Monografías de la Real Academia de Ciencias de Zaragoza 35, 21–26, (2011).

Cascade of n-round homoclinic orbits to a center×saddle

E. Barrabés¹, J. M. Mondelo² and M. Ollé³

¹ Dept. Informàtica i Matemàtica Aplicada Universitat de Girona Avd. Lluís Santaló s/n, 17071 Girona, Spain.

² Dept. Matemàtiques, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain.

³ Dept. Matemàtica Aplicada I. Universitat Politècnica de Catalunya, Diagonal 647, 08028 Barcelona, Spain.

Abstract

We consider a Hamiltonian system with two degrees of freedom depending on a parameter, having an equilibrium point, p, of center×saddle type. We assume there is a homoclinic orbit to p. We explore the phenomenon of cascade of n-round homoclinic orbits when varying the parameter. Explicit computations are shown for the collinear equilibrium point L_3 of the planar restricted three-body problem. **Key words and expressions:** equilibrium point, homoclinic orbits

1 Preliminaries and setting of the problem

In this work, we consider the existence of homoclinic orbits to a center×saddle equilibrium point of a given Hamiltonian system. We recall that homoclinic and heteroclinic connections of hyperbolic objects (equilibrium points being the simplest ones) play an important role when studying a dynamical system from a global point of view. In particular they are relevant in applications to Celestial Mechanics and Astrodynamics, more particularly in the design of libration point missions (see [4], [5], [7], [14] and references therein).

The general setting considered from now on is the following: we assume that we have a real analytic Hamiltonian $H(x;\mu)$ of two degrees of freedom, depending on a parameter μ , such that for all values of the parameter the origin is an equilibrium point of center×saddle type, i.e., the eigenvalues of the Jacobian matrix of the Hamiltonian vector field, X_H , at the origin are $\pm i\omega$, $\pm \lambda$ with $\omega \lambda \neq 0$, $\omega, \lambda \in R$. Let us denote by $H_0 = H(0)$ and let us consider the one-dimensional manifolds, stable W^s and unstable W^{u} , and the corresponding branches W^{s}_{+} , W^{s}_{-} , W^{u}_{+} , W^{u}_{-} , associated with the origin. Due to the Lyapunov theorem (see [12]), we know that for each value of H close to H_{0} , there is an unstable periodic orbit. When varying H, we obtain the so called Lyapunov family of periodic orbits associated with the equilibrium point.

Let us assume now that, for a particular value of the parameter, say μ_1 , one branch of W^s coincides with one branch of W^u , giving rise to a homoclinic orbit, Γ , to the origin. Two natural questions appear in this context:

- 1. How is the dynamics close to the homoclinic orbit Γ ?
- 2. What happens to the homoclinic orbit when we consider values of the parameter in a neighborhood of μ_1 ?

Several authors have studied question 1. Maybe the first one was Conley ([2]) in the context of the planar RTBP taking the mass parameter as a natural parameter. We also mention the paper by Llibre et al. (see [11]) where they consider the same problem and prove the existence of homoclinic orbits to the collinear equilibrium point L_2 as well as the transversal intersection of the stable and unstable manifolds of the Lyapunov periodic orbits.

In a general analytic Hamiltonian, in the paper by Koltsova and Lerman [8], the authors prove, under generic conditions, two important results for $\mu = \mu_1$:

- the existence of countable families of periodic orbits accumulating to the homoclinic orbit and lying on the same energy level as the center×saddle, and
- the existence of homoclinic orbits to each hyperbolic Lyapunov periodic orbit.

In the 3 degree-of-freedom Hamiltonian case, given an equilibrium point of center \times -center \times saddle type, we can regard a homoclinic orbit to the equilibrium point not only as the skeleton of homoclinic orbits to periodic orbits closeby, but also of 2d-invariant tori (see [10]).

In order to answer the second question, we must introduce *n*-round homoclinic orbits. We define a homoclinic orbit to the origin to be *n*-round if it enters and also leaves some small neighborhood of the origin n times; in each path outside this neighborhood, it more or less follows the homoclinic orbit Γ (see [6]). In this context, we consider the set of values of the parameter μ in a neighborhood of μ_1 , and we define the set

 $\Lambda_n = \{\mu > 0 / \text{ there exists an } n \text{-round homoclinic orbit to the origin} \}.$

The most complete investigation of n-round homoclinic orbits to a center×saddle in a one-parameter unfolding of reversible two-degree-of-freedom Hamiltonian systems was accomplished in [6] and [13]. An alternative proof for 2-round and 3-round homoclinic orbits was carried out in [8], and revisited in [9] for *n*-round homoclinic orbits, for n = 2, 3, and $n = m2^k$, m = 2, 3 and $k \in N$. Roughly speaking, the main result may be stated as follows: given $\mu_1 \in \Lambda_1$, there exist values of $\mu \in \Lambda_n$, close enough to μ_1 , for all n > 1 (see [13]).

The purpose of this work is to show numerical evidence of this result in the context of the restricted three-body problem. For the details of the computations done, the reader is referred to [1].

2 Example: the planar RTBP. Homoclinic orbits to L_3 .

Now we consider the planar circular RTBP, whose well known Hamiltonian function, depending on the mass parameter $\mu \in (0, 1/2]$, is

$$H(x, y, p_x, p_y) = \frac{1}{2}(p_x^2 + p_y^2) - xp_y + yp_x - \frac{1-\mu}{r_1} - \frac{\mu}{r_2} + \frac{1}{2}\mu(1-\mu)$$

with $r_1 = \sqrt{(x-\mu)^2 + y^2}$ and $r_2 = \sqrt{(x-\mu+1)^2 + y^2}$. We may also consider the equations of motion in the rotating (non canonical) coordinates $x, y, x' = p_x + y, y' = p_y - x$ (see [15])

$$\begin{aligned}
x'' - 2y' &= D_x \Omega(x, y), \\
y'' + 2x' &= D_y \Omega(x, y),
\end{aligned}$$
(1)

where

$$\Omega(x,y) = \frac{1}{2}(x^2 + y^2) + \frac{1-\mu}{r_1} + \frac{\mu}{r_2} + \frac{1}{2}\mu(1-\mu).$$

The system of equations (1) has a first integral, called the Jacobi integral, which is given by

$$C = 2\Omega(x, y) - x^{2} - y^{2}.$$
(2)

This C value is related to H by $C = -2H + \mu(1 - \mu)$ Furthermore, we recall that equations (1) satisfy the well known symmetry

$$(t, x, y, x', y') \longrightarrow (-t, x, -y, -x', y').$$

$$(3)$$

This implies that, for each solution of equations (1), there also exists another one, which is seen as symmetric with respect to y = 0 in configuration space.

We also recall that the RTBP has five equilibrium points: the collinear points, L_1 , L_2 and L_3 , situated on the line containing the primaries, and the equilateral ones, L_4 and L_5 , both forming equilateral triangles with the two primaries. We will consider that $x_{L_2} \leq \mu - 1 \leq x_{L_1} \leq \mu \leq x_{L_3}$, that is, L_1 is between both primaries, L_2 is on the left hand side of the small one and L_3 is on the right hand side of the large one.

We will concentrate on the collinear equilibrium point L_3 . It is well known that, if we write the differential equations (1) as

$$\mathbf{x}' = \mathbf{X}(\mathbf{x})$$

then Spec $DX(L_i) = \{\pm i\omega, \pm\lambda\}$, so the equilibrium point L_i , i = 1, 2, 3 is a center×saddle point. In this case W^u_+ , W^u_- are the two branches of the unstable manifold of L_3 , whose (x, y) projection lies (when $t \to -\infty$) on the y > 0 and y < 0 region respectively and, similarly, W^s_+ and W^s_- . If, for a given value of μ , the unstable and stable manifolds intersect, they give rise to a homoclinic connection to L_3 .

So, our setting now is the RTBP with one parameter, μ , and L_3 (instead of the origin in the previous Section) being the associated equilibrium point for a given $\mu \in (0, \mu/2]$. We say that a value μ belongs to Λ_n if for that μ there exists an *n*-round symmetric homoclinic orbit (SHO from now on) to L_3 .

Our aim in this Section is, on the one hand, to numerically illustrate the existence of values of $\mu \in \Lambda_1$; and, on the other hand, given a fixed value of $\mu = \mu_1 \in \Lambda_1$, to display sequences of values in Λ_n tending to μ_1 , for any n > 1. Of course we cannot explore all the values of n; we will only take the cases n = 2, 3, 4.

An easy strategy to detect SHO is simply the following: we consider $\Sigma = \{y = 0\}$ as surface of section and, for a given μ , denote by $x'_j(\mu)$ the x' coordinate of the *j*-th intersection of a branch of a manifold of L_3 (we will take from now on W^u_-) with Σ . If this *j*-th cut is orthogonal, that is,

$$x_j'(\mu) = 0, \tag{4}$$

the application of symmetry (3) to a trajectory following W_{-}^{u} up to its *j*-th cut with y = 0 forward in time will give rise to a symmetric trajectory following W_{+}^{s} backward in time and therefore becoming a SHO.

Let us start analyzing the set Λ_1 . We vary the μ parameter and we consider the function $x'_1(\mu)$ given in Fig. 1 left. Its behavior provides numerical evidence of the existence of a decreasing sequence of values of $\mu_n^1 \in \Lambda_1$, with $\mu_1^1 < 0.01$ and $\mu_n^1 \to 0$ when $n \to \infty$ (see [3] for an expression of such values). For any given value of μ_n^1 , the corresponding (x, y)projection of the SHO typically surrounds once L_4 and L_5 describing a horseshoe–shaped orbit. See Fig. 1 right.

We plot the functions $x'_2(\mu)$ in Fig. 2. We can see that there are sequences of values in Λ_2 tending (on each side) to each value in Λ_1 , and therefore providing the values of μ for 2-round SHO.

In a similar way, we plot in Fig. 3 the functions $x'_3(\mu)$ and $x'_4(\mu)$ in the neighborhood of a fixed value of $\mu \in \Lambda_1$, denoted by μ_1 . We see again the existence of sequences of values of $\mu \in \Lambda_3$ and Λ_4 tending to μ_1 .

As a final remark, we note that the jumps observed in the curves $x'_j(\mu)$, j = 1, 2, 3, 4, in the different figures can also be analysed graphically in detail. This has been done in [1].

Figure 1.— Left. Function $x'_1(\mu)$. Right. Homoclinic invariant manifold -(x, y) projection- for $\mu = 0.0037257851523$.

Figure 2.— Functions $x'_1(\mu)$ (in red) and $x'_2(\mu)$ (blue).

Figure 3.— Left: functions $x'_k(\mu)$, for k = 1 (in red), k = 2 (in blue), k = 3 (in magenta). Right. Functions $x'_2(\mu)$ and $x'_4(\mu)$. For display purposes, the function x'_4 has been rescaled using the $\operatorname{arcsinh}(x)$ function, and the y axis has been labeled accordingly.

Acknowledgments

E. Barrabés and J.M. Mondelo are partially supported by the MCyT/FEDER grant MTM2006-05849/Consolider. J.M. Mondelo is also supported by the MCyT/FEDER grant MTM2008-01486 M. Ollé is partially supported by MICINN-FEDER grant MTM2009-06973 and CUR-DIUE grant 2009SGR859.

References

- E. Barrabés, J. M. Mondelo, and M. Ollé. Dynamical aspects of multi-round horseshoeshaped homoclinic orbits in the RTBP. *Celest. Mech. Dyn. Astr.*, 105:197–210, 2009.
- [2] C. Conley. Low energy transit orbits in the restricted three-body problem. SIAM J. Appl. Math., 16:732-746, 1968.
- [3] J. Font. The role of homoclinic and heteroclinic orbits in two-degrees of freedom Hamiltonian systems. Ph. D. Thesis, Barcelona University, 1999.
- [4] G. Gómez, J. J. Masdemont, and J. M. Mondelo. Libration Point Orbits: A survey from tye dynamical point of view. In G. Gómez, M. W. Lo, and J. J. Masdemont (Eds.), *Libration Point Orbits and Applications*. World Scientific, 2003.
- [5] G. Gómez, W. S. Koon, M. W. Lo, J. E. Marsden, J. Masdemont, S.D. Ross. Connecting orbits and invariant manifolds in the spatial restricted three-body problem. *Nonlinearity*, 17:1571–1606, 2004.
- [6] C. Grotta Ragazzo. Irregular dynamics and homoclinic orbits to Hamiltonian saddle centers. Comm. Pure Appl. Math. 50(2), 105–147, 1997.
- [7] K. C. Howell, B. T. Barden, R. S. Wilson, and M. W. Lo. Trajectory design using a dynamical systems approach with application to GENESIS. *Advances in the Astronautical Sciences 97*, 1665–1684, 1998.
- [8] O. Y. Koltsova and L. M. Lerman. Periodic and homoclinic orbits in a two-parameter unfolding of a hamiltonian system with a homoclinic orbit to a saddle-center. Int. J. Bifurcation and Chaos 5(2), 397–408, 1995.
- [9] O. Y. Koltsova. Families of multi-round homoclinic and periodic orbits near a saddle-center equilibrium. *Regul. Chaotic Dyn.* 8(2), 191–200, 2003.
- [10] O. Y. Koltsova, L. Lerman, A. Delshams, and P. Gutiérrez. Homoclinic orbits to invariant tori near a homoclinic orbit to center-center-saddle equilibrium. *Phys. D* 201(3-4), 268–290, 2005.
- [11] J. Llibre, R. Martínez, and C. Simó. Transversality of the invariant manifolds associated to the Lyapunov family of periodic orbits near L_2 in the restricted three-body problem. J. Differential Equations 58(1), 104–156, 1985.
- [12] K. Meyer, G. Hall. Introduction to Hamiltonian Dynamical systems and the N-Body Problem, Ed Springer-Verlag, 1991.
- [13] A. Mielke, P. Holmes, and O. O'Reilly. Cascades of homoclinic orbits to, and chaos near, a Hamiltonian saddle-center. J. Dynam. Differential Equations 4(1), 95–126, 1992.
- [14] J. S. Parker and M. W. Lo. Shoot the moon 3D. Advances in the Astronautical Sciences 123, 2067–2086, 2006.
- [15] V. Szebehely. Theory of orbits. Academic Press, 1967.