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Abstract

We consider a Hamiltonian system with two degrees of freedom depending on

a parameter, having an equilibrium point, p, of center×saddle type. We assume

there is a homoclinic orbit to p. We explore the phenomenon of cascade of n-round

homoclinic orbits when varying the parameter. Explicit computations are shown

for the collinear equilibrium point L3 of the planar restricted three-body problem.
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1 Preliminaries and setting of the problem

In this work, we consider the existence of homoclinic orbits to a center×saddle equi-

librium point of a given Hamiltonian system. We recall that homoclinic and heteroclinic

connections of hyperbolic objects (equilibrium points being the simplest ones) play an

important role when studying a dynamical system from a global point of view. In par-

ticular they are relevant in applications to Celestial Mechanics and Astrodynamics, more

particularly in the design of libration point missions (see [4], [5], [7], [14] and references

therein).

The general setting considered from now on is the following: we assume that we

have a real analytic Hamiltonian H(x;µ) of two degrees of freedom, depending on a

parameter µ, such that for all values of the parameter the origin is an equilibrium point

of center×saddle type, i.e., the eigenvalues of the Jacobian matrix of the Hamiltonian

vector field, XH , at the origin are ±iω, ±λ with ωλ 6= 0, ω, λ ∈ R. Let us denote by

H0 = H(0) and let us consider the one-dimensional manifolds, stable W s and unstable
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W u, and the corresponding branches W s
+, W

s
−
, W u

+,W
u
−
, associated with the origin. Due

to the Lyapunov theorem (see [12]), we know that for each value of H close to H0, there

is an unstable periodic orbit. When varying H , we obtain the so called Lyapunov family

of periodic orbits associated with the equilibrium point.

Let us assume now that, for a particular value of the parameter, say µ1, one branch of

W s coincides with one branch of W u, giving rise to a homoclinic orbit, Γ, to the origin.

Two natural questions appear in this context:

1. How is the dynamics close to the homoclinic orbit Γ?

2. What happens to the homoclinic orbit when we consider values of the parameter in

a neighborhood of µ1?

Several authors have studied question 1. Maybe the first one was Conley ([2]) in the

context of the planar RTBP taking the mass parameter as a natural parameter. We also

mention the paper by Llibre et al. (see [11]) where they consider the same problem and

prove the existence of homoclinic orbits to the collinear equilibrium point L2 as well as

the transversal intersection of the stable and unstable manifolds of the Lyapunov periodic

orbits.

In a general analytic Hamiltonian, in the paper by Koltsova and Lerman [8], the

authors prove, under generic conditions, two important results for µ = µ1:

• the existence of countable families of periodic orbits accumulating to the homoclinic

orbit and lying on the same energy level as the center×saddle, and

• the existence of homoclinic orbits to each hyperbolic Lyapunov periodic orbit.

In the 3 degree-of-freedom Hamiltonian case, given an equilibrium point of center×-

center×saddle type, we can regard a homoclinic orbit to the equilibrium point not only as

the skeleton of homoclinic orbits to periodic orbits closeby, but also of 2d-invariant tori

(see [10]).

In order to answer the second question, we must introduce n-round homoclinic orbits.

We define a homoclinic orbit to the origin to be n-round if it enters and also leaves some

small neighborhood of the origin n times; in each path outside this neighborhood, it more

or less follows the homoclinic orbit Γ (see [6]). In this context, we consider the set of

values of the parameter µ in a neighborhood of µ1, and we define the set

Λn = {µ > 0 / there exists an n-round homoclinic orbit to the origin}.

The most complete investigation of n-round homoclinic orbits to a center×saddle in

a one-parameter unfolding of reversible two-degree-of-freedom Hamiltonian systems was

accomplished in [6] and [13]. An alternative proof for 2-round and 3-round homoclinic
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orbits was carried out in [8], and revisited in [9] for n-round homoclinic orbits, for n = 2, 3,

and n = m2k, m = 2, 3 and k ∈ N . Roughly speaking, the main result may be stated as

follows: given µ1 ∈ Λ1, there exist values of µ ∈ Λn, close enough to µ1, for all n > 1 (see

[13]).

The purpose of this work is to show numerical evidence of this result in the context of

the restricted three-body problem. For the details of the computations done, the reader

is referred to [1].

2 Example: the planar RTBP. Homoclinic orbits to L3.

Now we consider the planar circular RTBP, whose well known Hamiltonian function,

depending on the mass parameter µ ∈ (0, 1/2], is

H(x, y, px, py) =
1

2
(p2x + p2y)− xpy + ypx −

1− µ

r1
−

µ

r2
+

1

2
µ(1− µ)

with r1 =
√

(x− µ)2 + y2 and r2 =
√

(x− µ+ 1)2 + y2. We may also consider the

equations of motion in the rotating (non canonical) coordinates x, y, x′ = px+y, y′ = py−x

(see [15])

x′′ − 2y′ = DxΩ(x, y),

y′′ + 2x′ = DyΩ(x, y),
(1)

where

Ω(x, y) =
1

2
(x2 + y2) +

1− µ

r1
+

µ

r2
+

1

2
µ(1− µ).

The system of equations (1) has a first integral, called the Jacobi integral, which is given

by

C = 2Ω(x, y)− x′2 − y′2. (2)

This C value is related to H by C = −2H + µ(1 − µ) Furthermore, we recall that

equations (1) satisfy the well known symmetry

(t, x, y, x′, y′) −→ (−t, x,−y,−x′, y′). (3)

This implies that, for each solution of equations (1), there also exists another one, which

is seen as symmetric with respect to y = 0 in configuration space.

We also recall that the RTBP has five equilibrium points: the collinear points, L1,

L2 and L3, situated on the line containing the primaries, and the equilateral ones, L4

and L5, both forming equilateral triangles with the two primaries. We will consider that

xL2
≤ µ − 1 ≤ xL1

≤ µ ≤ xL3
, that is, L1 is between both primaries, L2 is on the left

hand side of the small one and L3 is on the right hand side of the large one.

We will concentrate on the collinear equilibrium point L3. It is well known that, if we

write the differential equations (1) as

x′ = X(x)
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then Spec DX(Li) = {±iω,±λ}, so the equilibrium point Li, i = 1, 2, 3 is a center×sad-

dle point. In this case W u
+, W

u
−

are the two branches of the unstable manifold of L3,

whose (x, y) projection lies (when t → −∞) on the y > 0 and y < 0 region respectively

and, similarly, W s
+ and W s

−
. If, for a given value of µ, the unstable and stable manifolds

intersect, they give rise to a homoclinic connection to L3.

So, our setting now is the RTBP with one parameter, µ, and L3 (instead of the origin

in the previous Section) being the associated equilibrium point for a given µ ∈ (0, µ/2].

We say that a value µ belongs to Λn if for that µ there exists an n-round symmetric

homoclinic orbit (SHO from now on) to L3.

Our aim in this Section is, on the one hand, to numerically illustrate the existence of

values of µ ∈ Λ1; and, on the other hand, given a fixed value of µ = µ1 ∈ Λ1, to display

sequences of values in Λn tending to µ1, for any n > 1. Of course we cannot explore all

the values of n; we will only take the cases n = 2, 3, 4.

An easy strategy to detect SHO is simply the following: we consider Σ = {y = 0}

as surface of section and, for a given µ, denote by x′

j(µ) the x′ coordinate of the j–th

intersection of a branch of a manifold of L3 (we will take from now on W u
−
) with Σ. If

this j–th cut is orthogonal, that is,

x′

j(µ) = 0, (4)

the application of symmetry (3) to a trajectory following W u
−
up to its j–th cut with y = 0

forward in time will give rise to a symmetric trajectory following W s
+ backward in time

and therefore becoming a SHO.

Let us start analyzing the set Λ1. We vary the µ parameter and we consider the func-

tion x′

1(µ) given in Fig. 1 left. Its behavior provides numerical evidence of the existence of

a decreasing sequence of values of µ1
n ∈ Λ1, with µ1

1 < 0.01 and µ1
n → 0 when n → ∞ (see

[3] for an expression of such values). For any given value of µ1
n, the corresponding (x, y)

projection of the SHO typically surrounds once L4 and L5 describing a horseshoe–shaped

orbit. See Fig. 1 right.

We plot the functions x′

2(µ) in Fig. 2. We can see that there are sequences of values

in Λ2 tending (on each side) to each value in Λ1, and therefore providing the values of µ

for 2-round SHO.

In a similar way, we plot in Fig. 3 the functions x′

3(µ) and x′

4(µ) in the neighborhood

of a fixed value of µ ∈ Λ1, denoted by µ1. We see again the existence of sequences of

values of µ ∈ Λ3 and Λ4 tending to µ1.

As a final remark, we note that the jumps observed in the curves x′

j(µ), j = 1, 2, 3, 4,

in the different figures can also be analysed graphically in detail. This has been done in

[1].
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Figure 1.— Left. Function x′1(µ). Right. Homoclinic invariant manifold –(x, y)

projection– for µ = 0.0037257851523.
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Figure 2.— Functions x′1(µ) (in red) and x′2(µ) (blue).
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Figure 3.— Left: functions x′k(µ), for k = 1 (in red), k = 2 (in blue), k = 3 (in

magenta). Right. Functions x′2(µ) and x′4(µ). For display purposes, the function

x′4 has been rescaled using the arcsinh(x) function, and the y axis has been labeled

accordingly.
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