are dynamical or noninvariance groups in the

sense that not all of their generators or elements commute with the Hamiltonian. They can de-

scribe part of the interactions and are generally introduced to make the chain as multiplicity-free

as possible. Finally, the various groups of the chain are used to classify the state vectors and

the (known or postulated) physical interactions. When elaborating a model based on symmetry

considerations, the latter point is of considerable importance from a qualitative point of view

(for level splitting and for selection rules) and a quantitative point of view (for the calculation of

energy or mass matrices and transition probabilities). The preceding considerations apply to nu-

clear, atomic, molecular and condensed matter physics and also to quantum chemistry (chains of

groups are even useful for classifying chemical elements [148, 149, 150]). Note that the situation is

a bit different in elementary particle physics since the notion of classification groups (with the pi-

oneer works by Heisenberg, Sakata, Gell-Mann, Ne’eman and Zweig going from the SU(2) isospin

group to the SU(3) ⊃ SU(2) chain involved in the first quark model) evolved to gauge groups

(going from the SU(3)⊗SU(2)⊗U(1) ⊃ SU(3)⊗U(1) standard model to the grand unified mod-

els based on the E8 ⊃ E7 ⊃ E6 ⊃ SO(10) ⊃ SU(5) ⊃ SU(3) ⊗ SU(2) ⊗ U(1) ⊃ SU(3) ⊗ U(1)).

However, in any field of physics there is a common scheme, namely,

1A fundamental result proved by Racah is that for a chain of groups having for head group a Lie group

of order r and rank l, one can associate a complete set of commuting operators of cardinal (r+ l)/2 (i.e., l

Cartan operators plus l Casimir operators plus (r− 3l)/2 labeling operators, some of the operators being

Casimir, Cartan or labeling operators of the chain) [5]. See [146] for recent developments on this subject.
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(super)symmetries → chain of groups → invariance or

co-variance → conservation laws or good quantum numbers.

To close this paper, let us add some further comments. Racah founded the main school of

theoretical physics in Israel. He had a strong impact on (national and international) committees

and on various research groups in theoretical and experimental spectroscopy (including the

Laboratoire Aimé Cotton in France).

Racah had many students who deeply contributed to atomic and nuclear spectroscopy; they

are profusely quoted in the review by Zeldes [151]. We would like to complete the list of students

in the bibliography of Zeldes with a few words about Moshé Flato (Tel Aviv 1937 - Paris 1998), a

student of Racah during the period 1959-1963, who contributed to spread the ideas of Racah on

crystal- and ligand-field theories. Flato achieved his M.Sc. thesis under the supervision of Racah

in 1959 and prepared in 1960-1963 a Ph.D. thesis on a subject of nuclear physics (dealing with

the Sp(2n) ⊃ U(n) chain in connection with the Elliott-Flowers model) given by Racah.2 When

Flato came to France in 1963 his interest shifted to noncompact groups. He started working on

Lorentzian symmetries and strong interactions when he was at Institute Henri Poincaré in Paris

(1963-1964). After that he was Associate Professor of Physics for three years at Université de

Lyon, then moved to Dijon in mathematics. Flato got in 1965 a Doctorat ès Sciences Physiques

from Université de Paris on the basis of his works on elementary particle physics.3 Flato pursued

a brilliant career both in France and worldwide, dealing with a great variety of subjects in

physics and in mathematics. Flato evolved from theoretical physics to mathematical physics and

mathematics.4 Among his many interests and contributions, let us mention the following: mass

formulas (in relation with internal and external symmetries), conformal field theories; infinite-

dimensional representations of Lie groups, singletons, AdS4/CFT3, composite electrodynamics;

nonlinear representations of groups, covariant PDEs, global existence theorems for field theories

(Yang-Mills, Maxwell-Dirac); and especially the role of deformations in physics, including the

now 35 years old and still frontier area of deformation quantization (symplectic and Poisson

2According to Daniel Sternheimer, Flato was Racah’s preferred student, probably the most brilliant

in his generation. The families were friends since WWII when Flato’s father was chief engineer of the

British Mandate in Jerusalem. When Racah became Rector, he asked Flato to deliver (during 2 years,

while Flato was doing military service) the traditional Racah lectures on group theory in physics, and

recommended him for a course on solid state physics at Bar Ilan University, which Flato delivered without

the compulsory yarmulke to students about his age.
3According to Sternheimer, after the death of Racah in 1965 (in Firenze on his way to join Flato in

Paris) Flato decided not to publish the joint paper which they were preparing in nuclear physics. Racah

had taken the manuscript with him in Firenze and intended to finalize it in Paris. Flato did not either

defend in Jerusalem his Ph.D. based on that paper. Anyhow that became moot since he had already a

French D.Sc.
4According to Sternheimer, his coworker for 35 years who heard with him a course on the theory of

distributions by S. Agmon in Jerusalem in 1958-59, Flato had a dual training in physics and mathematics.

Before opting for Racah he had considered working with S. Amitsur in algebra or with N. Rosen in

relativity.
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manifolds), quantum groups and noncommutative geometry. In 1968 Flato founded what was

later called the Laboratoire Gevrey de Mathématique Physique at Université de Bourgogne and

in 1975 Letters in Mathematical Physics and two series of books published by Reidel (Kluwer).

He had numerous students in France and abroad and a strong impact on Society (IAMP, Marie

Curie chairs, Scientific Council of UAP). For more details, see [152, 153].

Racah and Flato shared important scientific and human qualities. Both were excellent

teachers and at the same time exceptional researchers with a good sense of the duality theory-

experiment, convinced of the importance of symmetries in physics. They knew how to com-

municate enthusiasm, give the right impulse to their students and collaborators, and inspire

them to solve problems. Both had a strong impact on scientific communities and on national

and international committees and enterprises. We learned and can still learn many things from

them both from the human and scientific points of view. Their impact will last for a long time.

We shall not forget them.
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(http://www.math.bgu.ac.il/events/flato/2011-Flato-Lectures.html).
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