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Abstract

In two recent papers of M. Romano (Cel. Mech. 100: 181–189, 2008 and Cel.

Mech. 101: 375–390, 2008) this author has derived new exact analytical solutions

that describe both the dynamic and kinematic behavior a rigid body around a

fixed point with spherical and symmetric ellipsoids of inertia self excited by some

special torques in the fixed body reference frame. The aim of this note is to give

an alternative simplified derivation of these solutions by using the symmetries of

the system and suitable matrix transformations and to show that a wider class of

analytical solutions may be derived.

1 Introduction and basic notations.

The motion of a rigid body around a fixed point is a classical problem of Mechanics

that has been studied by many relevant mathematicians for more than two centuries. It

is worth to mention the earlier contributions of Euler, during his stay in Berlin (1741–

1766), in which he made a precise formulation of the differential equations of this problem

and obtained some particular analytical solutions. They were published in several papers

of the Royal Academie of Berlin (1751–1767). Later all these researches were published

together in 1765 in Chapters 10th and 15th of the treatise: “Theoria Motus Corporum

Solidorum seu Rigidorum”. Many well known mathematicians like Poinsot, Lagrange,

Jacobi, T. Levi-Civita, F. Klein, Kovalevskaya among others have studied for about two

centuries some aspects and particular cases of the problem mainly concerned with the

existence of first integrals, the integrability of these equations and the stability of some

particular solutions.

Although the classical studies about the motion of the rigid body have been almost

closed by more than a century, recent practical applications have open new problems in
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some fields such as robotics, spatial dynamics and molecular dynamics. Further actual

computers have led to a substantial revision of classical algorithms used in the practical

computation of solutions of these problems. Finally, since rigid body problems usually

possess first integrals and sometimes periodic solutions (both stable and instable) their

differential equations are excellent test problems for new numerical integrators of ODEs.

We will consider the rotational motion of a rigid body around a fixed point that will

be taken as the origin O of two coordinates systems: A body fixed frame B with the axes

directed along the principal axes of the ellipsoid of inertia of the body and an inertial

fixed frame I. In the remainder we will assume that the transformation from the inertial

to the body frame is sufficiently smooth (of class Cp, p ≥ 2 in some interval of R but for

simplicity we will take all R ) so that the coordinates xI and xB of a given vector in the

corresponding systems satisfy

xI = R(t) xB, (1)

where R(t) = RIB(t) ∈ Cp is an orthogonal matrix of determinant +1. Clearly the

columns of R(t) give us the components of the unit vectors of the moving frame in the

inertial frame.

Since R(t)T R(t) = I for all t, R(t)T R′(t) = ΣR is a skew symmetric matrix that will

be denoted by

R−1R′ =




0 −w3(t) w2(t)

w3(t) 0 −w1(t)

−w2(t) w1(t) 0


 = Σ(w(t)). (2)

It is important to note that w = (w1(t), w2(t), w3(t))
T behaves as a vector under linear

time independent transformations. In fact under a change of coordinates x → Px it is

easy to show that R → PRP−1, Σ → PΣP−1 and w → Pw.

The vector with components in the body frame wB = (w1, w2, w3)
T , is usually referred

to as the instant angular velocity, and for all vector vB we have

Σ(wB) vB = wB × vB, (3)

where × denotes the cross product and the signs in (2) have been chosen so that (3) holds.

Note that when R is a time dependent rotation around the x3-axis, with angle φ = φ(t)

R(t) =




cos φ − sin φ 0

sinφ cosφ 0

0 0 1


 , and w = (0, 0, φ′)T ,

and similarly for the rotations around the other axes.
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Recall that in the inertial frame the basic equation of the dynamics of a rigid body

with a fixed point O is
d

dt
LI = MI , (4)

where the vectors LI = LI(t) and MI = MI(t) are the angular momentum and the total

external torque with respect to O. By using (1), this basic equation with respect to the

body frame becomes
d

dt
LB +wB × LB = MB, (5)

where wB = wB(t) is the angular velocity of the body in the body frame with the com-

ponents defined by (2).

Since the body frame has the axes directed along the principal axes of the ellipsoid

of inertia LB = I wB(t) = (I1w1, I2w2, I3w3)
T where I = diag (Ii), and putting MB =

(M1,M2,M3)
T , equation (5) can be written as

I1w
′
1 − (I2 − I3)w2w3 = M1,

I2w
′
2 − (I3 − I1)w3w1 = M2, (6)

I3w
′
3 − (I1 − I2)w1w2 = M3,

which are the well known Euler’s equations that describe the dynamics of the rigid body

around O with respect to B.

In addition to (6) we have the kinematic equations that describe the orientation of the

body frame B with respect to the inertial frame I that according to (2) are

R′(t) = R(t) Σ(wB(t)). (7)

This is a linear matrix equation with the components of Σ given after solving (6) and

the unknown matrix function R(t) which is orthogonal for all t and therefore depends on

three free parameters.

Several analytical solutions have been obtained for special mass distributions and/or

torques. In the Euler-Poinsot case of a free body M = 0 and equations (6) can be solved

in terms of elliptic functions and when the kinematic equations are written in terms

of Euler angles the integration can be reduced to quadratures. For a symmetric rigid

body with fixed point which is different from its center of mass under the gravity force

the Lagrange-Poisson and Kovalevskaya heavy top cases are two well known examples of

integrable problems.

Concerning the integration of (7) it is worth to mention that some authors say that

the solution of the linear kinematic equations (7) can be written in the matrix form

R(t) = R(0) exp

(∫ t

0

Σ(wB(s)) ds

)
, (8)

29



and therefore the solution reduces to quadratures. However, as follows from the theory

of matrix functions, (8) is the solution of (7) only when

Σ(wB(t)) and

∫ t

0

Σ(wB(s)) ds commute. (9)

In this note we will consider some cases of the motion of a rigid body around a fixed

point under some prescribed torques studied recently by Romano in [2], [3]. We will

show that taking into account the assumed symmetries of these problems it is possible to

simplify the derivation of the analytical solution of the corresponding kinematic equations.

2 Rigid body with a spherical ellipsoid of inertia under a constant torque in

B

Suppose a rigid body with I1 = I2 = I3 = I under a constant torque MB = µ uB in

the body frame B with µ = ‖MB‖2 and uB a unit vector in the direction of the torque.

Note that we are considering bodies with spherical dynamic symmetry and this class of

bodies contain the class of bodies with geometric axial symmetry.

By the spherical symmetry, Euler equations (5) in the body frame are

I
dwB

dt
= µ uB,

with the solution

wB(t) = w0
B + t I−1 µ uB, (10)

where w0
B is the initial angular velocity of the body at the initial time t = 0 in the body

frame B.

To obtain a complete analytical solution we must solve the linear matrix system (7)

with a given R(0) where wB(t) is the affine function (10).

More generally, for given constant vectors a and b ∈ R3 we will obtain the solution of

R′(t) = R(t) Σ(a+ t b), with a given R(0). (11)

First of all if a and have the same direction b = ν a and this implies that Σ(a+ t b) =

(1 + ν t) Σ(a). Hence

exp

(∫ t

0

Σ(a+ s b) ds

)
and Σ(a+ t b),

commute and the solution of (11) is

R(t) = R(0) exp
[
(t+ νt2/2)Σ(a)

]
. (12)

For the explicit computation of the exponential in (12) we may use the well known

formula

exp(S) = I +

(
sin δ

δ

)
S +

(
1− cos δ

δ2

)
S2, (13)
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where

S =




0 −s3 s2

s3 0 −s1

−s2 s1 0


 , δ2 = s21 + s22 + s23. (14)

If a and b do not have the same direction we will make some time independent

transformations to simplify the vector a + tb as much as possible. Let β ∈ [−π, π] and

α ∈ [0, 2π) be the polar coordinates of the unit vector b so that

b = ‖b‖ (sin β cosα, sin β sinα, cos β). (15)

We will make the orthogonal transformation x → S1x with

S1 =




cos β 0 − sin β

0 1 0

sin β 0 cos β







cosα sinα 0

− sinα cosα 0

0 0 1


 , (16)

that maps

b → S1 b =




0

0

µ


 = µ e3,

where e3 is the unit vector along the third axis and µ = ‖b‖.

It must be observed that, by the assumed spherical ellipsoid of inertia, the principal

axes of inertia of the rigid body could be chosen with arbitrary orientation, in particular

with the x3-axis in the direction of the torque, however we will consider here the kinematic

equations independently of the rigid body because they will be used in other problems

without such a spherical symmetry.

As remarked above the argument w of Σ(w) behaves as a vector in changes of coor-

dinates and therefore

a+ t b → S1 (a+ t b) = S1 a+ µ t e3 = ã+ tµ e3. (17)

This implies that in the transformed system the dependence on t only appears in the

third component of the angular velocity and the corresponding Σ(S1(a+ t b)) matrix will

be

Σ(ã+ tµ e3) =




0 −ã3 − tµ ã2

ã3 + tµ 0 −ã1

−ã2 ã1 0


 .

Next we will make another time independent transformation in the (1,2) plane

y → S2y ≡




cos θ sin θ 0

− sin θ cos θ 0

0 0 1


 y, (18)
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with the purpose of vanishing the second component of the ã vector. In fact, defining θ

by

ã1 =
√

ã21 + ã22 cos θ, ã2 =
√

ã21 + ã22 sin θ,

for the transformed angular velocity we have

S2S1 (ã+ tµ e3) =




√
ã21 + ã22

0

ã3 + tµ


 ≡




w̃1

0

ã3 + tµ


 = w̃, (19)

with w̃3(t) = ã3 + tµ, which is the simplest form of the angular velocity under time

independent rotations.

In conclusion with the time independent transformation

x → Sx, S = S2S1,

the kinematic equations are

R̃′(t) = R̃(t) Σ(w̃), w̃ = (w̃1, 0, ã3 + tµ)T . (20)

with R̃(t) = S R(t) S−1, Σ(w̃B) the skew symmetric associated to (19) and the initial

conditions

R̃(0) = S R(0) S−1. (21)

After this simplification, to write the solution of (20) in terms of elementary functions

we observe that for the orthogonality of R̃(t) each row vT = vT
k = (r̃k1, r̃k2, r̃k3) can be

considered as a point of S2 ⊂ R3 that satisfies the linear system

d

dt
vT = vT Σ(w̃B). (22)

Now we will map

S2 → C
⋃
{∞}

v = (v1, v2, v3)
T 7→ ω

by means of the stereographic projection from the south pole on the complex equatorial

plane given by

ω = ω(v) =
v2 − iv1
1 + v3

, ω(−1) = ∞, (23)

with the inverse

v1 =
i(ω − ω)

1 + |ω|2
, v2 =

ω + ω

1 + |ω|2
, v3 =

1− |ω|2

1 + |ω|2
. (24)

With the transformation (23),(24), the linear equation (22) in the new stereographic

variables is transformed into the Riccati equation

ω′ =

(
w̃1

2

)
ω2 − iw̃3(t) ω +

(
w̃1

2

)
. (25)
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Next we introduce the standard change of variables

ω → ζ, ω = −
2ζ ′

ζw̃1
,

that transforms a Riccati equation into a linear equation and (25) becomes

ζ ′′ + iw̃3(t) ζ
′ +

1

4
w̃2

1 ζ = 0, (26)

with ŵ1 a real constant and ŵ3 an affine function of t defined by (19)

Finally with the linear change of time

t → z, t = (z − z0)/γ,

with

z0 =
ã3γ

µ
, γ2 =

µ

2i
, w̃3(t) = ã3 + µt,

we arrive to the Hermite equation for the unknown function ζ = ζ(z)

d2ζ

dz2
− 2z

dζ

dz
+ 2ν ζ = 0, with the complex constant ν =

iw̃2
1

4µ
. (27)

It must be remarked that this transformed equation was obtained by Romano in ([2]).

Let 〈ϕ1(z), ϕ2(z)〉 be a basis of solutions of Hermite’s equation (27), then any solution

of this equation can be written as ζ(z) = c1 ϕ1(z) + c2 ϕ2(z), with arbitrary constants

c1, c2. Since z = z0 + γt

ζ(γt+ z0) = c1 ϕ1(γt+ z0) + c2 ϕ2(γt + z0),

and in the complex variable of the stereographic projection the solution becomes

ω(t) = −
2γ(c1 ϕ

′
1(γt+ z0) + c2 ϕ

′
2(γt+ z0))

ŵ1 (c1 ϕ1(γt+ z0) + c2 ϕ2(γt + z0))
. (28)

For the choice of the arbitrary constants c1, c2 observe that for a given unit vector v at

t = 0, we have a unique ω(0) ∈ C and we must select these constants so that

ω(0) = −
2γ(c1 ϕ

′
1(z0) + c2 ϕ

′
2(z0))

w̃1 (c1 ϕ1(z0) + c2 ϕ2(z0))
. (29)

This equation shows that c1, c2 are not uniquely determined because for homogeneity

if c1, c2 is a solution Kc1, Kc2 is also solution for any K ∈ C. Nevertheless the same

homogeneity appears in (28) and therefore we can take any solution Kζ(t) because it

leads to the same ω(t).

Concerning the choice of the basis solutions, for Hermite’s equation there are several

possibilities: In many classical references on the subject it is remarked that if ζ(z) = ζν(z)

is a solution of (27), ζν(−z) is also solution and denoting by W (z) = W (ζν(z), ζν(−z))
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the Wronskian of these solutions, it is easy to show that W ′(z) = 2zW (z) which implies

W (z) = W (0) exp(z2). Hence taking a solution with W (0) 6= 0 we have two independent

solutions. The standard choice for ϕ1 is the so called Hermite’s function Hν(z) given by

Hν(z) =
1

2Γ(−ν)

∑

m≥0

(−1)mΓ((m− ν)/2)

m!
(2z)m.

Hermite’s symmetric basis 〈Hν(z), Hν(−z)〉 is relevant for theoretical studies because it

has an integral representation in the complex plane and allows further developments.

Next we will present another basis essentially equivalent to te given by Romano in [2]

using hypergeometric functions. Observe that

ζ(z) =
∑

n≥0

an
zn

n!
,

is a solution of (27) if the coefficients satisfy the two-term recurrence an+2 = 2(n− ν)an.

Hence for a0 = 1, a1 = 0 we have the even solution

ϕ1(z) =
∑

j≥0

a2j
z2j

2j!
, (a0 = 1, a2j = 2(2j − 2− ν)a2j−2).

For a0 = 0, a1 = 1 the odd solution

ϕ2(z) =
∑

j≥0

a2j+1
z2j+1

2j + 1!
, (a1 = 1, a2j+1 = 2(2j − 1− ν)a2j−1).

In the general solution ζ(z) = c1ϕ1(z) + c2ϕ2(z) for the computation of c1, c2 we can

proceed as above.

Finally, another alternative is to transform Hermite’s equation

ζ → η, ζ(z) = ez
2/2 η(z),

arriving to the normal form

η′′(z) + (1− 2ν − z2)η(z) = 0.

This is (with a constant scale of independent variable) Weber’s equation (see e.g. [6])

that has been extensively used because it appears in the solution of some wave equations

by separation of variables. Taking the basis of Weber-Hermite functions (also called the

parabolic cylinder functions) Dν(z) and D−ν(z) for the last equation we obtain immedi-

ately the corresponding basis in the original equation.

Remarks.

• The above analytical solution of a body with a spherical ellipsoid of inertia excited

by a constant torque can be easily extended to the case of a piecewise constant

torque. In fact, if the torque M is given by µ0uB,0 for t ∈ [t0, t1), µ1uB,1 for

t ∈ [t1, t2), . . . then it enough to match the corresponding solutions in the intervals

[t0, t1], [t1, t2], . . ..
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• In this derivation, for any time dependent skew symmetric matrix Σ(wB(t)) with

an affine function wB(t), each row of the kinematic equations R′ = R Σ(wB(t)) is

transformed into the linear second order equation (26) and conversely. This shows

that any second order equation with time dependent coefficients that admit a basis

analytical solutions and can be transformed into the form (26) leads to some torque

with a integrable problem.

3 Axially symmetric rigid body under a constant torque in the direction of

the symmetry axis

Here we consider the first problem of Romano in [3] of a rigid body with I1 = I2 =

I 6= I3 under a constant torque M = µeB,3 (µ > 0 constant) along the third axis of the

body frame.

Now Euler’s equations can be written as

I
dw1

dt
= (I − I3)w2w3,

I
dw2

dt
= (I3 − I)w3w1, (30)

I3
dw3

dt
= µ.

¿From the last equation w3(t) = w0
3 + (µ/I3)t and putting

α(t) =

(
I − I3

I

)
w3(t),

the first two equations of (33) are

dw1

dt
= α(t) w2,

dw2

dt
= −α(t) w1.

By introducing the complex function ζ(t) = w1(t) + iw2(t) we have

d

dt
ζ = −iα(t) ζ, ⇒ ζ(t) = ζ(0) e−iα̂(t)

with α̂(t) =
∫ t

0
α(s)ds. Hence with the initial conditions w1(0) = w0

1, w2(0) = w0
2 the

solution is

w1 = cos (α̂(t)) w0
1 + sin (α̂(t)) w0

2,

w2 = − sin (α̂(t)) w0
1 + cos (α̂(t)) w0

2.

Thus the solution of the dynamic equations (33) is

w(t) =




cos (α̂(t)) w0
1 + sin (α̂(t)) w0

2

− sin (α̂(t)) w0
1 + cos (α̂(t)) w0

2

w0
3 + (µ/I3)t


 , (31)
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with

α̂(t) =

∫ t

0

α(s) ds =

(
I − I3

I

) [
w0

3t+

(
µ

2I3

)
t2
]
.

For the solution of the kinematic equations

R′(t) = R(t) Σ(w(t)), (32)

observe that under a non singular time dependent change of variable

R −→ R̃, R = R̃ S(t),

we have,

R′(t) = R(t) ΣR −→ R̃′(t) = R̃(t) ΣR̃,

with

ΣR̃ = −S ′ S−1 + S ΣR S−1.

In particular taking for S a rotation around the third axis

S =




cosφ − sin φ 0

sinφ cosφ 0

0 0 1


 , φ = φ(t),

we get

S ′ S−1 =




0 −φ′ 0

φ′ 0 0

0 0 0


 ,

and

S ΣR S−1 =




0 −w3 (w1 sinφ+ w2 cosφ)

w3 0 −(w1 cosφ− w2 sin φ)

−(w1 sin φ+ w2 cos φ) (w1 cosφ− w2 sinφ) 0


 ,

and then the components of the angular velocity w̃ = (w̃1, w̃2, w̃3) associated to ΣR̃ are

w̃1 = (w1 cosφ− w2 sinφ),

w̃2 = (w1 sinφ+ w2 cosφ),

w̃3 = w3 − φ′,

Hence taking into account (34) and choosing φ(t) = α̂(t) + π/2 we have

w̃(t) =

(
w0

1, w
0
2,

(
2I − I3

I

)
w0

3 +

(
µ(I − I3)

II3

)
t

)
.

These are the same kinematic equations studied in section 2 with a different set of con-

stants in the angular velocity. Hence we may apply the transformations used there to get

the analytical solution.
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4 Axially symmetric rigid body under a rotating external torque constant in

magnitude and perpendicular to the symmetry axis

This is the second case considered by Romano in [3]. Now the components of the

torque in the body frame are

MB = (β0I1 cos(αt), β0I1 sin(αt), 0) , (33)

with non zero constants β0 and α. Hence Euler’s equations are

I1w
′
1 = (I1 − I3)w2w3 + β0I1 cos(αt),

I1w
′
2 = (I3 − I1)w3w1 + β0I1 sin(αt), (34)

w′
3 = 0.

For the derivation of analytic solutions Romano assumes that the angular velocity of

rotation of the torque is a function of the initial condition given by

α =
I3 − I1

I1
w0

3, (35)

and then equations (34) can be written as

w′
1 = −αw2 + β0 cos(αt), w′

2 = αw1 + β0 sin(αt), w′
3 = 0.

These dynamic equations have the general solution

(
w1(t)

w2(t)

)
=

(
cos(αt) − sin(αt)

sin(αt) cos(αt)

)(
w0

1 + tβ0

w0
2

)
, w3(t) = w0

3. (36)

As in the previous case for solving the kinematic equations

R′(t) = R(t) Σ(w(t)) (37)

we introduce the time dependent transformation

R = R̃ S(t),

where S = S(t) is a rotation around the third axis with angle −αt. Now the transformed

system is

R̃′(t) = R̃(t) Σ(w̃(t)), (38)

where
(

w̃1(t)

w̃2(t)

)
=

(
cos(−αt) − sin(−αt)

sin(−αt) cos(−αt)

)(
w1

w2

)
=

(
w0

1 + tβ0

w0
2

)
,
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and w̃3(t) = w0
3 +α. Since the transformed angular velocity w̃(t) is an affine function the

analytical solution of (38) can be written in terms of Hermite’s functions as in the section

2 and we have the desired analytical solution.

Finally, we consider the motion of an axially symmetric rigid body (I1 = I2 6= I3)

where the initial angular velocity in the body frame w(0) = (w0
1, w

0
2, w

0
3) is contained

in the 1-2 plane subjected to a fixed torque perpendicular to its axis of symmetry. By

the assumed rotational symmetry we can take the torque M = (I1µ, 0, 0) where µ an

arbitrary constant directed along the first axis. In this case the dynamic equations have

the solution

w(t) = (w0
1 + µt, w0

2, 0), (39)

and taking into account that (39) is an affine function, the solution of the kinematic

equation

R′(t) = R(t) Σ(w(t)), (40)

for arbitrary R(0) can be written in terms of Hermite’s functions.

More generally, as it has been proved in section 2, for all affine angular velocity function

w(t) = a + t b ( a, b constant vectors) after suitable change of variables the general

solution of the kinematic equations (40) can be expressed in terms of Hermite’s functions.

In view of this, for all external torque M that satisfies Euler’s equations

I
dw

dt
+w × I w = M, with w(t) = a+ t b, (41)

the corresponding rigid body problem is completely integrable because both (40) and (41)

are completely integrable.

In particular with the values

a = (w0
1, w

0
2, 0)

T , b = (µ, 0, 0)T , I1 = I2 6= I3,

by substituting in the left hand side of (41) we get

M1 = I1µ, M2 = 0, M3 = 0,

and we have the above particular solutions derived by Romano in [3].

5 Final Remarks

It has been stated that with the present possibilities of machine computation the

derivation of analytic solutions in problems of rigid body motion only possess an academic

interest. However it must be noticed that numerical methods enable us to obtain very

accurate solutions in short time intervals of integration but cannot capture the long time
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behavior of solutions. Thus, even in the simplest case of the torque free motion of a general

rigid body with a well known analytical solution in terms of Jacobian elliptic functions

many numerical integrators do not preserve the existing invariants of the problem.

Recent applications such as the attitude evolution of a spinning spacecraft have open

new requirements such as computer algorithms for onboard computations. Now the main

task is not the accuracy but the simplicity and reliability of the algorithms for usual

spinning-up and spinning-down maneuvers. It must be noticed that very often thruster

misalignment or thruster mismatch do not allow an exact knowledge of the torque.

Although Euler’s angles, typically the 3-1-2 angle sequence, are used to describe the

orientation of the body-fixed reference frame, in practical computations other (complex)

variables are more convenient and sometimes avoid singularities. Analytical solution are

very frequently a source of inspiration for this purpose.
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