Cascade of n-round homoclinic orbits to a center \times saddle

E. Barrabés ${ }^{1}$, J. M. Mondelo ${ }^{2}$ and M. Ollé ${ }^{3}$
${ }^{1}$ Dept. Informàtica i Matemàtica Aplicada Universitat de Girona Avd. Lluís Santaló s/n, 17071 Girona, Spain.
${ }^{2}$ Dept. Matemàtiques, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain.
${ }^{3}$ Dept. Matemàtica Aplicada I. Universitat Politècnica de Catalunya, Diagonal 647, 08028 Barcelona, Spain.

Abstract

We consider a Hamiltonian system with two degrees of freedom depending on a parameter, having an equilibrium point, p, of center \times saddle type. We assume there is a homoclinic orbit to p. We explore the phenomenon of cascade of n-round homoclinic orbits when varying the parameter. Explicit computations are shown for the collinear equilibrium point L_{3} of the planar restricted three-body problem.

Key words and expressions: equilibrium point, homoclinic orbits

1 Preliminaries and setting of the problem

In this work, we consider the existence of homoclinic orbits to a center \times saddle equilibrium point of a given Hamiltonian system. We recall that homoclinic and heteroclinic connections of hyperbolic objects (equilibrium points being the simplest ones) play an important role when studying a dynamical system from a global point of view. In particular they are relevant in applications to Celestial Mechanics and Astrodynamics, more particularly in the design of libration point missions (see [4], [5], [7], [14] and references therein).

The general setting considered from now on is the following: we assume that we have a real analytic Hamiltonian $H(x ; \mu)$ of two degrees of freedom, depending on a parameter μ, such that for all values of the parameter the origin is an equilibrium point of center \times saddle type, i.e., the eigenvalues of the Jacobian matrix of the Hamiltonian vector field, X_{H}, at the origin are $\pm i \omega, \pm \lambda$ with $\omega \lambda \neq 0, \omega, \lambda \in R$. Let us denote by $H_{0}=H(0)$ and let us consider the one-dimensional manifolds, stable W^{s} and unstable
W^{u}, and the corresponding branches $W_{+}^{s}, W_{-}^{s}, W_{+}^{u}, W_{-}^{u}$, associated with the origin. Due to the Lyapunov theorem (see [12]), we know that for each value of H close to H_{0}, there is an unstable periodic orbit. When varying H, we obtain the so called Lyapunov family of periodic orbits associated with the equilibrium point.

Let us assume now that, for a particular value of the parameter, say μ_{1}, one branch of W^{s} coincides with one branch of W^{u}, giving rise to a homoclinic orbit, Γ, to the origin. Two natural questions appear in this context:

1. How is the dynamics close to the homoclinic orbit Γ ?
2. What happens to the homoclinic orbit when we consider values of the parameter in a neighborhood of μ_{1} ?

Several authors have studied question 1. Maybe the first one was Conley ([2]) in the context of the planar RTBP taking the mass parameter as a natural parameter. We also mention the paper by Llibre et al. (see [11]) where they consider the same problem and prove the existence of homoclinic orbits to the collinear equilibrium point L_{2} as well as the transversal intersection of the stable and unstable manifolds of the Lyapunov periodic orbits.

In a general analytic Hamiltonian, in the paper by Koltsova and Lerman [8], the authors prove, under generic conditions, two important results for $\mu=\mu_{1}$:

- the existence of countable families of periodic orbits accumulating to the homoclinic orbit and lying on the same energy level as the center \times saddle, and
- the existence of homoclinic orbits to each hyperbolic Lyapunov periodic orbit.

In the 3 degree-of-freedom Hamiltonian case, given an equilibrium point of center \times center \times saddle type, we can regard a homoclinic orbit to the equilibrium point not only as the skeleton of homoclinic orbits to periodic orbits closeby, but also of 2d-invariant tori (see [10]).

In order to answer the second question, we must introduce n-round homoclinic orbits. We define a homoclinic orbit to the origin to be n-round if it enters and also leaves some small neighborhood of the origin n times; in each path outside this neighborhood, it more or less follows the homoclinic orbit Γ (see [6]). In this context, we consider the set of values of the parameter μ in a neighborhood of μ_{1}, and we define the set

$$
\Lambda_{n}=\{\mu>0 / \text { there exists an } n \text {-round homoclinic orbit to the origin }\} .
$$

The most complete investigation of n-round homoclinic orbits to a center \times saddle in a one-parameter unfolding of reversible two-degree-of-freedom Hamiltonian systems was accomplished in [6] and [13]. An alternative proof for 2-round and 3-round homoclinic
orbits was carried out in [8], and revisited in [9] for n-round homoclinic orbits, for $n=2,3$, and $n=m 2^{k}, m=2,3$ and $k \in N$. Roughly speaking, the main result may be stated as follows: given $\mu_{1} \in \Lambda_{1}$, there exist values of $\mu \in \Lambda_{n}$, close enough to μ_{1}, for all $n>1$ (see [13]).

The purpose of this work is to show numerical evidence of this result in the context of the restricted three-body problem. For the details of the computations done, the reader is referred to [1].

2 Example: the planar RTBP. Homoclinic orbits to L_{3}.

Now we consider the planar circular RTBP, whose well known Hamiltonian function, depending on the mass parameter $\mu \in(0,1 / 2]$, is

$$
H\left(x, y, p_{x}, p_{y}\right)=\frac{1}{2}\left(p_{x}^{2}+p_{y}^{2}\right)-x p_{y}+y p_{x}-\frac{1-\mu}{r_{1}}-\frac{\mu}{r_{2}}+\frac{1}{2} \mu(1-\mu)
$$

with $r_{1}=\sqrt{(x-\mu)^{2}+y^{2}}$ and $r_{2}=\sqrt{(x-\mu+1)^{2}+y^{2}}$. We may also consider the equations of motion in the rotating (non canonical) coordinates $x, y, x^{\prime}=p_{x}+y, y^{\prime}=p_{y}-x$ (see [15])

$$
\begin{align*}
x^{\prime \prime}-2 y^{\prime} & =D_{x} \Omega(x, y) \\
y^{\prime \prime}+2 x^{\prime} & =D_{y} \Omega(x, y), \tag{1}
\end{align*}
$$

where

$$
\Omega(x, y)=\frac{1}{2}\left(x^{2}+y^{2}\right)+\frac{1-\mu}{r_{1}}+\frac{\mu}{r_{2}}+\frac{1}{2} \mu(1-\mu) .
$$

The system of equations (1) has a first integral, called the Jacobi integral, which is given by

$$
\begin{equation*}
\mathcal{C}=2 \Omega(x, y)-x^{\prime 2}-y^{\prime 2} . \tag{2}
\end{equation*}
$$

This C value is related to H by $C=-2 H+\mu(1-\mu)$ Furthermore, we recall that equations (1) satisfy the well known symmetry

$$
\begin{equation*}
\left(t, x, y, x^{\prime}, y^{\prime}\right) \longrightarrow\left(-t, x,-y,-x^{\prime}, y^{\prime}\right) . \tag{3}
\end{equation*}
$$

This implies that, for each solution of equations (1), there also exists another one, which is seen as symmetric with respect to $y=0$ in configuration space.

We also recall that the RTBP has five equilibrium points: the collinear points, L_{1}, L_{2} and L_{3}, situated on the line containing the primaries, and the equilateral ones, L_{4} and L_{5}, both forming equilateral triangles with the two primaries. We will consider that $x_{L_{2}} \leq \mu-1 \leq x_{L_{1}} \leq \mu \leq x_{L_{3}}$, that is, L_{1} is between both primaries, L_{2} is on the left hand side of the small one and L_{3} is on the right hand side of the large one.

We will concentrate on the collinear equilibrium point L_{3}. It is well known that, if we write the differential equations (1) as

$$
\mathrm{x}^{\prime}=\mathbf{X}(\mathrm{x})
$$

then Spec $D X\left(L_{i}\right)=\{ \pm i \omega, \pm \lambda\}$, so the equilibrium point $L_{i}, i=1,2,3$ is a center \times saddle point. In this case W_{+}^{u}, W_{-}^{u} are the two branches of the unstable manifold of L_{3}, whose (x, y) projection lies (when $t \rightarrow-\infty$) on the $y>0$ and $y<0$ region respectively and, similarly, W_{+}^{s} and W_{-}^{s}. If, for a given value of μ, the unstable and stable manifolds intersect, they give rise to a homoclinic connection to L_{3}.

So, our setting now is the RTBP with one parameter, μ, and L_{3} (instead of the origin in the previous Section) being the associated equilibrium point for a given $\mu \in(0, \mu / 2]$. We say that a value μ belongs to Λ_{n} if for that μ there exists an n-round symmetric homoclinic orbit (SHO from now on) to L_{3}.

Our aim in this Section is, on the one hand, to numerically illustrate the existence of values of $\mu \in \Lambda_{1}$; and, on the other hand, given a fixed value of $\mu=\mu_{1} \in \Lambda_{1}$, to display sequences of values in Λ_{n} tending to μ_{1}, for any $n>1$. Of course we cannot explore all the values of n; we will only take the cases $n=2,3,4$.

An easy strategy to detect SHO is simply the following: we consider $\Sigma=\{y=0\}$ as surface of section and, for a given μ, denote by $x_{j}^{\prime}(\mu)$ the x^{\prime} coordinate of the j-th intersection of a branch of a manifold of L_{3} (we will take from now on W_{-}^{u}) with Σ. If this j-th cut is orthogonal, that is,

$$
\begin{equation*}
x_{j}^{\prime}(\mu)=0, \tag{4}
\end{equation*}
$$

the application of symmetry (3) to a trajectory following W_{-}^{u} up to its j-th cut with $y=0$ forward in time will give rise to a symmetric trajectory following W_{+}^{s} backward in time and therefore becoming a SHO.

Let us start analyzing the set Λ_{1}. We vary the μ parameter and we consider the function $x_{1}^{\prime}(\mu)$ given in Fig. 1 left. Its behavior provides numerical evidence of the existence of a decreasing sequence of values of $\mu_{n}^{1} \in \Lambda_{1}$, with $\mu_{1}^{1}<0.01$ and $\mu_{n}^{1} \rightarrow 0$ when $n \rightarrow \infty$ (see [3] for an expression of such values). For any given value of μ_{n}^{1}, the corresponding (x, y) projection of the SHO typically surrounds once L_{4} and L_{5} describing a horseshoe-shaped orbit. See Fig. 1 right.

We plot the functions $x_{2}^{\prime}(\mu)$ in Fig. 2. We can see that there are sequences of values in Λ_{2} tending (on each side) to each value in Λ_{1}, and therefore providing the values of μ for 2-round SHO.

In a similar way, we plot in Fig. 3 the functions $x_{3}^{\prime}(\mu)$ and $x_{4}^{\prime}(\mu)$ in the neighborhood of a fixed value of $\mu \in \Lambda_{1}$, denoted by μ_{1}. We see again the existence of sequences of values of $\mu \in \Lambda_{3}$ and Λ_{4} tending to μ_{1}.

As a final remark, we note that the jumps observed in the curves $x_{j}^{\prime}(\mu), j=1,2,3,4$, in the different figures can also be analysed graphically in detail. This has been done in [1].

Figure 1.- Left. Function $x_{1}^{\prime}(\mu)$. Right. Homoclinic invariant manifold $-(x, y)$ projection- for $\mu=0.0037257851523$.

Figure 2.- Functions $x_{1}^{\prime}(\mu)$ (in red) and $x_{2}^{\prime}(\mu)$ (blue).

Figure 3.- Left: functions $x_{k}^{\prime}(\mu)$, for $k=1$ (in red), $k=2$ (in blue), $k=3$ (in magenta). Right. Functions $x_{2}^{\prime}(\mu)$ and $x_{4}^{\prime}(\mu)$. For display purposes, the function x_{4}^{\prime} has been rescaled using the $\operatorname{arcsinh}(x)$ function, and the y axis has been labeled accordingly.

Acknowledgments

E. Barrabés and J.M. Mondelo are partially supported by the MCyT/FEDER grant MTM2006-05849/Consolider. J.M. Mondelo is also supported by the MCyT/FEDER grant MTM2008-01486 M. Ollé is partially supported by MICINN-FEDER grant MTM200906973 and CUR-DIUE grant 2009SGR859.

References

[1] E. Barrabés, J. M. Mondelo, and M. Ollé. Dynamical aspects of multi-round horseshoeshaped homoclinic orbits in the RTBP. Celest. Mech. Dyn. Astr., 105:197-210, 2009.
[2] C. Conley. Low energy transit orbits in the restricted three-body problem. SIAM J. Appl. Math., 16:732-746, 1968.
[3] J. Font. The role of homoclinic and heteroclinic orbits in two-degrees of freedom Hamiltonian systems. Ph. D. Thesis, Barcelona University, 1999.
[4] G. Gómez, J. J. Masdemont, and J. M. Mondelo. Libration Point Orbits: A survey from tye dynamical point of view. In G. Gómez, M. W. Lo, and J. J. Masdemont (Eds.), Libration Point Orbits and Applications. World Scientific, 2003.
[5] G. Gómez, W. S. Koon, M. W. Lo, J. E. Marsden, J. Masdemont, S.D. Ross. Connecting orbits and invariant manifolds in the spatial restricted three-body problem. Nonlinearity, 17:1571-1606, 2004.
[6] C. Grotta Ragazzo. Irregular dynamics and homoclinic orbits to Hamiltonian saddle centers. Comm. Pure Appl. Math. 50(2), 105-147, 1997.
[7] K. C. Howell, B. T. Barden, R. S. Wilson, and M. W. Lo. Trajectory design using a dynamical systems approach with application to GENESIS. Advances in the Astronautical Sciences 97, 1665-1684, 1998.
[8] O. Y. Koltsova and L. M. Lerman. Periodic and homoclinic orbits in a two-parameter unfolding of a hamiltonian system with a homoclinic orbit to a saddle-center. Int. J. Bifurcation and Chaos 5(2), 397-408, 1995.
[9] O. Y. Koltsova. Families of multi-round homoclinic and periodic orbits near a saddle-center equilibrium. Regul. Chaotic Dyn. 8(2), 191-200, 2003.
[10] O. Y. Koltsova, L. Lerman, A. Delshams, and P. Gutiérrez. Homoclinic orbits to invariant tori near a homoclinic orbit to center-center-saddle equilibrium. Phys. D 201(3-4), 268-290, 2005.
[11] J. Llibre, R. Martínez, and C. Simó. Transversality of the invariant manifolds associated to the Lyapunov family of periodic orbits near L_{2} in the restricted three-body problem. J. Differential Equations 58(1), 104-156, 1985.
[12] K. Meyer, G. Hall. Introduction to Hamiltonian Dynamical systems and the N-Body Problem, Ed Springer-Verlag, 1991.
[13] A. Mielke, P. Holmes, and O. O'Reilly. Cascades of homoclinic orbits to, and chaos near, a Hamiltonian saddle-center. J. Dynam. Differential Equations 4(1), 95-126, 1992.
[14] J. S. Parker and M. W. Lo. Shoot the moon 3D. Advances in the Astronautical Sciences 123, 2067-2086, 2006.
[15] V. Szebehely. Theory of orbits. Academic Press, 1967.

