
Estimates of the solutions of some

asymmetric problem defined on R
N , N ≥ 3

Jacqueline Fleckinger∗

This paper is dedicated to Prof. Monique Madaune Tort

Monograf́ıas de la Real Academia de Ciencias de Zaragoza 38: 53–64, (2012)

ISSN 1132-6360

Abstract

We study here the following equations defined on IRN , N ≥ 3

(Ef ) (−∆+ q(x))u = µm(x)u+ f , lim
|x|→+∞

u(x) = 0,

(Qf ) (−∆+ q(x))u = m(x)(au+ − bu−) + f , lim
|x|→+∞

u(x) = 0.

We consider an “intermediate” case where q ≥ 0 grows less than |x|2 andm decreases

less than |x|−2 which are the cases usually studied. We study in particular the sign

of the solutions for the parameters µ, a, b varying around the associated principal

eigenvalue µ∗ defined by (−∆+ q(x))u = µ∗m(x)u.

1 Introduction

We study here the sign of the solution to the following equation defined on IRN , N ≥ 3:

(Ef ) (−∆+ q(x))u = µm(x)u+ f , lim
|x|→+∞

u(x) = 0,

and then the associated asymmetric problem defined on IRN , N ≥ 3:

(Qf ) (−∆+ q(x))u = m(x)(au+ − bu−) + f , lim
|x|→+∞

u(x) = 0,

where the potential q and the weight m are not necessarily positive. µ, a, b are real parameters.

As usual, for any function changing sign, we set

u = u+ − u− where u+(x) = max(u(x), 0).
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The data f ∈ L∞
loc.

There are several results on asymmetric problems, most of them being defined on a bounded

domain (e.g. [9]), [1]).

Our problem is defined on IRN and it is well-known that weights must be introduced for having

a discrete spectrum. Two cases for Equation (Ef ) defined on IRN have been intensively studied:

the case where the potential q grows fast enough to ∞ and m ≡ 1 ([3] [5]) and the case q ≡ 0

with a weight decreasing fast enough (even for the p-Laplacian) ([14], [9], [10], ...).

Here we consider an “intermediate” case (the potential grows “slowly” , the weight decreases

“slowly”) and we show that several of the above mentioned results are still valid.

We study also some “completely indefinite” problems that is q and m may change sign. These

problems have a long history since it starts at the end of the 19th century with Hilb, Bocher,

Boggio, ... and later by Atkinson, Mingarelli always for ODE.

It has been shown by Richardson (1918) that there is a pair of non real eigenvalues ( ≃ ±4, 36i)

for the following equation:

−y′′ −
9π2

4
y = λg(x)y 0 < x < 2; y(0) = y(2) = 0,

with g(x) = 1 if 0 < x < 1 and g(x) = −1 for 1 < x < 2.

The first paper on the multidimensional case is due to Holmgren in 1904 who studies the Dirichlet

problem on a bounded domain in IR2:

∆u+ λg(x, y)u = 0

when g changes sign.

He shows that there exists 2 countable (and infinite) set of eigenvalues: one of positive ones, the

other of negative ones.

... ≤ λ−j ≤ λ−j−1 ≤ ...λ−1 < (0) < λ+1 < λ+2 ≤ ... ≤ λ+j ≤ ...

This paper is organized as follows:

We study first Equation (Ef ) for m > 0; we set some hypotheses on q and m, and state our

results. We prove them first when q is non negative before considering the case where it changes

sign. We derive then the asymmetric case.

The last section is devoted to the “completely indefinite” problem that is q and m are not

necessarily positive. We consider only real eigenfunctions. We extend some of the results

obtained for a positive weight to some “indefinite problems”.

2 Hypotheses and Results for m > 0

2.1 Hypotheses

(Hq) We assume that q is continuous and there exists c′ > 0 such that q+ ≥ c′pβ, β > 0,

with

p := (1 + |x|2)1/2.
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(Hm) We assume that m is continuous, bounded and m tends to 0 at infinity. More precisely,

there exists c” > 0, C” > 0 such that

0 < C”/pγ ≤ m ≤ c”/pα , γ ≥ α > 0.

(H0) When q changes sign we assume that there exists c1 > 0 such that

0 ≤ q− ≤ c1m ⇔ c1m− q− ≥ 0.

(Hf ) Assume f = mh, h ∈ L∞ ∩ L2
m(IRN ); f ≥ 0, 6≡ 0.

Remark 1 m/q+ → 0 as |x| → ∞ since α+ β > 0.

We consider the weak formulation of (Ef ). We introduce the space

(1) Vq = {u ∈ D1,2(IRN ) :

∫

IRN

q+u2 <∞},

equipped with norm [
∫

IRN (|∇u|
2 + q+u2)]1/2. We seek u ∈ Vq, satisfying

(2)

∫

IRN

(∇u.∇χ+ quχ) = µ

∫

IRN

muχ+

∫

IRN

fχ, ∀χ ∈ Vq.

Remark 2 If
∫

IRN q
+u2 <∞ then

∫

IRN qu
2 <∞, by Remark 1.

Indeed our hypotheses imply that u is continuous and even C1.

2.2 Existence of a PEV for a homogeneous problem, m ≥ 0

(EV ) (−∆+ q)u = µm(x)u.

Proposition 1 If (Hm) , (Hq) and (H0) are satisfied, (EV ) posseses a ”principal eigenvalue”

(PEV) denoted by µ∗:

(3) µ∗ = infu∈Vq

∫

IRN (|∇u|
2 + qu2)

∫

IRN mu2
.

This eigenvalue is simple. The equality is achieved iff u is proportional to the associated eigen-

function.

Notation: From now on let us denote by φ the associated eigenfunction (groundstate) which

is positive and such that
∫

IRN mφ
2 = 1.
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2.3 Sign of the Solutions of (Ef), m ≥ 0

We consider now the following equation defined on IRN :

(Ef ) (−∆+ q)u = µm(x)u+ f, lim
|x|→+∞

u(x) = 0.

We always assume in this section that

Hypothesis (H) : (Hq), (Hm), (H0), (Hf ) are satisfied.

First let us recall a classical result:

Proposition 2 (Maximum Principle (MP)) If (H) is satisfied, any solution u to (Ef ) with

µ < µ∗. is positive; conversely u > 0 ⇒ µ < µ∗.

We compare now locally u solving (Ef ) to φ for |µ−µ∗| small enough : following e.g. [3] we say

thet u is “fundamentally positive (resp. negative)” if there exists a constant C > 0 such that

u > Cφ (resp. u < −Cφ), φ being the groundstate.

Theorem 1 (Local fundamental positivity or negativity (FPNloc)) Assume (H). Let

R > 0 be given; there exists δ > 0 and 2 positive constants K ′ and K” depending on R, f , q

and m such that

* for µ∗ − δ < µ < µ∗, then u > K ′

µ∗−µφ > 0 on the ball BR = {x ∈ IRN/|x| < R}.

* for µ∗ < µ < µ∗ + δ, then u < − K”
µ−µ∗φ < 0 on the ball BR = {x ∈ IRN/|x| < R}.

This result is shown in [14], Theorem 5.2 for q = 0 and α > 2. It is shown in [3], [5] for β > 2 ,

α = 0 and the authors obtain a global result: R = ∞. These comparison results are an extension

of local maximum and antimaximum principle. Recall that the antimaximum principle has been

introduced by P.Clément and L.Peletier in [8].

For µ < µ∗, (H) being satisfied, we deduce from the maximum principle a “global” fundamental

positivity result.

Theorem 2 (Fundamental Positivity) Assume (H); assume moreover that there exists a

positive number Ch such that

(4) h > Chφ > 0.

Then, for any given µ < µ∗, u solving (Ef ) is fundamentally positive

(5) u >
Ch

µ∗ − µ
φ.

Analogously h < C ′
hφ ⇒ u <

C′

h

µ∗−µφ.
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2.4 Asymmetric problem (Qf), m ≥ 0

Consider now (Qf )

(Qf ) (−∆+ q(x))u = m(x)(au+ − bu−) + f , lim
|x|→+∞

u(x) = 0,

We simply follow [9] which considers the case of the p-Laplacian on a bounded domain. We

derive from above simple results on (Qf ).

Proposition 3 (Non existence) Assume (H). Then (Qf ) has no solution in Vq for a = µ∗

and b ≤ µ∗.

Proposition 4 (Maximum Principle) Assume (H) and b < µ∗; then any (eventual) solu-

tion is positive; conversely if there exists a positive solution, then b < µ∗.

Proposition 5 (Local antimaximum) Assume (H); for any given R > 0, there exists δ > 0

depending on R and h, such that, if µ∗ < a < µ∗ + δ and µ∗ < b < a < µ∗ + δ, then u < 0 on

the ball BR.

Corollary 2.1 Assume (H); for any given R > 0, there exists δ > 0 depending on R and h,

such that, if µ∗ < a < µ∗ + δ and b < µ∗, (Qf ) has no solution on BR.

Corollary 2.2 Assume (H); for any given R > 0, there exists δ > 0 depending on R and h,

such that, if µ∗ < b < µ∗+δ and a < µ∗, (Qf ) has at least 2 solutions: one is positive everywhere

and the other negative on a ball.

3 Proofs of the results for a positive weight: m > 0

3.1 Proof of Proposition 1:

3.1.1 Case q > 0

We introduce the hermitian forms

(6) a(u, χ) :=

∫

(∇u.∇χ+ quχ) , b(u, χ) :=

∫

muχ, ∀χ ∈ Vq.

Consider (EV ) in its variational form. We seek u ∈ Vq. Following e.g. [15], (EV ) can be written

as

a(u, χ) = µb(u, χ).

We define a linear operator T : Vq → Vq by

a(Tu, χ) = b(u, χ).

T is continuous and selfadjoint in Vq since a is coercive and b is continuous:

‖Tu‖2Vq
= a(Tu, Tu) = b(u, Tu) ≤ C”‖u‖Vq‖Tu‖Vq .
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Formally T = (−∆+ q)−1M where M denotes the multiplication by m. We show now that T

is compact. We have

‖Tu‖Vq ≤ C”‖u‖Vq .

We choose a bounded sequence uk in Vq and show that Tuk is a Cauchy sequence. Since uk is

bounded in Vq, it is bounded in H1(BR) where BR := {x ∈ IRN : |x| < R}. By compactness

of H1(BR) into L
2(BR) there exists a converging subsequence. On B′

R := {x ∈ IRN : |x| > R},

we have for any u ∈ Vq:

∫

B′

R

mu2 ≤ sup
B′

R

m

q

∫

B′

R

qu2 → 0 as R→ ∞.

Hence finally there exists a subsequence such that, for k and l large enough, ‖T (uk −ul)‖Vq ≤ ǫ.

T admits a sequence of positive eigenvalues Tu = 1
µu and µ is eigenvalue for (EV ).

µ∗ is the smallest eigenvalue of (EV ); it is simple and positive; it is a “principal eigenvalue”,

that is an eigenvalue with associated eigenfunction φ which does not change sign.

3.1.2 Case q = q+ − q− and q− 6≡ 0

We deduce from (H0) that c1m+ q− > 0 and we write (EV ) as

Lu := (−∆+ q(x) + c1m)u = (c1 + µ)m(x)u.

We are lead to an equation with a positive potential. All the results from the previous section

still hold with q replaced by Q(x) = q(x) + c1m(x), µ by c1 + µ and µ∗ by c1 + µ∗. Also the

principal eigenfunction φ is still the same and µ − µ∗ is invariant. For the asymmetric case,

-later- a is replaced by a+ c1 and b by b+ c1-.

3.2 Proof of Theorem 1

Write

(7) u = u1φ+ u⊥ where

∫

IRN

mu⊥φ = 0.

For f = mh, analogously set h = h1φ+ h⊥. It follows from (Ef ) that

µ∗u1mφ+ (−∆+ q)u⊥ = µmu1φ+ µmu⊥ +mh1φ+mh⊥.

Therefore

(8) u1 =
h1

µ∗ − µ
,

(9) (−∆+ q)u⊥ = µmu⊥ +mh⊥.

We show now that u⊥/φ is bounded on any ball. First let us remark that
∫

IRN

(|∇u⊥|2 + q(u⊥)2) ≥ µ2

∫

IRN

m(u⊥)2,
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where µ2 denotes the second eigenvalue of (EV ); we derive:

(µ2 − µ)

∫

IRN

m(x)(u⊥)2 ≤

∫

IRN

m(x)h⊥u⊥ ≤

[

∫

IRN

m(x)(h⊥)2
∫

IRN

m(x)(u⊥)2
]1/2

.

Hence

(10)

∫

IRN

m(x)(u⊥)2 ≤
( 1

µ2 − µ

)2
∫

IRN

m(x)(h⊥)2.

* When µ < µ∗ < µ2, µ2 − µ > µ2 − µ∗. Hence there exists K > 0, depending on m and h⊥,

such that
∫

IRN

m(x)(u⊥)2 ≤ K(µ2 − µ∗)−2;

this upperbound is independent of µ!

* When µ∗ < µ < µ2, we choose µ2 − µ > 1
4(µ2 − µ∗). Again there exists K ′ > 0 such that

∫

IRN

m(x)(u⊥)2 ≤ K ′(µ2 − µ∗)−2;

and again the upperbound is independent of µ.

In both cases, u⊥ being bounded in L2
m(IRN ), is also bounded on L2

m(BR) for any ball BR and

by (Hm) it is bounded in L2(BR). By bootstrap method it is bounded on C1(BR). On BR, the

groundstate φ is bounded below by some constant CR, and the weight by C ′
R and hence it is

possible to choose µ∗ − µ small enough so that

(11) |u⊥| ≤ K ′′ h⊥

(µ2 − µ∗)
φ.

Combining (7), to (11) we derive the results. •

3.3 Proof of Theorem 2

This follows simply by comparison. Denoting as above L = −∆+ q + c1m, we have

L(u− kφ) = µm(u− kφ) +H with H = mh− (µ∗ −µ)mkφ. For k = Ch

µ∗−µ , then H > 0 and the

Maximum Principle gives the result. •

3.4 Proof of Proposition 3

This is a classical consequence of Fredholm’s alternative; (Qf ) can be written:

(−∆+ q)u = µ∗mu+m[h+ (µ∗ − b)u−]

and the term m[h+ (µ∗ − b)u−] is positive.

Conversely, b < µ∗ is a necessary condition; by contradiction choose u = −φ < 0. Lu = bmu+F

with F = (µ∗ − b)mu > 0. •
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3.5 Proof of Proposition 4

Assume u changes sign. Multiplying (Qf ) by u
− we derive

(µ∗ − b)

∫

IRN

m(u−)2 < 0.

Hence u > 0 a.e and by regularity u > 0.

Conversely we exhibit a counterexample : u = −φ < 0 solves (Qf ) with f = (µ∗ − b)(−φ) > 0.

•

3.6 Proof of Proposition 5

Since a− b > 0 write (Qf ) as

(−∆+ q)u = amu+m(h+ (a− b)u−),

and apply Theorem 1. •

3.7 Proof of Corollary 2.1

By Proposition 4, u > 0 and by Proposition 5, locally u < 0. •

3.8 Proof of Corollary 2.2

By Proposition 4, the equation (−∆+ q)u = amu+mh has a solution which is > 0 so that

u− ≡ 0 and u = u+. Hence

(−∆+ q)u = amu+mh = amu+ − bmu− +mh.

Analogously (−∆+ q)u = bmu +mh has a solution which is < 0 on BR and therefore u+ ≡ 0

on BR. Therefore

(−∆+ q)u = bmu+mh = amu+ − bmu− +mh.

•

4 Completely indefinite problem

4.1 Hypotheses (H ′)

We assume

(Hq) q is continuous and there exists c′ > 0 such that q+ ≥ c′pβ, β ≥ 0.

(H ′
m) m is continuous, bounded and m+ tends to 0 at infinity. More precisely, there exists

K” > 0, k” > 0 such that

0 < g+ := m+ + k”/pγ ≤ K”/pα, γ ≥ α > 0.

(H”m) There exists c2 > 0 such that 0 ≤ m− ≤ c2q
+.
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(H ′
0) There exists c1 > 0 such that

0 ≤ q− ≤ c1g
+ ⇔ c1g

+ − q− ≥ 0.

(H+) τ∗ > 0 where τ∗ is the principal eigenvalue of

(−∆+ q(x))u = τg+(x)u on IRN ,

and ψ the associated positive principal eigenfunction such that
∫

IRN g
+ψ2 = 1.

4.2 Existence of a Principal Eigenpair

Theorem 3 If (H ′) holds, (EV ) has a principal eigenvalue µ∗ which is positive.

The existence of principal eigenvalues for completely indefinite PDE is studied e.g. in [12] or

more recently in [11] but always for problems defined on bounded domains.

Proof of Theorem 3: We write

(EV ) (−∆+ q(x))u = µm(x)u on IRN ⇔

(EV ′) (−∆+ q)u+ µg−u = µg+u,

where g± := m± + k”/pγ .

Consider now a one parameter eigenvalue problem derived from (EV ′)

(EVs) (−∆+ q + sg−)u = µsg
+u, x ∈ IRN .

The weight is positive, due to Hypothesis (H ′
m) and we can apply the results of the previous

sections. For any s, there exists a principal eigenpair (µs > 0, us > 0):

(12) µs = infu∈W

∫

IRN (|∇u|
2 + qu2 + sg−u2)

∫

IRN g+u2
.

Here

W = {u ∈ V(q++sg−) s.t.

∫

IRN

(|∇u|2 + qu2 + sg−u2) <∞}.

By (H ′), Vq++sg− =W .

We derive from (H+) and (12) that

(13) µs < τ∗ + s

∫

IRN g
−ψ2

∫

IRN g+ψ2
= τ∗ + s

∫

IRN

g−ψ2.

The curve (s, µs) is continuous and increases. µ0 = τ∗ > 0.

Finally we derive from the properties of eigenvalues that µs < νs the principal eigenvalue of the

same equation defined (with Dirichlet boundary conditions) on the smaller domain Ω+ := {x ∈

IRN : m(x) > 0}. From (−∆+ q)u = ν∗m+u, x ∈ Ω+, we derive as before (−∆+ q + sg−)u =

νsg
+u, x ∈ Ω+. The curve (s, νs) cuts the bisctrix at ν∗ the fixed point of νs = s. Hence the

curve (s, µs) starting from τ∗ > 0, below (s, νs) cuts the bisectrix at µ∗ which is the positive

principal eigenvalue of (EV ). •

61



4.3 Sign of the solutions

Assume that (H ′) is satisfied and

(H ′
f ) f ∈ L∞ ∩ L2

1/|m|(IR
N ); f = m+h ≥ 0, 6≡ 0.

4.3.1 Maximum Principle

Theorem 4 (Maximum Principle (MP)) If (H ′) and (H ′
f ) are satisfied, any solution u to

(Ef ) with µ < µ∗ is positive; conversely u > 0 ⇒ µ < µ∗.

Proof of Theorem 4 (MP):

With the same notations as above , Equation (Ef ) can be written

(E′
f ) (−∆+ q + µg−)u = µg+u+ f.

Consider the one parameter equation:

(E”s) (−∆+ q + sg−)u = µg+u+ f.

Considering the curve (s, µs) we have s < µ∗ ⇔ µs < µ∗. To any µ < µ∗, it corresponds s < µ∗

and µs < µ∗ and we can apply Proposition 2 to (E”s). •

4.3.2 Local Antimaximum Principle

Theorem 5 (Local Antimaximum Principle) Assume (H ′) and (H ′
f ). Let R > 0 be given;

there exists δ > 0 depending on R, f , q and m such that for µ∗ < µ < µ∗ + δ, then u < 0 on the

ball BR = {x ∈ IRN/|x| < R}.

Proof of Theorem 5

(Ef ) can be written as before as (E”s). Always as before considering the curve (s, µs), s > µ∗ ⇔

µs > µ∗. We apply Theorem 1 to (E”s). •

4.4 Asymmetric Problems

We consider (Qf ).

4.4.1 Results

Theorem 6 Assume (H ′) and (H ′
f ). If b < µ∗, then the maximum principle is valid.

Theorem 7 Assume (H ′) and (H ′
f ). Then conclusion of Corollary 2.2 is still valid.

Proof of Theorem 6

We assume u = u+ − u− for b < µ∗. Multiply (Qf ) by u
− and integrate. We obtain

µ∗
∫

m+(u−)2 ≤ −(Lu, u−) = b

∫

m(u−)2 −

∫

fu− ≤

62



b

∫

m+(u−)2 − b

∫

m−(u−)2 ≤ b

∫

m+(u−)2.

Hence (µ∗ − b)
∫

m+(u−)2 ≤ 0 and u− = 0 a.e. Therefore u > 0. •.

Proof of Theorem 7

This is exactly as in Section 3. This follows simply from Theorems 4 and 5.
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