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Abstract

In nonlinear dynamical problems, chaos appears in many aspects of their inves-

tigation. In this paper we show the chaotic character of the regions of convergence

as it is resulted from the numerical investigation of the equilibrium points in some

known problems of Celestial Dynamics.

Keywords: chaos; regions of convergence; equilibrium points; Celestial Mechanics;

Newton’s algorithm.

1 Introduction

One of the most important steps in the study of a dynamical problem is the determi-

nation of the equilibrium states of the system. In nonlinear problems this is achieved by

using numerical methods. During this process, the nonlinearity of a problem reveals some

chaotic aspects of the problem that, beyond the very impressive pictures it provides, it

also has some practical benefits. This is exactly the aim of this paper; to give information

about the way that the regions of convergence are formed and evolve, in various problems

of Celestial Mechanics. Furthermore, we investigate their parametric variation and we es-

tablish various general rules and remarks. This issue has been discussed in various papers

that have been appeared the last few years ([1]-[6]). For our purposes we have selected

the well known Newton’s method, which is simple, popular, efficient, fast and accurate.

For applications we have selected some known problems of Celestial Mechanics, such as

the restricted three-body problem, the gravitational regular-polygon problem of (N + 1)

bodies, the photo-gravitational Copenhagen problem, the restricted five-body problem of

Ollöngren, the Marañhao-Llibre problem of 3 + 1 bodies and the ring problem of N + 1

bodies with radiation pressure. In all these problems or versions, we study the planar
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motion of a very small body in the force field created by N > 1 big bodies (primaries) of

the dynamical system.

2 Description of the considered cases, equations of planar motion of the small

particle and potential functions

2.1 General characteristics and equations of motion

In all the above cases, a small body (or a particle) moves in the force field created

by two or more, much bigger bodies, the primaries. This force field can be either purely

gravitational or a combination of a gravitational one and a field coming from one or

more radiating primaries. If we consider that the primaries, in all these cases, rotate

with constant angular velocity around their center of mass, then the motion of the small

body in a synodic coordinate system, which is rigidly attached to the rotating primaries,

is described in normalized quantities by the following set of second order differential

equations,

ẍ− 2ẏ =
∂U

∂x
, ÿ + 2ẋ =

∂U

∂y
(1)

where U(x, y) is the potential function, that has a different form in each of the considered

cases. From the above equations we obtain a Jacobian-type integral of motion

ẋ2 + ẏ2 = 2Ω(x, y)− C (2)

where C is the so-called Jacobian constant.

2.2 Case 1: The restricted three-body problem

The well-known restricted three-body problem deals with the motion of a small particle

in the gravitational field produced by two major bodies called the primaries, P1 and P2

that rotate around their center of mass in circular orbits with constant angular velocity

(here considered as 1)(Figure 1a). It is characterized by one parameter µ which is the

reduced mass m2/(m1+m2) of primary P2. The potential function U in this case has the

form,

U =
1

2

(

x2 + y2
)

+
1− µ

r1
+

µ

r2
+

1

2
µ(1− µ) (3)

r1 and r2 are the distances of the small body from the two primaries, with

r21 = (x− µ)2 + y2, r22 = (x− µ+ 1)2 + y2.
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(a) (b)

Figure 1.— (a) The configuration of the restricted three-body problem and the synodic

coordinate system (b) The distribution of the equilibrium points

2.3 Case 2: The photo-gravitational Copenhagen problem

The Copenhagen problem is a particular case of the restricted three-body problem with

µ = 0.5 (Figure 2a). Here, we consider that in addition to their gravitational character,

the primaries are also radiating sources with radiation coefficients q1 and q2 respectively.

Therefore the problem depends on two parameters namely q1 and q2. In this case the

potential function has the form

U(x, y) =
1

2

[

(

x2 + y2
)

+
2

∑

i=1

qi
ri

]

(4)

r1 =

[

(

x− 1

2

)2

+ y2
]1/2

, r2 =

[

(

x+
1

2

)2

+ y2
]1/2

r1 and r2 are the distances of the particle from the primaries

qi = 1− bi, i = 1, 2, where b =
Fr

Fg
(5)

are, for each radiating source, the ratios of force Fr caused by radiation, to force Fg caused

by gravitation.

2.4 Case 3: The gravitational regular polygon problem of N + 1 bodies

The regular polygon problem of (N +1) bodies, deals with the motion of a small body

in the combined Newtonian field created by N much bigger bodies called the primaries.

ν = N − 1 of these have equal masses m and are arranged at the vertices of a regular

ν-gon while the Nth primary is located at the center of mass of the configuration (Figure

3). The peripheral primaries rotate about their center of mass with the same constant

angular velocity. The system is characterized by two parameters: the mass parameter

β = m0/m, that is the ratio of the central mass m0 to a peripheral one, and the number

ν of the peripheral primaries.
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(a) (b)

Figure 2.— The photogravitational Copenhagen case. (a) The configuration of the

system. (b) Distribution of the equilibria of the small body when b1 = 0.1, b2 = 0.5

Figure 3.— The planar ring problem of (N + 1) bodies

U(x, y) =
1

2

(

x2 + y2
)

+
1

∆

[

β

r0
+

ν
∑

i=1

1

ri

]

(6)

∆ = 2 sin θ

[

ν
∑

i=2

sin2 θ

sin(i− 1)θ
+ 4β sin2 θ

]

, θ = π/ν (7)

and

r0 =
(

x2 + y2
)1/2

, ri =
[

(xi − x)2 + (yi − y)2
]1/2

, i = 1, 2, 3, . . . , ν

are respectively the distances of the particle from the central primary and the peripheral

ones, where xi and yi are their coordinates. The equilibrium locations are arranged on

either five or three circular zones depending on the value of the mass parameter β. If this

parameter is less than a critical value lν (different for each configuration) then five zones

exist (Figure 4a). Otherwise, three equilibrium zones are formed (Figure 4b).
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(a) (b)

Figure 4.— General distribution of the equilibrium positions in the ring problem of

N + 1 bodies for two cases: (a) β < lν , (b) β > lν , (lν is the critical value of the mass

parameter)

2.5 Case 4: The restricted five-body problem of Ollöngren

Three big bodies P1, P2, P3 with equal masses m are located at the vertices of an

imaginary equilateral triangle. A fourth body P0 with mass m0 is located at the mass

center of the system. A small particle S with negligible mass moves in the resultant force

field of the big bodies (Figure 5). The system is characterized by one parameter which is

the ratio β = m0/m of the central mass to a peripheral one. The configuration has three

axes of symmetry since it is identified after a rotation of 120o around the perpendicular

axis Oz. The potential function has the form,

(a) (b)

Figure 5.— The five-body problem of Ollöngren. (a) The three-dimensional case, (b)

the planar configuration of the primaries

U =
1

2

(

x2 + y2
)

+
1

3(1 + β
√
3)

[

β

r0
+

3
∑

i=1

1

ri

]

(8)
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where

r0 =
(

x2 + y2
)1/2

, ri =
[

(xi − x)2 + (yi − y)2
]1/2

.

The small body S has fifteen equilibrium locations when β < 0.014. They are grouped in

five groups, A1, A2, B, C2 and C1 by order of appearance from the origin outwards. More

specifically, the equilibria of groups A1 and C1 are located on the radii that join the central

primary and the peripheral ones. Those of A2, B and C2 are located on the bisectors of

the angles formed by two consecutive primaries and the central one (Figure 6a). The

equilibria of each group have the same Jacobian constant C and are characterized by

the same state of stability. When β > 0.014 six of these positions (groups A2 and B)

disappear and the system possesses only nine locations that belong to groups A1, C2 and

C1 (Figure 6b).

(a) (b)

Figure 6.— Distribution of the equilibrium positions (a) for β = 0.01, (b) for β = 500

2.6 Case 5: The Marañhao-Llibre problem of 3 + 1 bodies

The configuration is shown in Figure 7a. The problem is characterized by one pa-

rameter which is the mass ratio β = m0/m1. In this case the potential function has the

form,

U =
1

2

(

x2 + y2
)

+
1

2(1 + 4β)

[

β

r0
+

2
∑

i=1

1

ri

]

(9)

There are 6 equilibrium points for every value of parameter β (β 6= 0). Two of them are

disposed along the syzygies’ axis (x-axis of the synodic coordinate system) in symmetric

positions with respect to the origin O (group A1). Two points lie on the same axis but

beyond the peripheral primaries (group C1). Finally, the remaining two points lie on the

y-axis. They form a group which is symbolized by C2. As the mass parameter decreases
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(a) (b)

Figure 7.— The Marañhao-Llibre problem. (a) The configuration. (b) Distribution of

the equilibrium positions (for β = 0.2 (full black) and for β = 2 (framed black))

the inner collinear points approach each other by moving towards the origin, where they

coincide when β = 0. On the contrary, the outer collinear points go away from each

other and from the origin. As a consequence, for the limit value β = 0, we obtain the

five Lagrange equilibrium positions of the Copenhagen case of the restricted three-body

problem. Figure 7b shows the distribution of the equilibrium points for β = 0.2 and

β = 2.

2.7 Case 6: The photo-gravitational ring problem of N + 1 bodies

The arrangement of the primaries is the same as in the gravitational version. How-

ever, one or more primaries are radiation sources and therefore the system in the general

case is characterized by N +2 parameters, that is the number ν of the peripheral bodies,

the mass parameter β and the N = ν + 1 radiation coefficients bi, i = 0, . . . , ν. The

symmetries that appear in the gravitational case are generally destroyed and only in the

three following cases is preserved:

(a) The central body is a radiation source (whatever the value of the radiation coefficient

b0 is).

(b) All peripheral bodies are radiation sources and have the same radiation coefficients.

(c) All the primaries are radiation sources and the peripheral bodies have the same radi-

ation coefficients.

The potential has the form,

U =
1

2

(

x2 + y2
)

+
1

∆

[

βq0
r0

+
ν
∑

i=1

qi
ri

]

(10)

where ∆ is the same as in the gravitational case (relation (7)) and qi are the radiation

parameters that are given by relations (5). The number of the existing equilibrium points

depends on the values of the N radiation coefficients. In all cases where the symmetry that
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exists in the gravitational case, is preserved, the configuration has 2ν axes of symmetry

and the equilibria are located along them. The equilibrium positions are assembled either

in five or three groups of ν points each. Figure 8 shows the distribution of the equilibrium

locations for two cases where symmetry is preserved. In Figure 8a all primaries radiate

with the same radiation coefficients b = 0.5, while in Figure 8b all peripheral primaries

radiate with the same radiation coefficients b = 0.9.

(a) (b)

Figure 8.— Distribution of the equilibrium locations in the photo-gravitational ring

problem when ν = 7, β = 2. We mark with small triangles the equilibria of group C1,

with small circles the equilibria of group A2 and with small rhomboids the equilibria

of group A1. (a) All primaries radiate with radiation coefficients b = 0.5 (b) All

peripheral primaries radiate with radiation coefficients b = 0.9

3 The numerical method and some preliminary notes

3.1 Conditions for equilibrium

The conditions for an equilibrium position of the small body, are ẋ = ẏ = ẍ = ÿ =

0. Under these conditions, these locations are the solutions of the nonlinear system of

algebraic equations
∂U

∂x
= 0,

∂U

∂y
= 0. (11)

To locate the equilibrium points on the plane (x, y) we apply a numerical method to solve

equations (11).

3.2 The equivalence principle of the equilibrium points

In any dynamical system if two or more equilibrium positions have exactly the same

dynamical properties, which means, the same energy (here the value of the Jacobian
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constant C) and the same state of stability, then are dynamically equivalent. This prop-

erty is usually dictated by the symmetry of the force field created by the members of

the system. For example the triangular equilibrium points L4 and L5 in the restricted

three-body problem are dynamically equivalent for any value of the mass parameter µ.

When µ = 0.5 (Copenhagen gravitational case) equilibrium points L1 and L3 are also

dynamically equivalent. Furthermore, in the ring gravitational problem of N + 1 bodies,

the equilibrium points that belong to some particular equilibrium zone (A1, A2, B, C2,

C1) are dynamically equivalent.

3.3 The crooked path described by the consecutive iterations of the numerical method

We can describe the consecutive iterations of the numerical algorithm as the “motion”

of a “point” on a crooked path, just like the Brownian motion of an atom of a gas.

Figure 9.— The crooked path formed by the consecutive approximations of the nu-

merical method

3.4 Sensitivity to small changes in the initial values

The term sensitivity at this point is used to describe the way that the path followed by

the method during the iterative process, is affected by small perturbations to the initial

values. This sensitivity is evinced by various ways. Here we show five of them:

(1) A small change of the initial values leads to the same equilibrium position with the

same or almost the same number of steps.

(2) A small change of the initial values leads to the same equilibrium position but the

number of steps significantly differs from the one in the unperturbed case (Figure 10a).

(3) A small change of the initial values leads to a different equilibrium position (dynami-

cally equivalent or not) of the system after a number of steps (Figure 10b).

(4) A small change of the initial values leads to a non-convergent state (Figure 10c).

(5) A small change of the initial values leads to a state in which the “point” oscillates

between two values and never reaches the target (Figure 10d).
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(a) (b)

(c) (d)

Figure 10.— The black lines show the “unperturbed” paths and the gray lines the

“perturbed” ones; (a) the “perturbed” path reaches the same target as the “unper-

turbed” one but in a very different number of steps; (b) the “perturbed” path reaches

a different target (equilibrium point); (c) the “perturbed” path dos not converge at

all; (d) the “perturbed” path after some steps “oscillates” between two values

3.5 The numerical method

Several methods for solving algebraic systems of non linear equations are known.

However, Newton’s method still remains a fast (it converges quadratically), simple and

accurate method. In the past (see [3] and [4]), we have used and compared post Newtonian

methods like the Broyden’s method and an improved version of it. Although the obtained

results are qualitatively similar, however, those obtained from Newton’s method seem to

be much better. The Newton’s algorithm for the general case of equations (11) takes the

form,

xn = xn−1 −
UxUyy − UyUxy

UyyUxx − U2
xy

∣

∣

∣

∣

∣

(xn−1,yn−1)

yn = yn−1 +
UxUyx − UyUxx

UyyUxx − U2
xy

∣

∣

∣

∣

∣

(xn−1,yn−1)

(12)

where we symbolize with Ux, Uy, Uxx, Uyy, Uxy the first and second derivatives of U

calculated at the (n − 1)th step of the iteration process. The process terminates when

some predetermined accuracy is reached.

62



4 The regions of convergence

4.1 General remarks and comments

The regions of convergence (or basins of convergence, or attracting domains) are

formed by the launching points of the applied particular numerical method that lead

to dynamically equivalent equilibrium positions of the system. As it is shown in the

figures obtained from the various case-problems, each region has a fractal structure and

generally consists of a “compact” area which evolves around an equilibrium location and

of randomly dispersed points that are mixed with the dispersed points that belong to

basins of other equilibrium points or equilibrium groups. Next we shall expose the results

concerning these regions for each of the considered cases. In Cases 4, 5 and 6 (Figures

14 to 16) we also give the attracting sub-domains which are formed by considering the

number of the steps that are needed to reach the equilibrium positions.

4.2 Case 1: The restricted three-body problem

Figure 11 shows the evolution of the regions of convergence for the five Lagrangian

points.

The basin of convergence of L1, occupies the smallest area of all the basins for every value

of µ (0 < µ < 0.5 ). It consists of two “compact” areas of limited extent and of dispersed

points (Figure 11a). Both “compact” areas are developed on the left of primary P2 and

are symmetrically arranged with respect to the x-axis. As µ increases, the attracting

region expands, while the “compact” regions widen and the dispersed points increase and

become denser around the “compact” areas, thus forming fine fractal structures.

The region of convergence of point L2 consists of two “compact” areas. The first one

extends between the two primaries P1 P2, while the second one is extended beyond

the “compact” regions of L1 (Figure 11b). The dispersed points which belong to this

basin form fractal boundaries. As µ augments the dispersed points become denser, thus

forming fractal protrusions near the boundaries of the “compact” areas corresponding to

the collinear Lagrangian points.

The region of convergence of L3 is homothetic of R(L1) with homothetic ratio > 1.

Its center of homothety is a point lying on the x-axis, close to L2. As µ increases for

0 < µ < 0.5, the homothetic ratio approaches 1 and the center of homothety approaches

equilibrium position L2. The region of convergence of L3 consists of two “compact” areas

which extend on the right of primary P1, as well as of numerous dispersed points (Figure

11c). It shrinks as µ augments.

The region of L4 holds numerous “compact” areas that extend on the semi-plane y > 0.

The dispersed points spread all over the plane (Figure 11d). As µ increases, this region
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expands, the “compact” areas tend to unite, thus forming a great “compact” area, while

the dispersed points become denser inside the area of the basin boundaries. Finally the

basin of convergence of L5 is symmetric with the one of L4 as regards the x-axis and

therefore presents exactly the same characteristics (Figure 11e).

(a) (b)
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(c) (d)

(e)

Figure 11.— Restricted three-body problem; regions of convergence for µ = 0.4. (a)

L1, (b) L2, (c) L3, (d) L4, (e) L5

4.3 Case 2: The photo-gravitational Copenhagen problem

In this problem the two primaries have equal masses and are both radiation sources.

The primaries occupy the same relative distances in the synodic coordinate system. The

radiation forces influence the small particle but they do not influence the motion of the

primaries. In Figure 12 we can see the regions of convergence of the equilibria that evolve

on the upper half of the xy-plane. The picture on the other half of the plane is symmetric

with respect to the x-axis. We mark with D some sub-domains which consist of dispersed

points and with S the “compact” regions.
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(a) (b)

(c) (d)

Figure 12.— Regions of convergence in the photo-gravitational Copenhagen problem

for b1 = 0.1, b2 = 0.5; (a) L1, (b) L2, (c) L3, (d) L4

4.4 Case 3: The gravitational regular polygon problem of N + 1 bodies

As in the previous case, we mark withD the sub-domains which consist of the dispersed

points and with S the “compact” regions. The boundaries of the latter regions are not

clearly defined. Figure 13 shows a case with N = 11 (regular decagon) and β = 12.5

(β > lν). As we have mentioned before, there are three equilibrium zones, A1, C2, C1.

The attracting domain of A1 presents diamond-shaped “compact” parts, whose wavy sides

have vague boundaries. These areas develop between the central primary and each of the

peripheral ones (Figure 13a). The attracting area of C1 generally consists of two basic

“compact” regions, the biggest of which contains the equilibrium point (Figure 13b). As

regards the dispersed points, on the one hand they are organized in a dense way around the

two basic “compact” regions, and on the other hand, they are diffused at the boundaries

of the “compact” regions of the other zones. In the plane areas that lie between the

“compact” regions of A1 and C1 stretch the “compact” regions of the attracting area of

C2, (Figure 13c). The dispersed points surround densely the “compact” regions, but also

diffuse at the boundaries of the compact regions of the other zones.
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(a) (b)

(c)

Figure 13.— Regions of convergence in the gravitational regular polygon problem of

N + 1 bodies for N = 11 and β = 12.5; (a) zone A1, (b) zone C1, (c) zone C2

4.5 Case 4: The restricted five-body problem of Ollöngren

The basins develop in the xy-plane in a way which is consistent with the symmetry of

the primaries’ configuration. In any case, the basin of group C2 concentrates the majority

of the considered launching points of the xy-plane, while that of group C2 concentrates

the minority of the points. Figure 14 shows two different cases for β = 2 and β = 500. As

we can see, when β increases, the shape and size of these basins change; the basin of C2

enlarges (Figures 14e and f) while those of A1 and C1 shrink (Figures 14a,b and 14c,d).

(a) (b)
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(c) (d)

(e) (f)

Figure 14.— Regions of convergence in the restricted five-body problem of Ollöngren.

The gray regions consist of points where convergence occurs up to 9 iterations, while

black regions consist of points where convergence occurs in more than 9 steps; (a) A1

(β = 2), (b) A1 (β = 500), (c) C1 (β = 2), (d) C1 (β = 500), (e) C2 (β = 2), (f) C2

(β = 500)

4.6 Case 5: The Marañhao-Llibre problem of 3 + 1 bodies

Figure 15 shows the attracting domains of the three equilibrium groups for the value

of the mass parameter, β = 2. A “deterministic” region with a fractal structure surrounds

each equilibrium position of zone A1. From its boundaries leap tentacles formed by dis-

persed points that terminate to the boundaries of the “compact” region of the symmetric

equilibrium position of that group. Several other dispersed points also accumulate rather

a long way from the x-axis in strip-like areas. Between these two concentrations no other

points of this class exist (Figure 15a). When the mass parameter augments, then the

“deterministic” regions shrink, while other similar areas are formed in a distance from

the first ones. Regarding the attracting domain of zone C2, it is the biggest one in com-

parison to the respective regions of the other two groups, as is evident in Figure 15c. It

covers most of the surface of the xy plane but presents considerable gaps near the x-axis.

As mass parameter β increases, the attracting domain extends and comes closer to the

x-axis. The attracting domain of zone C1 consists of four “deterministic” regions that are

symmetrically disposed with respect to the origin. These regions are also symmetric with

respect to the x-axis. Two of them, those that are closer to the origin, are wider than the

other two. The dispersed points either form tentacles that come out from the boundaries
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of the “deterministic” regions, or they form shapes that surround the origin and resemble

the wings of a windmill (Figure 15b).

(a) (b)

(c)

Figure 15.— Regions of convergence in the Marañhao-Llibre problem of 3 + 1 bodies

for β = 2; (a) zone A1, (b) zone C1, (c) zone C2. The gray regions consist of points

where convergence occurs up to 9 iterations, while black regions consist of points where

convergence occur in more than 9 steps

4.7 Case 6: The photo-gravitational ring problem of N + 1 bodies

The domain of each basin presents, as it is expected, all the symmetry elements of the

force field. The very dense parts mainly evolve around the equilibrium points of a given

group, while the dispersed points lie on the boundaries of the dense regions of this group

or other ones showing a chaotic aspect. The boundaries of the dense parts are not clear

and in some cases present a fractal structure. Figure 16 shows a case in a configuration

with ν = 7 and β = 2, where all peripheral primaries are radiation sources with radiation

coefficients 0.9. The points of each attracting region have been classified in three classes

according to the number of iterations that are needed to achieve convergence with a
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predetermined accuracy. The light gray regions consist of points characterized by very

fast convergence (1− 5 iterations) while the gray and the black regions are characterized

by fast (6−10 iterations) or moderate convergence (more than 10 iterations) respectively.

The sub-region of the first class is a very small one and evolves around each equilibrium

position of this particular group. The sub-region of class interval 6−10 iterations of each

group consists of areas or points that mainly surround and complement the central regions

of the first class interval. Regarding the region of class interval > 10 iterations, it merely

consists of dispersed points lying either on the boundaries of the dense regions of the

previously mentioned class interval, or between the dense regions of the other equilibrium

groups.

(a) (b)

(c)

Figure 16.— Regions of convergence in the photo-gravitational ring problem of (N+1)-

bodies with ν = 7 and β = 2, when all peripheral primaries are radiation sources with

radiation coefficients 0.9; (a) A1, (b) A2, (c) C1. (class 1 − 5 steps (light gray), class

6− 10 steps (gray), class > 11 steps (black))

5 Conclusions and remarks

An attracting domain consists of “compact” parts and of dispersed points. These

points are distributed on the boundaries of the compact parts of the same or other equi-

librium points or zones. The central parts of the “compact” areas show a deterministic

aspect, while in the areas where isolated points of different classes of iterations are mixed,
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the chaotic character is obvious. The regions that consist of points which converge very

fast to an equilibrium position, have “compact” parts which surround these positions and

dispersed points. The “compact” parts do not have well defined boundaries. Regarding

the regions of moderate or slow convergence, they merely consist of dispersed points lying

either on the boundaries of the dense regions of the previously mentioned class interval, or

between the dense regions of the other equilibrium points or groups. In all the examined

cases the attracting domains present similar properties. The parameters that characterize

each case (mass parameter, radiation coefficients, reduced mass, etc.) play an important

role on the formation of these domains and they influence in a very definitive way their

form and evolution, the distribution of their points on the working plane, as well as, their

density and fractal structure.
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