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Abstract

Hénon’s isochrone Hamiltonian is formulated in extended phase space including

a time transformation. Then, the Hamilton-Jacobi equation a la Poincaré is used to

find suitable canonical transformations that reduces the original Hamiltonian to a

function of only the momenta. We focus on three different time transformations, for

each of which we build a family of canonical transformations where the new Hamil-

tonian remains unspecified. Materialization of particular transformations based on

specific requirements lead to a partial differential equation which the new Hamilto-

nian ought to satisfy. Specifically, we show how different canonical transformations

in the Literature may be recovered from our families.

Introduction

Hénon isochrone model [10] is a particular case of a central potential that has been

successfully used in some fields of astronomy. Specifically, it is suitable for representing

the mean potential of a stellar system, and may be used to understand the evolution of

our galaxy [6]. The isochronal potential is studied in textbooks as an interesting example

of an integrable problem depending on two parameters, which comprises the Keplerian

potential as a limit case [3]. Besides, it may be used as a zero order to apply perturbation

theory to systems that slightly depart from the spherical symmetry [8, 19]. To make

tractable the perturbation approach it is necessary to find a suitable set of variables or

elements, so that the integrable Hamiltonian in the new variables is usually expressed as

a function of momenta only. The Hamilton-Jacobi equation provides a convenient way of

finding the required transformation.
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The Hamilton-Jacobi equation is commonly used for finding a single canonical trans-

formation tailored to a specific problem; for instance, it is usually applied in the search

for efficient numerical integrators or when dealing with perturbation methods. However,

as far as the new Hamiltonian may remain formal in the procedure of computing the

transformation [18], the Hamilton-Jacobi equation of a particular Hamiltonian may give

rise to a whole family of transformations. General applications of this procedure have

been discussed in Ref. [7]; we present here details on its application to finding canonical

transformations useful in orbital problems.

We form the Hamilton-Jacobi equation of the isochronal potential in the extended

phase space. Besides, we scale the Hamiltonian by a regularizing function, which further

extends the powerful of this technique [15]. We deal with three specific regularizing

functions for which we are able to compute the quadratures involved in the procedure.

For each of them, the transformation equations are left as function of the (undefined) new

Hamiltonian, thus providing three different families of canonical transformations.

Because of the super-integrability of the isochronal Hamiltonian, the possible solutions

are constrained to planar, quasi periodic ellipses. Therefore, the closure of a trajectory is

a two-torus and two actions (three in the extended phase space formulation) are required

in the new Hamiltonian if one wants to retain the topology of the reduced problem.

Resonances between the frequencies of the angle variables result in periodic motion that,

of course, can be studied with a reduced Hamiltonian that may depend on less momenta.

With an aim on perturbation theory, we discuss several transformation equations de-

rived from the three computed families of isochronal canonical transformations. We show

that simple requirements on the transformation, as for instance “simplification”, result in

elementary partial differential equations from whose solution the new Hamiltonian may

be determined. We further show that a variety of canonical transformations in the lit-

erature, ranging from historic ones like Delaunay’s, Levi-Civita’s or Hill’s, to the recent

transformation due to Yanguas [19], can be recovered from our family.

1 Hamilton-Jacobi reduction of the isochrone

Given the Hamiltonian

H =

[

1

2

(

R2 +
Θ2

r2

)

− µ

b+
√
b2 + r2

+ T

]

χ(r, R,Θ, N, T ) (1)

where (r, θ, ν, t, R,Θ, N, T ) are Hill or polar-nodal variables in the extended phase space,

µ and b are parameters, and χ is a regularizing function that only depends on distance

and momenta, we look for a canonical transformation

(r, θ, ν, t, R,Θ, N, T )
TΦ−→ (f, g, h, u, F,G,H, U)
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that converts Eq. (1) in a certain function Φ = Φ(F,G,H, U) depending only on the

momenta.

The transformation will be defined through a generating function S = S(r, θ, ν, t, F,G,H, U)
in mixed variables such that

f = SF , g = SG, h = SH , u = SU , R = Sr, Θ = Sθ, N = Sν , T = St, (2)

where we use the notation Sx = ∂S/∂x. Then, from Eq. (1) we set the Hamilton-Jacobi

equation
[

1

2

(

S2

r +
1

r2
S2

θ

)

− µ

b+
√
b2 + r2

+ St

]

χ(r,Sr,Sθ,Sν ,St) = Φ(F,G,H, U). (3)

Because t, θ, and ν are not present in Eq. (1), the generating function may be chosen

in separate variables

S = U t +H ν +Gθ +W(r, F,G,H, U). (4)

Then,

1

2

(

W2

r +
G2

r2

)

− µ

b+
√
b2 + r2

+ U =
1

χ(r,Wr, G,H, U)
Φ(F,G,H, U). (5)

We limit ourselves to the cases in which Wr can be solved from a quadratic equation.

Specifically, we request that χ = χ⋆(r)W−n
r Ξ(G,H, U) and n = 0, 1, 2. Because Ξ can be

subsumed in Φ, there is no ambiguity in dropping the star from χ, and writing Eq. (5)

like
1

2

(

W2

r +
G2

r2

)

− µ

b+
√
b2 + r2

+ U =
Wn

r

χ(r)
Φ(F,G,H, U). (6)

Therefore,

n = 0 ⇒ Wr =

√

√

√

√

2Φ

χ(r)
− G2

r2
+

2µ

b+
√
b2 + r2

− 2U, (7)

n = 1 ⇒ Wr =
Φ

χ(r)
±
√

√

√

√

Φ2

χ2(r)
− G2

r2
+

2µ

b+
√
b2 + r2

− 2U (8)

n = 2 ⇒ Wr =

√

√

√

√

(

−G
2

r2
+

2µ

b+
√
b2 + r2

− 2U

)

χ(r)

χ(r)− 2Φ
. (9)

that can be solved for W by quadrature.

We only discuss here the case n = 0. Then, W =
∫ r
r0

√

Q(r, F,G,H, U) dr, where

Q ≥ 0 is

Q =
2Φ

χ(r)
+

2µ

b+
√
b2 + r2

− 2U − G2

r2
=

s2

s2 − b2
Q, (10)

with s =
√
r2 + b2 and

Q = 2

(

Φ

χ(s)
− U

)

s2 − b2

s2
+ 2µ

s− b

s2
− G2

s2
. (11)

43



Therefore, the transformation is: Θ = G, N = H , T = U , R =
√
Q, and

f = ΦF I3, (12)

g = θ +G I1 + ΦG I3, (13)

h = ν + ΦH I3, (14)

u = t− I2 + ΦU I3, (15)

where

I1 =
∫ s

s0

s2

(s2 − b2)
√
Q

d
(

1

s

)

, I2 =
∫ s

s0

ds√
Q
, I3 =

∫ s

s0

ds

χ
√
Q

= −
∫ r

r0

s2

χ
√
Q

d
(

1

s

)

.

(16)

Note that I3 = I2 for χ = 1, and I3 = −I1 for χ = r2 = s2 − b2.

In order to avoid dealing with elliptic integrals we require forQ to be at most quadratic

in s, what limits the possible choices of the regularizing function to χ = 1, χ = s± b, and

χ = s2 − b2. Then, we find convenient to write Eq. (11) as

Q = −α
(

p

s2
− 2

s
+

1

a

)

, (17)

where α, p, and a, are certain functions of the momenta and parameters that will be

specified after χ has been chosen. Therefore,

Q = α p
(

1

s
− 1

s1

)(

1

s2
− 1

s

)

, (18)

where s1 ≥ s ≥ s2 are the two possible roots of the conic Q = 0:

s1,2 =
p

1±
√

1− p/a
=
a (1− e2)

1± e
= a (1± e), e2 = 1− p

a
< 1. (19)

These roots, the extreme values of s, make natural the introduction of the auxiliary

variables ψ and φ, defined by

s = a (1− e cosψ), ds = a e sinψ dψ, (20)

s =
p

1 + e cosφ
, d

(

1

s

)

= −e
p
sin φ dφ. (21)

Then,

I1 = − 1√
α





1
√

p− 2b+ b2/a

φ1

2
+

1
√

p+ 2b+ b2/a

φ2

2



 , (22)

I2 =

√

a3

α
(ψ − e sinψ) , (23)

where the two new auxiliary variables φ1, φ2, are defined by means of the trigonometric

relations (see [19] for details)

tan
φ1

2
=

√

√

√

√

1 + e− b/a

1− e− b/a

√

1− e

1 + e
tan

φ

2
=

√

√

√

√

1 + e− b/a

1− e− b/a
tan

ψ

2
, (24)

tan
φ2

2
=

√

√

√

√

1 + e + b/a

1− e+ b/a

√

1− e

1 + e
tan

φ

2
=

√

√

√

√

1 + e+ b/a

1− e + b/a
tan

ψ

2
. (25)
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The integration of I3 needs the previous specification of the regularizing function χ.

2 Discussion

Details on the families of canonical transformations generated by the cases χ = 1,

χ = b+
√
b2 + r2, and χ = r2 are given below.

2.1 χ = 1

From Eq. (11) and Eq. (17) we obtain

α = µ, a =
µ

2(U − Φ)
, p =

G2

µ
+ 2b− 1

a
b2, (26)

that replaced in Eqs. (22) and (23) give

I1 = − φ1

2G
− φ2

2
√
G2 + 4b µ

, (27)

I3 = I2 =
µ

√

8(U − Φ)3
(ψ − e sinψ). (28)

Therefore, the transformation is (Θ = G, N = H , T = U , R =
√
Q)

f = ΦF
µ

√

8(U − Φ)3
(ψ − e sinψ), (29)

g = θ − φ1

2
− G√

G2 + 4b µ

φ2

2
+

ΦG

ΦF
f, (30)

h = ν +
ΦH

ΦF
f, (31)

u = t+
ΦU − 1

ΦF
f, (32)

where ψ is an implicit function of f and the new momenta. Note that Φ remains undefined

and different choices may be done depending on a variety of criteria. Thus, for instance,

the topology of the problem is maintained if we choose Φ = U + Ψ(F,G). Then, h = ν,

u = t, and

f = ΨF
µ√

−8Ψ3
(ψ − e sinψ), (33)

g = θ − φ1

2
− G√

G2 + 4b µ

φ2

2
+

ΨG

ΨF
f, (34)

Among the variety of possible choices of Ψ a simplifying option is to take ΨF = ΨG =

µ−1 (−2Ψ)3/2, which may be solved for Ψ, to give

Φ = U − µ2

2(F +G)2
(35)
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that maximally simplifies the remaining transformation equations:

f = ψ − e sinψ, (36)

g = θ − φ1

2
− G√

G2 + 4b µ

φ2

2
+ f. (37)

Yanguas’ selection

Φ = U − µ2

2F 2
(38)

depends on fewer momenta and, therefore, constrains the topology of the original system

to periodic solutions only —which may be adequate for a perturbation study like [19].

In the Keplerian case b = 0, the selection of the new Hamiltonian Φ = Φ(U, F ) does not

constrain the range of solutions and the specific selection Eq. (38) provides the popular

Delaunay transformation that, taking into account that φ1 = φ2 = φ and ΦG = 0 in Eq.

(30), is

f = ψ − e sinψ, g = θ − φ, h = ν, u = t, (39)

where the most extended notation writes L ≡ F , ℓ ≡ f .

2.2 χ = b+
√
b2 + r2

Now, we write

α = Φ+ µ, a =
Φ + µ

2U
, p =

G2

Φ + µ
+ 2b− 1

a
b2, (40)

that are repalced in I1, Eq. (22), and I2, Eq. (23). To integrate I3 we use the change of

Eq. (20). We get

I1 = − φ1

2G
− φ2

2
√

G2 + 4b (µ+ Φ)
, (41)

I2 =
µ+ Φ√
8U3

(ψ − e sinψ), (42)

I3 =
ψ√
2U

− b φ2
√

G2 + 4b (µ+ Φ)
. (43)

where φ1, φ2, are the same auxiliary variables defined in (24) and (25) respectively.

Therefore, the transformation is Θ = G, N = H , T = U , R =
√
Q,

f = ΦF





ψ√
2U

− b φ2
√

G2 + 4b (µ+ Φ)



 , (44)

g = θ − φ1

2
− Gφ2

2
√

G2 + 4b (µ+ Φ)
+

ΦG

ΦF
f, (45)

h = ν +
ΦH

ΦF
f, (46)

u = t− µ+ Φ√
8U3

(ψ − e sinψ) +
ΦU

ΦF
f, (47)
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2.2.1 Family 1

Assuming b 6= 0, Eq. (44) clearly simplifies if we require that −2bΦF =
√

G2 + 4b (µ+ Φ).

Then,

Φ =
1

4b
[F − 2bΨ(G,H, U)]2 − G2

4b
− µ,

where Ψ is an arbitrary function. As the topology of the isochrone requires only three mo-

menta (in the extended phase space formulation), we find great simplification by choosing

Ψ = Ψ(H). Thus,

f =
F − 2bΨ

2b
√
2U

ψ − φ2

2
, (48)

g = θ − φ1

2
− G

2b
√
2U

ψ, (49)

h = ν −ΨH

(

F − 2bΨ√
2U

ψ − b φ2

)

, (50)

u = t− (F − 2bΨ)2 −G2

4b
√
8U3

(ψ − e sinψ), (51)

Finally, if we select Ψ = H/(2b), we get

Φ =
1

4b

[

(F −H)2 −G2
]

− µ,

and

f =
F −H

2b
√
2U

ψ − φ2

2
, (52)

g = θ − G

2b
√
2U

ψ − φ1

2
, (53)

h = ν − f, (54)

u = t− (F −H)2 −G2

4b
√
8U3

(ψ − e sinψ), (55)

2.2.2 Family 2:

A transformation that doest not need the non-vanishing of the parameter b is found as

follows. First, in Eqs. (44)–(47) we require that ΦF =
√
2U ; therefore, Φ =

√
2U (F +Ψ)

with Ψ = Ψ(G,H, U) an arbitrary function. Thus,

f = ψ −
√
2U bφ2

√

G2 + 4b (µ+
√
2U (F +Ψ))

, (56)

g = θ − φ1

2
− Gφ2

2
√

G2 + 4b (µ+
√
2U (F +Ψ))

+ ΨG f, (57)

h = ν +ΨH f, (58)

u = t−
(

µ√
8U3

+
F +Ψ

2U

)

(ψ − e sinψ) +
(

F +Ψ

2U
+ΨU

)

f. (59)
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Then, we avoid secular terms in ψ in the u (time) transformation by requiring that

ΨU = µ√
8U3

; therefore, Ψ = − µ√
2U

+Ψ′, where Ψ′ = Ψ′(G,H), and

f = ψ −
√
2U bφ2

√

G2 + 4b
√
2U (F +Ψ′)

, (60)

g = θ − φ1

2
− Gφ2

2
√

G2 + 4b
√
2U (F +Ψ′)

+ Ψ′
G f, (61)

h = ν +Ψ′
H f, (62)

u = t− F +Ψ′

2U





√
2U bφ2

√

G2 + 4b
√
2U (F +Ψ′)

− e sinψ



 . (63)

Finally, as it is enough for the new Hamiltonian to depend on three momenta, we may

choose Ψ′ = G giving the transformation

f = ψ −
√
2U bφ2

√

G2 + 4b
√
2U (F +G)

, (64)

g = θ − φ1

2
− Gφ2

2
√

G2 + 4b
√
2U (F +G)

+ f, (65)

h = ν, (66)

u = t+
F +G

2U



e sinψ −
√
2U bφ2

√

G2 + 4b
√
2U (F +G)



 , (67)

that completely reduces the Hamiltonian, Eq. (1), to a function of only the momenta

Φ =
√
2U (F +G)− µ.

In the Keplerian case b = 0 and φ1 = φ2 = φ. Furthermore, it is enough for the new

Hamiltonian to depend only on two momenta. Now, Eqs. (44)-(47), are written

f =
ΦF√
2U

ψ, g = θ−φ+ ΦG√
2U

ψ, h = ν+
ΦH√
2U

ψ, u = t−µ+ Φ√
8U3

(ψ−e sinψ)+ ΦU√
2U

ψ.

The choice Φ = 2U ΦU , gives Φ =
√
2U Ψ(F,G,H), that reduces the time transforma-

tion to

u = t− µ√
8U3

(ψ − e sinψ) +
Φ√
8U3

e sinψ

The simple option Φ =
√
2U (F + µ) produces ΦF =

√
2U , ΦG = ΦH ≡ 0, and leads to

the well known “first” Levi-Civita transformation [12],

f = ψ, g = θ − φ, h = ν, u = t− µ√
8T 3

(ψ − e sinψ). (68)

where u plays the role of the epoch of pericenter passage in the Keplerian motion, where

the mean anomaly φ = n (t − u) = ψ − e sinψ, and n = (2T )3/2/µ, from the energy

equation −T = −µ/(2a). Note that we make use of the fact that Φ = 0 to drop the

corresponding term from the time transformation.
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Other choice is to make Φ = 2U ΦU −µ, that produces Φ =
√
2U Ψ(F,G,H)−µ, and

reduces the time transformation to

u = t +
µ+ Φ√
8U3

e sinψ.

The option Φ =
√
2U F − µ: ΦF =

√
2U , ΦG = ΦH ≡ 0, leads to the famous “second”

Levi-Civita [13] transformation

f = ψ, g = θ − φ, h = ν, u = t+
µ√
8T 3

e sinψ, (69)

where, again, we make Φ = 0.

2.3 χ = s− b = −b+
√
b2 + r2

This case is analogous to the previous one, and provides similar transformations that

embrace also those of Levi-Civita for the Keplerian case.

2.4 χ = r2

We get now

α = µ, a =
µ

2U
, p =

G2 − 2Φ

µ
+ 2b− b2

a
, (70)

that replaced in Eqs. (22) and (23) give

−I3 = I1 = − φ1

2
√
G2 − 2Φ

− φ2

2
√
G2 − 2Φ + 4b µ

, (71)

I2 =
µ√
8U3

(ψ − e sinψ), (72)

Therefore, the family of transformations is Θ = G, N = H , T = U , R =
√
Q,

f = ΦF

(

φ1

2
√
G2 − 2Φ

+
φ2

2
√
G2 − 2Φ + 4b µ

)

, (73)

g = θ − G− ΦG

ΦF
f, (74)

h = ν +
ΦH

ΦF
f, (75)

u = t− µ√
8U3

(ψ − e sinψ) +
ΦU

ΦF

f, (76)

In view of Eqs. (73)–(76), a straightforward simplification requirement is ΦH = 0 and

ΦF = ΦU = G− ΦG. Then, we might choose

Φ =
1

2

[

G2 − (G− F − U)2
]
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and the transformation is

f =
φ1

2
+

G− F − U
√

(G− F − U)2 + 4b µ

φ2

2
, (77)

g = θ − f, (78)

h = ν, (79)

u = t− µ√
8U3

(ψ − e sinψ) + f. (80)

In the Keplerian case b = 0, φ1 = φ2 = φ, further simplifies to f = φ; besides, the

reduced Hamiltonian only needs to depend on two momenta (in the extended phase space

formulation) and if we choose Φ = 1

2
[G2 − (G− F )2] = F

(

G− 1

2
F
)

, then, taking into

account that ΦU = 0 in Eq. (76), we recover the well known TR-mapping [15, 5].

f = φ, g = θ − f, h = ν, u = t− µ√
8U3

(ψ − e sinψ), (81)

3 Conclusions

Normally, the Hamilton-Jacobi equation is used for dealing with a specific class of

problems. That is why the new Hamiltonian is commonly chosen before solving the

quadratures introduced by the method. The success in that pre-selection strongly depends

on the intuition and experience of the user, and may require a tedious sequence of trials.

However, the new Hamiltonian can be hold formal to a large extent in the solution of the

Hamilton-Jacobi equation, a fact that may help in the selection procedure.

In the case of Henon’s isochronal potential, we solve the Hamilton-Jacobi equation

keeping formal the new Hamiltonian, thus obtaining whole families of canonical transfor-

mations, contrary to single ones, from which we recover classical transformations in the

literature as well as come up with new ones. This way of proceeding provides a great

insight that is conveniently used in the search for the new Hamiltonian that defines the

canonical transformation.
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